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•  Goal: Completely general electronic-structure method (metals and insulators, high-
symmetry and low) for large problems involving “hard atoms”.


•  Approach: Solve the Kohn-Sham equations in a partition-of-unity (PU) finite-element 
(FE) basis


•  Why PUFE?


                                                PW     FD     FE     PUFE .. DG! 

General, systematically improvable                                   ... 

Variational (upper bounds, convergence)                              ... 

Local (refinement, parallelization, O(N))                            ... 

Efficient repr. (↓ storage, CPU time)                               ... 

Introduction


Whatʼs new


   Initial results show order of magnitude 
improvement over current state of the art




Outline


•  Problem: Kohn-Sham equations

•  FE basis

•  Formulation of solution in FE basis


–  Nonlocal operators

–  Boundary conditions

–  Long-range interactions


•  Band structures, total energies: metals and insulators

•  Problem: too many degrees of freedom

•  Solution: partition-of-unity basis

•  Comparison to FE, FE-AMR, and planewaves for “hard” atoms

•  Parallelization

•  Quadrature

•  Solver

•  All-electron calculations




Problem: Kohn-Sham equations in an infinite crystal — for large, 
complex cells of arbitrary symmetry


Kohn-Sham equations


(Schrödinger)


Self-consistent field (SCF) solution process


(long-range, divergent)


(all-space)

(long-range, div.)


(degenerate states, 
fractional occ.)


(Poisson)


~ 103 atoms/eigenfunctions




FE basis: strictly local, piecewise polynomials


Neumann


Dirichlet


Periodic


Bloch [1]


3D cubic basis function


•  Polynomial 

–  General, systematically improvable

–  Flexible boundary conditions


•  Strictly local 

–  Variable resolution in real space

–  Sparse matrices

–  Well suited to parallel implementation


•  However, unlike planewaves:

–  Finite

–  C0 (continuous but not smooth)

–  Periodic in value only

–  Nonorthogonal


1D linear finite element bases

[1] Sukumar, Pask, Int. J. Numer. Meth. Eng. 77, 1121 (2009)




Hard part:  Schrödinger




Formulation: Schrödinger problem in the infinite crystal is 
reduced to a boundary value problem in the finite unit cell


•  The FE basis is defined in a finite domain.


•  To find ψ satisfying


                                             (Blochʼs Thm)


   in the infinite crystal, we solve an equivalent 
problem in the finite unit cell [1,2]:
 Unit cell


•  Laplacian? [1]


•  Derivative BC? [1]


•  Crystal potential? [2]


•  Nonlocal operator? [2]


[1] Sukumar, Pask, Int. J. Numer. Meth. Eng. 77, 1121 (2009)

[2] Pask, Sterne, Modelling Simul. Mater. Sci. Eng. 13, R71 (2005) (Review)




•  The domain of the nonlocal potential operator is all space.


•  The domain of the problem is the finite unit cell; the basis is 
defined only in the finite unit cell.


•  For a separable potential of the usual form


   the nonlocal term is


•  Transforming to the unit cell gives [1]


Nonlocal operators are transformed to the finite unit cell


[1] Pask, Sterne, Modelling Simul. Mater. Sci. Eng. 13, R71 (2005)




Laplacian and boundary condition issues are 
resolved by reformulating in weak form


•  Laplacian of C0 functions is singular at cusps.

•  Basis does not satisfy derivative BC.

•  Resolution — weak formulation with derivative BC 

built in [1,2]:


•  Highest derivative of order 1  finite discontinuities at interelement boundaries.


•  Basis need only satisfy value-periodic condition: solution will satisfy value 
condition exactly and derivative condition asymptotically (weakly).


Unit cell


[1] Pask, Klein, Fong, Sterne, Phys. Rev. B 59, 12352 (1999)

[2] Sukumar, Pask, Int. J. Numer. Meth. Eng. 77, 1121 (2009)




•  For a separable potential, the nonlocal term becomes [1]


   where


Discretization in the FE basis produces a sparse 
generalized eigenproblem


•  Discretization in the FE basis yields a sparse Hermitian generalized eigenproblem 
for the eigenvalues and eigenfunction coefficients:


basis 
function


overlapped 
basis 
function


non-overlapped 
basis function


projector


[1] Pask, Sterne, Modelling Simul. Mater. Sci. Eng. 13, R71 (2005)




Kohn-Sham: crystal potential, total energy




Crystal potential can be constructed efficiently in real 
space by replacing long-range V by equivalent localized ρ


•  V ~ –Z/r, r > rc  ⇒ V equivalent to total charge Z localized within r = rC.


•  Upon replacing long-range ionic potentials by 
equivalent localized densities, total Coulomb 
potential can be computed at once by Poisson 
solution with net neutral electronic + localized-
ionic charge as source term [1]:


    Local part of HGH [2] pseudopotential 
and associated charge density.


[1] Pask, Sterne, Phys. Rev. B 71, 113101 (2005)

[2] Hartwigsen, Goedecker, Hutter, Phys. Rev. B 58, 3641 (1998)


•  Long-range potential sum replaced by short-
range charge sum and Poisson solution in cell.


(periodic BCs)




Total energy can be constructed efficiently in real space 
by replacing long-range V by equivalent localized ρ


•  Total energy in density-functional theory:


•  In an infinite crystal:


•  Using total charge ρ and Coulomb potential VC , EC can be determined at once:


•  Total energy then reduces to


•  No Fourier transforms, structure factors, Ewald sums: O(N) ops in real space.


•  Kohn-Sham orbital dependence in kinetic and nonlocal terms can be eliminated 
using KS equations to determine the relation




Method converges systematically and variationally to the 
self-consistent solution


    Convergence of self-consistent FE total energy and eigenvalues 
to exact values with increasing number of elements.


•  Self-consistent total energy 
converges uniformly and 
variationally to the exact 
solution as the number of 
elements is increased.


•  Optimal theoretical rate 
consistent with cubic 
completeness of basis: error 
O(h6), where h is the mesh 
spacing.


[1] Pask, Sterne, Phys. Rev. B 71, 113101 (2005)


EC


EXC




Method applies equally well to metals


Convergence of FE to exact self-consistent band structure for Cu.




Problem:  Too many degrees of freedom




•  Trial function:


–                 = nodes in mesh


–                 = nodes to be enriched


–                 = enrichment function indices


–                 = FE basis functions


–                 = PU basis functions,


–                 = enrichment functions


Partition of Unity Finite Element Method [1]


[1]  Melenk, Babuska, Comp. Meth. Appl. Mech. Eng. 139, 289 (1996)
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Partition of unity finite elements in quantum mechanical calculations

PU = Partition of unity

FE = Finite element


(global)


(local)


•  Known physics incorporated

•  Accuracy increased

•  Strict locality retained


Wavefunction  
           in solid 

(Atomic wavefunction) 

(6-element solutions)




PUFE vs. current state-of-the-art: model problem

•  Conventional Planewave, FE, and new PUFE methods applied to standard test 

problem [1,2]: deep, localized potential, as for d- or f- electron metal


Potential – 2 a.u. separation


Enrichment function


Linear FE


Quadratic FE


Cubic FE


Planewave


Linear FE+PU

   (↑ enrichment)


Linear FE+PU

     (↑ elements)
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Convergence of ground state energy: PUFE vs. others
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[1] Gygi, Europhys. Lett. 19, 617 (1992)      [2] Tsuchida, Tsukada, Phys. Rev. B 54, 7602 (1996)




PUFE vs. current state-of-the-art: real materials


Order of magnitude advance


Li


H




PUFE vs. current state-of-the-art: worst case


   Still, factor of 5


• Triclinic CeAl, atoms displaced

• 17 enrichment functions for Ce: s, p, d, and f orbitals 




Parallel Implementation


•  Fortran 90 + MPI

•  Parallelized density construction, matrix element integrals, sparse matvecs

•  Test: CuAl cell, 108 atoms

•  8 – 1728 procs., LLNL sierra cluster, 12 cores per node 


8 sec


1 sec


5 min


Sparse matvecs: reduce gather-scatters




• Unit cell


• Finite element discretization of the unit 
cell


• Linear scale


• Logarithmic scale






•  For each element:

1.  Integrate over the element using a tensor product rule

2.  Divide the element into 8 similar partitions and integrate over each of 

them

3.  If the difference is below the tolerance, return the quadrature over the 

element.

4.  If the difference is above the tolerance, repeat the process for each of 

the 8 partitions separately.


• Performance of adaptive integration for functions with a cusp:


  Blessing of dimensionality!




• * Pask et al., IJMCE, in press 

• *


  Order of magnitude speedup






All-electron problem




All-electron calculations: O(N) Coulomb potential and energy [1]


(analytic)
 (numerical)

(in H1)


(pointwise)


(integral)


•  Introduce smooth, analytic, strictly local neutralizing function  solve singular part 
analytically, non-singular remainder numerically, both O(N)


•  No “distributed nucleus” approx., sphere-interstitial matching, FFTs, Ewald, etc.


[1] Pask, Sukumar, Mousavi (2010): arXiv:1004.1765




All-electron calculations: Ewald problem

•  bcc crystal: unit spacing, unit nuclear charges, uniform electronic density


 > 3 orders of 
magnitude
  optimal rate


€ 

˜ V −



All-electron calculations: Diamond

•  Enrichment functions from isolated atom densities


€ 

˜ V −



Summary


•  General, systematically improvable ab initio electronic-structure calculations in a partition-of-
unity FE basis: arbitrary unit cells, Brillouin zone sampling, metals and insulators.


•  Strictly local, piecewise polynomial basis  well suited to large, accurate calculations on 
massively parallel architectures.


•  Initial results show order-of-magnitude advantage relative to present state-of-the-art.


•  New state-or-the-art?  Parallelization/optimization will tell.


Issues / in progress / future:

•  Metallic QMD at extreme conditions

•  Forces: Pulay-like corrections?


•  Problem formulation: all-electron? PAW?

•  Basis: order? modal? hierarchical? spectral?

•  Memory and solver optimizations: preconditioning, SD?, CG?, Anderson (RMM)? …


•  Parallel implementation: data distribution

•  O(N)
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