# Solved and Unsolved Problems in the Theory of Model Kohn–Sham Potentials

Viktor N. Staroverov

The University of Western Ontario London, Ontario, Canada







DFT: Fundamentals and Applications in Condensed-Matter Physics BIRS Workshop, Banff, Alberta, January 23–28, 2011

# **Key ingredient of Kohn–Sham** density-functional theory



#### **Functional derivatives**

The functional derivative is to a functional what the gradient is to a scalar function of many variables.

$$E(\rho_1, \rho_2, ...) \rightarrow \nabla E = \left(\frac{\partial E}{\partial \rho_1}, \frac{\partial E}{\partial \rho_2}, ...\right)$$

For density-functional approximations of the type

$$E[\rho] = \int f(\mathbf{r}, \rho, \nabla \rho, \nabla^2 \rho, ...) d\mathbf{r}$$

the functional derivative is given by

$$v([\rho]; \mathbf{r}) \equiv \frac{\delta E}{\delta \rho} = \frac{\partial f}{\partial \rho} - \nabla \cdot \left(\frac{\partial f}{\partial \nabla \rho}\right) + \nabla^2 \left(\frac{\partial f}{\partial \nabla^2 \rho}\right) + \dots$$

Conventional Kohn-Sham scheme



3

#### Potential-driven Kohn-Sham scheme



### **Motivation for potential-driven DFT**

- 1. The Kohn–Sham potential is a more fundamental quantity than the corresponding density functional.
- 2. The potential  $v_{XC}(\mathbf{r})$  is a relatively simple function of  $\mathbf{r}$ , so it is an appealing target for approximation.
- 3. With direct control over  $v_{XC}(\mathbf{r})$ , it may be easier to achieve accurate description of physical properties that are sensitive to the quality of  $v_{XC}(\mathbf{r})$

model potential: a Kohn–Sham potential that is approximated directly using Kohn–Sham orbitals

### Slater's exchange potential approximation

Hartree-Fock exchange energy:

$$E_X = -\sum_{i,j}^{\text{occ.}} \int d\mathbf{r} \int d\mathbf{r}' \frac{\boldsymbol{\varphi}_i^*(\mathbf{r}) \boldsymbol{\varphi}_j^*(\mathbf{r}') \boldsymbol{\varphi}_j(\mathbf{r}) \boldsymbol{\varphi}_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

The functional derivative:

Definition of the nonlocal Hartree-Fock potential

$$\frac{\delta E_X}{\delta \varphi_i^*(\mathbf{r})} = -2\sum_i \varphi_j(\mathbf{r}) \int \frac{\varphi_j^*(\mathbf{r}')\varphi_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \equiv \hat{v}_X \varphi_i(\mathbf{r})$$

Averaged Hartree–Fock potential (Slater, 1951):

$$v_X^S(\mathbf{r}) = \frac{\sum_{i} \varphi_i^*(\mathbf{r}) \hat{v}_X \varphi_i(\mathbf{r})}{\sum_{k} \varphi_k^*(\mathbf{r}) \varphi_k(\mathbf{r})} = -\frac{2}{\rho(\mathbf{r})} \sum_{i,j} \varphi_i^*(\mathbf{r}) \varphi_j(\mathbf{r}) \int \frac{\varphi_j^*(\mathbf{r}') \varphi_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

#### **Examples of model Kohn-Sham potentials**

van Leeuwen and Baerends (1994)

$$v_{XC}^{\text{LB94}} = v_X^{\text{LDA}} - \rho^{1/3} \frac{\beta s^2}{1 + 3\beta s \sinh^{-1} s}, \qquad s = \frac{|\nabla \rho|}{\rho^{4/3}}$$

 $\beta$  = 0.05 is an empirical parameter

Effective local potential (ELP=CEDA=LHF, 2001–2006)

$$v_X^{\text{ELP}}(\mathbf{r}) = v_X^S(\mathbf{r}) + \frac{2}{\rho(\mathbf{r})} \sum_{i,j}^{\text{occ.}} \varphi_i^*(\mathbf{r}) \varphi_j(\mathbf{r}) \langle \varphi_j | v_X^{\text{ELP}} - \hat{v}_X | \varphi_i \rangle$$

Becke and Johnson (2006)

$$v_X^{\mathrm{BJ}}(\mathbf{r}) = v_X^{\mathrm{S}}(\mathbf{r}) + \frac{1}{\pi} \sqrt{\frac{5\tau}{6\rho}}, \text{ where } \tau(\mathbf{r}) = \frac{1}{2} \sum_{i}^{\mathrm{occ.}} \left| \nabla \varphi_i(\mathbf{r}) \right|^2$$

### **Challenges of potential-driven DFT**

- 1. How to recover the energy from a given model potential.
- 2. How to ensure that a model potential is a functional derivative of some density functional.

9

#### Inversion of functional differentiation

Let  $\rho_{l}(\mathbf{r})$  be the density parametrized in some way.

Consider the integral (van Leeuwen and Baerends, 1995):

$$E[\rho_B] - E[\rho_A] = \int_A^B dt \, \frac{dE[\rho_t]}{dt}$$
$$= \int_A^B dt \int d\mathbf{r} \, \frac{\delta E[\rho_t]}{\delta \rho_t(\mathbf{r})} \frac{\partial \rho_t(\mathbf{r})}{\partial t}$$
$$= \int d\mathbf{r} \int_A^B dt \, v([\rho_t]; \mathbf{r}) \frac{\partial \rho_t(\mathbf{r})}{\partial t}$$

Here

$$v([\rho_t];\mathbf{r}) \equiv v([\rho];\mathbf{r}) \mid_{\rho=\rho_t}$$

### **Reconstruction of density functionals**

Let  $\rho_t(\mathbf{r})$  be such that for  $0 \le t \le 1$ ,

$$E[\rho_0] = 0$$
 and  $\rho_1(\mathbf{r}) = \rho(\mathbf{r})$ 

The line integration "reconstructs" the functional:

$$E[\rho] = \int d\mathbf{r} \int_{0}^{1} dt \ v([\rho_{t}]; \mathbf{r}) \frac{\partial \rho_{t}(\mathbf{r})}{\partial t}$$

The integral over t can be evaluated analytically or numerically

If  $v_{XC}(\mathbf{r})$  is a functional derivative of some functional, then the line integral is path-independent.

## Three convenient integration paths

Linear density scaling (Q-path):

$$0 \le q \le 1$$
  $\rho_q(\mathbf{r}) = q\rho(\mathbf{r})$   $\frac{\partial \rho_q(\mathbf{r})}{\partial q} = \rho(\mathbf{r})$ 

Uniform density scaling ( $\Lambda$ -path):

$$0 \le \lambda \le 1$$
  $\rho_{\lambda}(\mathbf{r}) = \lambda^{3} \rho(\lambda \mathbf{r})$ 

 $\zeta$ -Scaling (Z-path):

$$0 \le \zeta \le 1$$
  $\rho_{\varsigma}(\mathbf{r}) = \varsigma^2 \rho(\varsigma^{1/3} \mathbf{r})$ 

11

#### **EXAMPLE 1**

## Reconstruction of an exchange functional

Original functional (xLDA):

$$E_X = -C_X \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$$

where  $C_X$  is a constant.

Functional derivative:

$$v_X([\rho];\mathbf{r}) = -\frac{4}{3}C_X\rho^{1/3}(\mathbf{r})$$

13

#### Reconstructions of the LDA exchange functional

Q-path reconstruction:

$$E_X[\rho] = \frac{3}{4} \int \rho v_X \, d\mathbf{r} = -C_X \int \rho^{4/3} \, d\mathbf{r} \qquad \text{original expression}$$

Λ-path reconstruction:

$$E_X[\rho] = \int v_X(3\rho + \mathbf{r} \cdot \nabla \rho) d\mathbf{r}$$
 Levy-Perdew relation

Z-path reconstruction:

$$E_X[\rho] = \frac{3}{5} \int v_X \left( 2\rho + \frac{\mathbf{r}}{3} \cdot \nabla \rho \right) d\mathbf{r}$$
 linear combination of the Q- and  $\Lambda$ -reconstructions

A. P. Gaiduk, S. K. Chulkov, and VNS, *J. Chem. Theory Comput.* **5**, 699 (2009).

#### Reconstruction of a correlation functional

Original functional (Wigner):

$$E_C[\rho] = -a \int \frac{\rho}{b + r_s} d\mathbf{r} \qquad r_s = \left(\frac{3}{4\pi\rho}\right)^{1/3}$$

where a and b are parameters.

Functional derivative:

$$v_C([\rho]; \mathbf{r}) = -a \frac{b + (4/3)r_s}{(b + r_s)^2}$$

15

#### Reconstructions of the Wigner correlation functional

Q-path reconstruction:

$$E_{C}[\rho] = -a \int \frac{\rho}{b+r_{c}} d\mathbf{r}$$
 original expression

 $\Lambda$ -path reconstruction:

$$E_C[\rho] = -a \int \left[ \frac{1}{b} \ln \frac{b + r_s}{r_s} + \frac{1}{3(b + r_s)} \right] (3\rho + \mathbf{r} \cdot \nabla \rho) d\mathbf{r}$$

Z-path reconstruction:

$$E_{C}[\rho] = -a \int \left[ \frac{1 - \frac{r_{s}}{b} - \frac{3}{2} \left( \frac{r_{s}}{b} \right)^{2}}{b + r_{s}} + \frac{3r_{s}^{3/2} \tan^{-1} \sqrt{b/r_{s}}}{2b^{5/2}} \right] \left( 2\rho + \frac{\mathbf{r}}{3} \cdot \nabla \rho \right) d\mathbf{r}$$

A. P. Gaiduk, S. K. Chulkov, and VNS, *J. Chem. Theory Comput.* **5**, 699 (2009)

## Line integral of exchange potentials

Under uniform density scaling, *all* exchange-only potentials behave as follows:

$$v_X([\rho_{\lambda}];\mathbf{r}) = \lambda v_X([\rho];\lambda\mathbf{r})$$

In the line integral, analytic integration over  $\lambda$  yields

$$E_X[\rho] = \int v_X(\mathbf{r}) [3\rho(\mathbf{r}) + \mathbf{r} \cdot \nabla \rho(\mathbf{r})] d\mathbf{r}$$

which is the Levy-Perdew formula.

17

#### **Unsolved problems**

The line integral formula is sometimes used to <u>assign</u> energy values to model potentials that are not functional derivatives.

For potentials that depend on  $\rho$  explicitly, this is possible using many density transformations, e.g.,

$$\rho_q(\mathbf{r}) = q\rho(\mathbf{r}), \qquad \rho_{\lambda}(\mathbf{r}) = \lambda^3 \rho(\lambda \mathbf{r})$$

For orbital-dependent potentials, only one is known

$$\varphi_i([\rho_{\lambda}];\mathbf{r}) = \lambda^{3/2}\varphi_i([\rho];\lambda\mathbf{r})$$

Q: Are there any other practical integration paths for orbital-dependent potentials?

### The problem of stray potentials

Model potentials may not be functional derivatives of any functional. Such potentials are called stray.

Examples: All existing model potentials except those that depend only on  $\rho$ .

Tests for stray potentials:

- 1) Path-independence of the line integral
- 2) Integrability conditions
- 3) Tests for spurious forces on the density
- 4) Behavior of the energy during the SCF convergence

A. P. Gaiduk and VNS, J. Chem. Phys. 131, 044107 (2009)

19

#### **SCF** convergence for functional derivatives



#### **SCF** convergence for stray potentials



## **Artifacts of stray model potentials**

 Energy assigned to a model potential may depend on the choice of coordinate axes:

Example: H<sub>2</sub>O molecule, HF/cc-pVQZ density Model potential: Becke–Johnson

| Total energy calculated using                    | $E_X[\rho] = \int v_X(\mathbf{r})[3\rho(\mathbf{r})]$ | $(r) + \mathbf{r} \cdot \nabla \rho(\mathbf{r}) d\mathbf{r}$ |
|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|
| Initial orientation: After translation by 0.1 Å: | -75.517 hartree -75.470 hartree                       | $\Delta E = 29.5 \text{ kcal/mol}$                           |

- Different energy formulas give different results *even* for a fixed orientation of the molecule.
- Spurious self-excitations in TDDFT (Kümmel et al.), etc.

# Model potentials should be functional derivatives

An **integrable** potential is a functional derivative of some density functional.

Existing model potentials lead to unphysical artifacts because they are not functional derivatives

A necessary and sufficient integrability condition:

$$\frac{\delta v([\rho]; \mathbf{r})}{\delta \rho(\mathbf{r}')} = \frac{\delta v([\rho]; \mathbf{r}')}{\delta \rho(\mathbf{r})}$$

H. Ou-Yang & M. Levy, Phys. Rev. A 44, 54 (1991)

23

### **Theory of integrability: Definitions**

 $E[\rho]$  some density-functional approximation  $h(\mathbf{r}), k(\mathbf{r})$  arbitrary variations of the density

The **first differential** in the direction h is defined by

$$DE[\rho, h] = \lim_{t \to 0} \frac{E[\rho + th] - E[\rho]}{t} = \frac{d}{dt} E[\rho + th] \Big|_{t=0}$$

 $DE[\rho,h]$  is linear in h and can be written as

$$DE[\rho, h] = \int v([\rho]; \mathbf{r}) h(\mathbf{r}) d\mathbf{r}$$

where  $v([\rho]; \mathbf{r})$  is the functional derivative

$$v([\rho]; \mathbf{r}) \equiv \frac{\delta E}{\delta \rho(\mathbf{r})}$$

#### More definitions

The **second differential** of  $E[\rho]$  may be defined by:

$$D^{2}E[\rho,h,k] = \frac{d}{dt} DE[\rho + tk,h] \bigg|_{t=0}$$

It is a bilinear functional in h and k, so it may be written as

$$D^{2}E[\rho,h,k] = \int d\mathbf{r} \int d\mathbf{r}' K([\rho];\mathbf{r},\mathbf{r}')h(\mathbf{r})k(\mathbf{r}')$$

The kernel is called the second functional derivative

$$K([\rho]; \mathbf{r}, \mathbf{r}') \equiv \frac{\delta^2 E}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r}')} = \frac{\delta v([\rho]; \mathbf{r})}{\delta \rho(\mathbf{r}')}$$

25

#### The symmetric kernel condition

The second differential is **symmetric** in h and k:

$$D^2E[\rho,h,k] = D^2E[\rho,k,h]$$

This implies that the kernel is symmetric in  $\mathbf{r}$  and  $\mathbf{r}'$ 

$$K([\rho];\mathbf{r},\mathbf{r}') = K([\rho];\mathbf{r}',\mathbf{r})$$

$$\frac{\delta^2 E}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r'})} = \frac{\delta^2 E}{\delta \rho(\mathbf{r'}) \delta \rho(\mathbf{r})}$$

$$\frac{\delta v([\rho]; \mathbf{r})}{\delta \rho(\mathbf{r}')} = \frac{\delta v([\rho]; \mathbf{r}')}{\delta \rho(\mathbf{r})}$$

## Symmetry of the second differential

The functional derivative  $v([\rho]; \mathbf{r})$  is itself a functional of  $\rho$ , so its first differential in the direction k is

$$Dv([\rho, k]; \mathbf{r}) = \frac{d}{dt} v([\rho + tk]; \mathbf{r}) \bigg|_{t=0}$$

The second differential of  $E[\rho]$  may be written as

$$D^{2}E[\rho,h,k] = \int Dv([\rho,k];\mathbf{r})h(\mathbf{r}) d\mathbf{r}$$

The symmetry condition for  $D^2E$  can be stated as:

$$\int Dv([\rho, k]; \mathbf{r}) h(\mathbf{r}) d\mathbf{r} = \int Dv([\rho, h]; \mathbf{r}) k(\mathbf{r}) d\mathbf{r}$$

27

## Theory of integrability in a nutshell

The necessary and sufficient condition of integrability for a trial potential  $\nu$  can be stated in two equivalent forms:

| Differential form                                                                                                                                                          | Integral form                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\delta v([\rho]; \mathbf{r})}{\delta \rho(\mathbf{r}')} = \frac{\delta v([\rho]; \mathbf{r}')}{\delta \rho(\mathbf{r})}$ symmetry in $\mathbf{r}$ and $\mathbf{r}'$ | $\int Dv([\rho,k];\mathbf{r})h(\mathbf{r}) d\mathbf{r}$ $= \int Dv([\rho,h];\mathbf{r})k(\mathbf{r}) d\mathbf{r}$ symmetry in $h$ and $k$ |
| Requires manipulations with Dirac delta functions                                                                                                                          | Does not involve Dirac delta functions                                                                                                    |

A. P. Gaiduk and VNS, J. Chem. Phys. 133, 101104 (2010)

## Potentials that depend only on $\rho$ and $\nabla \rho$

Consider a model potential of the type

$$v = v(\rho, \nabla \rho)$$

For this v, the second differential is

$$\int Dv([\rho, k]; \mathbf{r}) h(\mathbf{r}) d\mathbf{r} = \int \left( \frac{\partial v}{\partial \rho} kh + \frac{\partial v}{\partial \nabla \rho} \cdot h \nabla k \right) d\mathbf{r}$$

This integral is symmetric in h and k if and only if

$$\frac{\partial v}{\partial \nabla \rho} = 0$$

Consequence: A model potential of the type  $v(\rho, \nabla \rho)$  can never be a functional derivative

### **New integrability conditions**

Consider a model potential of the type

$$v = v(\rho, \nabla \rho, \nabla^2 \rho)$$

The second differential may be written as

$$\int Dv([\rho, k]; \mathbf{r}) h(\mathbf{r}) d\mathbf{r}$$

$$= \int \left[ \frac{\partial v}{\partial \rho} hk + \left( \frac{\partial v}{\partial \nabla \rho} - \nabla \frac{\partial v}{\partial \nabla^2 \rho} \right) \cdot h \nabla k - \frac{\partial v}{\partial \nabla^2 \rho} \nabla h \cdot \nabla k \right] d\mathbf{r}$$

This integral can be symmetric in h and k if and only if

$$\frac{\partial v}{\partial \nabla \rho} = \nabla \frac{\partial v}{\partial \nabla^2 \rho}$$

## **Generalized-gradient approximations (GGA)**

**GGA** functionals:

$$E[\rho] = \int f(\rho, g) d\mathbf{r}$$

The functional derivative of every GGA has the form

$$v = \frac{\partial f}{\partial \rho} - \frac{\partial^2 f}{\partial \rho \partial g} g - \frac{\partial f}{\partial g} \frac{l}{g} + \left( \frac{\partial f}{\partial g} - g \frac{\partial^2 f}{\partial g^2} \right) \frac{w}{g^3}$$

and is always a function of at most 4 ingredients:

$$\rho$$
,  $g \equiv |\nabla \rho|$ ,  $l \equiv \nabla^2 \rho$ ,  $w = g \nabla g \cdot \nabla \rho$ 

A. P. Gaiduk and VNS, Phys. Rev. A 83, 012509 (2011)

31

### Integrability conditions for GGA potentials

One can show that for a trial potential of the type

$$v = v(\rho, g, l, w)$$

the necessary and sufficient condition to be a functional derivative is:

$$\begin{cases} \frac{1}{g} \frac{\partial v}{\partial g} - l \frac{\partial v}{\partial w} - \frac{\partial^2 v}{\partial \rho \partial l} - g^2 \frac{\partial^2 v}{\partial \rho \partial w} - \frac{w}{g} \frac{\partial^2 v}{\partial g \partial w} = 0, \\ g \frac{\partial v}{\partial w} - \frac{\partial^2 v}{\partial g \partial l} = 0 \end{cases}$$

*Note*: these conditions are entirely in the  $(\rho,g,l,w)$  space.

# Construction of functional derivatives: Example

Consider the expression

$$v_0 = \frac{g^2}{8\rho^2}$$
 not a functional derivative

Assume that  $v_0$  is the first term of the functional derivative of some GGA:

$$v = v_0(\rho, g) + X(\rho, g)l + Y(\rho, g)w$$

Solving for *X* and *Y* we obtain

$$v = \frac{g^2}{8\rho^2} - \frac{l}{4\rho}$$
 functional derivative of 
$$T_W = \int \frac{|\nabla \rho|^2}{8\rho} d\mathbf{r}$$

## Construction of integrable exchange potentials

Model potentials are normally expressed in terms of the dimensionless variables

$$s = \frac{g}{\rho^{4/3}}, \qquad q = \frac{l}{\rho^{5/3}}, \qquad u = \frac{w}{\rho^{13/3}}$$

For reasons of dimensionality, every functional derivative of an exchange GGA can be written as

$$v(\rho, s, q, u) = \rho^{1/3} [R(s) + Q(s)q + U(s)u]$$

where R, Q and U are some functions.

Suppose that R is known. Then Q and U can be obtained from the integrability conditions.

# Model potential of van Leeuwen and Baerends (LB94)

$$v_X^{\text{LB94}} = v_X^{\text{LDA}} - \rho^{1/3} \frac{\beta s^2}{1 + 3\beta s \sinh^{-1} \xi s},$$

where  $s = \frac{g}{\rho^{4/3}}$  and  $\beta = 0.05$  and  $\xi$  are constants

#### Functional derivative "grown" from LB94:

$$v_X = v_X^{\text{LB94}} - \frac{\rho^{1/3}}{s} \left( I_0 \ln s - I_1 + I_0 \right) q + \frac{\rho^{1/3}}{s^3} \left( I_0 \ln s - I_1 - s \frac{dI_0}{ds} \right) u$$

where

$$I_{\alpha}(s) = -\frac{3}{4} \int_{1}^{s} \frac{\beta \ln^{\alpha} s}{1 + 3\beta s \sinh^{-1} \xi s} ds, \qquad \alpha = 0, 1$$

35

## LB94 and a "grown" functional derivative (fd)



36

#### LB94 and LB94-based functional derivatives



# Total energies from the LB94 potential and the reconstructed functional derivative

| Atom | original<br>LB94 | func. deriv.<br>from LB94 |
|------|------------------|---------------------------|
| He   | - 2.821          | <b>- 4.275</b>            |
| Ne   | -129.430         | $-\ 138.597$              |
| Ar   | -529.173         | <b>–</b> 547.017          |
| Kr   | -2761.921        | -2797.106                 |

<sup>\*</sup>All values are obtained using the path of uniformly scaled densities (the Levy–Perdew formula).

#### Total energies from model exchange potentials

| Atom | original<br>LB94 | func. deriv. from<br>revised LB94 | PBE              |
|------|------------------|-----------------------------------|------------------|
| Не   | - 2.821          | <b>- 2.896</b>                    | - 2.862          |
| Ne   | -129.430         | $-\ 128.597$                      | - 128.547        |
| Ar   | -529.173         | -526.691                          | <b>- 526.629</b> |
| Kr   | -2761.921        | -2751.519                         | -2751.624        |

<sup>\*</sup>All values are obtained using the path of uniformly scaled densities (the Levy–Perdew formula).

39

## **Unsolved problems**

Using the above method, one can construct integrable Kohn–Sham potentials from any explicitly densitydependent ingredients such as

$$\rho$$
,  $g=\nabla \rho$ ,  $l=\nabla^2 \rho$ ,  $w=g\nabla g\cdot\nabla \rho$ 

**Q**: Can we construct integrable *orbital-dependent* potentials?

Q: In particular, can one make the Becke–Johnson model potential integrable?

$$v_X^{\mathrm{BJ}}(\mathbf{r}) = v_X^{\mathrm{S}}(\mathbf{r}) + \frac{1}{\pi} \sqrt{\frac{5\tau}{6\rho}}, \text{ where } \tau(\mathbf{r}) = \frac{1}{2} \sum_{i}^{\mathrm{occ.}} |\nabla \varphi_i(\mathbf{r})|^2$$

## **Summary**

- 1. It is not difficult to reconstruct a density functional from its functional derivative in more than one way.
- 2. It is always possible to assign an xc-energy to a *stray* model Kohn–Sham potential.
- 3. Model potentials should by construction be functional derivatives.
- 4. It is possible to construct a functional derivative without knowing the parent density functional.
- 5. Development of integrable model potentials reduces to construction of simple functions of a few variables.

41

## **Acknowledgments**





