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Key ingredient of Kohn—Sham
density-functional theory
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Functional derivatives

The functional derivative is to a functional what the
gradient is to a scalar function of many variables.
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For density-functional approximations of the type
E[p]=[/(r.p,0p.0%p,..)dr

the functional derivative is given by
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Potential-driven Kohn—-Sham scheme
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Motivation for potential-driven DFT

1. The Kohn—Sham potential is a more fundamental
quantity than the corresponding density functional.

2. The potential v, (r) is a relatively simple function of r,
so it is an appealing target for approximation.

3. With direct control over v, (r), it may be easier to

achieve accurate description of physical properties that
are sensitive to the quality of v, (r)

model potential: a Kohn—Sham potential that is
approximated directly using
Kohn—Sham orbitals



Slater’s exchange potential approximation

Hartree—Fock exchange energy:
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The functional derivative:

Definition of the nonlocal
Hartree-Fock potential
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Averaged Hartree—Fock potential (Slater, 1951):
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Examples of model Kohn—-Sham potentials

van Leeuwen and Baerends (1994)
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L=0.05 is an empirical parameter

Effective local potential (ELP=CEDA=LHF, 2001-2006)

VT (1) = vX(r>+—§¢<>¢ ()8, 27—, 9,)

Becke and Johnson (2006)
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Challenges of potential-driven DFT

1. How to recover the energy from a given model
potential.

2. How to ensure that a model potential is a functional
derivative of some density functional.

Inversion of functional differentiation

Let p(r) be the density parametrized in some way.
Consider the integral (van Leeuwen and Baerends, 1995):
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Reconstruction of density functionals

Let p(r) be such thatfor0< < 1,
E[p,]=0 and p,(r)=p(r)

The line integration “reconstructs” the functional:
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The integral over t can be evaluated analytically or numerically

If v,(r) is a functional derivative of some functional, then
the line integral is path-independent. B

Three convenient integration paths

Linear density scaling (Q-path):

0
0<g<l p,(r) =gp(r) Paq ;l‘) = p(r)

Uniform density scaling (/\-path):

0sA<l P, (r) = X p(Ar)

(-Scaling (Z-path):

0<{ <1 p.(r)=¢’p(¢"r)
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EXAMPLE 1

Reconstruction of an exchange functional
Original functional (xLDA):
E, = —CXJ'p4/3(r)dr

where C, is a constant.

Functional derivative:

vX<[p];r>:—§ 0" (1)
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Reconstructions of the LDA exchange functional

Q-path reconstruction:

original

—_ 3 — 4/3
Exlp]= ZIpVX dr = _CXJ"O ar expression

/\-path reconstruction:

E.[pl= IvX (3p+rp) dr Levy-Perdew relation

Z-path reconstruction:

linear combination of the

3 r
Ey[p]= EJ'VX QZP + 3 Mo @dr Q- and A-reconstructions

A. P. Gaiduk, S. K. Chulkov, and VNS,
J. Chem. Theory Comput. 5, 699 (2009). 14



EXAMPLE 2

Reconstruction of a correlation functional

Original functional (Wigner):

/3
3
R R

where a and b are parameters.

Functional derivative:

b+(4/3)r

ve([plir) =—a (b+r)
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Reconstructions of the Wigner correlation functional

Q-path reconstruction:

— _aJ' r or‘iginql
b+r, expression
/\-path reconstruction:
b+r 1
|=-a In S+ 3p+rp| dr
I 5 3<b+rs>§ prriti)

Z-path reconstruction:

Foip1=-af i la] 3 o+l

0 b+r, 2b°"?
[]

A. P. Gaiduk, S. K. Chulkov, and VNS,
J. Chem. Theory Comput. 5, 699 (2009) 16



Line integral of exchange potentials

Under uniform density scaling, all exchange-only
potentials behave as follows:

v ([0, ;1) = Av, ([ P]; Ar)

In the line integral, analytic integration over A yields
E[p]= [vy (0)[3p(r) +r Mp(r)] dr

which is the Levy—Perdew formula.
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Unsolved problems

The line integral formula is sometimes used to assign
energy values to model potentials that are not functional
derivatives.

For potentials that depend on p explicitly, this is possible
using many density transformations, e.g.,

p,(X)=gp(r),  p,(r)=Ap(Ar)
For orbital-dependent potentials, only one is known
.([p, ;1) = A4, ([p]; Ar)

Q: Are there any other practical integration paths for

orbital-dependent potentials? "



The problem of stray potentials

Model potentials may not be functional derivatives of any
functional. Such potentials are called stray.

Examples: All existing model potentials except those that
depend only on p.

Tests for stray potentials:

Path-independence of the line integral

Integrability conditions

Tests for spurious forces on the density

Behavior of the energy during the SCF convergence

o=

A. P. Gaiduk and VNS, J. Chem. Phys. 131, 044107 (2009)
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SCF convergence for functional derivatives
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SCF convergence for stray potentials
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Artifacts of stray model potentials

* Energy assigned to a model potential may depend on
the choice of coordinate axes:

Example: H,O molecule, HF/cc-pVQZ density
Model potential: Becke—Johnson

Total energy calculated using Ey[p]= IVX (M[3p(r)+rMpo(r)] dr

Initial orientation: —75.517 hartree | Ap =29 5 keal/mol
After translation by 0.1 A: —75.470 hartree

« Different energy formulas give different results even
for a fixed orientation of the molecule.

* Spurious self-excitations in TDDFT (Kimmel et al.), etc.
22



Model potentials should be functional
derivatives

An integrable potential is a functional derivative of some
density functional.

Existing model potentials lead to unphysical artifacts
because they are not functional derivatives

A necessary and sufficient integrability condition:

ov([pl;r) _ o([pl:r)
oo(r') o(r)

H. Ou-Yang & M. Levy, Phys. Rev. A 44, 54 (1991)
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Theory of integrability: Definitions

E[P] some density-functional approximation
h(r), k(r) arbitrary variations of the density

The first differential in the direction / is defined by

DE[p.h] = lim ZLLTHIZELPL _ d pr 4y

1~0 t dt -

DE[p,h] is linear in 7 and can be written as
DE[p,h] =IV([p];r)h(r) dr
where v([p];r) is the functional derivative

W(pLir) = 5%




More definitions

The second differential of E[p] may be defined by:

DE[p, h,k]= %DE[,O + e, ]

=0

It is a bilinear functional in /# and %, so it may be written as
D*E[p,h,k] = [dr[dr" K([pLr,r)h(r)k(r’)
The kernel is called the second functional derivative

O’E  _o([plr)
op(r)op(r’)  op(r’)

K([plr,r') =
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The symmetric kernel condition

The second differential is symmetric in 2 and :
D’E[p,h,k]=D’E[p, k,h]

This implies that the kernel is symmetric in r and r'
K([pl;r.r)=K([p];r’r)

OE  _  OE
op(r)opr’) op(r")oa(r)

w([plir) _ w(plir)
oo(r") o(r)

26



Symmetry of the second differential

The functional derivative v([p];r) is itself a functional of p,
so its first differential in the direction k is

Dv([p,k]:r) :%vqpﬂk];r)

t=0

The second differential of £[p] may be written as
D*E[p, h, k] =IDV([P, k1;x)h(r)dr

The symmetry condition for D’°E can be stated as:

[Pylp,kL0)h(r)dr = [ Dv([p, h; 1)k (r) dr
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Theory of integrability in a nutshell

The necessary and sufficient condition of integrability for
a trial potential v can be stated in two equivalent forms:

Differential form Integral form
([ pl;r) _ M([pl;r) [Dr(lp, kL r)h(r) dr
oo(r) o(r) = J’Dv([p, h];r)k(r)dr
symmetry inrand r’ symmetry in 2 and k
Requires manipulations Does not involve Dirac
with Dirac delta functions delta functions

A. P. Gaiduk and VNS, J. Chem. Phys. 133, 101104 (2010)



Potentials that depend only on p and Mp
Consider a model potential of the type
v=v(p,p)

For this v, the second differential is

J’Dv([p, k];r)h(r)dr = I%

This integral is symmetric in 4 and & if and only if
v

olp

Edr

Consequence: A model potential of the type v(p,0p)
can never be a functional derivative i

New integrability conditions
Consider a model potential of the type
v=v(p,0p,0°p)
The second differential may be written as

[Dv(p. kL)h(r) dr

:J‘[Bth+E;—V—D o %]‘Dk— o
Do Op  o0% o’p

This integral can be symmetric in 2 and & if and only if

ov ov
=[]
o0p  aCp .




Generalized-gradient approximations (GGA)

GGA functionals:
E[p]= j f(p,g)dr

The functional derivative of every GGA has the form

YAV A/ AN T AL
0p 0pdg” dgg Pg g’ g’

and is always a function of at most 4 ingredients:

, 1=0°p, w=gOgp

p, g=|0p

A. P. Gaiduk and VNS, Phys. Rev. 4 83, 012509 (2011)

Integrability conditions for GGA potentials

One can show that for a trial potential of the type
v=v(p,g,l,w)

the necessary and sufficient condition to be a functional
derivative is:

11 Ov_lav_ 9y s 0°v W 9°v 0
Eag ow 000/ s dpow g 0gow
% ov 0*v _
= 0w 0gdl

Note: these conditions are entirely in the (p,g,/,w) space.
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Construction of functional derivatives:

Example
Consider the expression
2
—-1 not a functional
0 8p2 derivative

Assume that v, is the first term of the functional derivative
of some GGA:

V:VO(p,g)‘l‘X(p,g)l"‘Y(p,g)W

Solving for X and Y we obtain

) - functional derivative of

y=2 /

2
P
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Construction of integrable exchange potentials

Model potentials are normally expressed in terms of
the dimensionless variables

g 1 w
S =13 4= "5 U=—353
Jo,

p o

For reasons of dimensionality, every functional derivative
of an exchange GGA can be written as

v(0,5,q,u) = p[R(s) + O(s)g + U (s)u]

where R, O and U are some functions.

Suppose that R is known. Then O and U can be obtained

from the integrability conditions.
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Model potential of van Leeuwen and
Baerends (LB94)

1/3 ,832
1+38ssinh™ &
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where s = %3 and = 0.05 and ¢ are constants

Functional derivative “grown” from LB94:
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LB94 and a “grown” functional derivative (fd)
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LB94 and LB94-based functional derivatives

\ LB94

fd-LB94 (8= 0.05)

>
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Total energies from the LB94 potential and
the reconstructed functional derivative

original func. deriv.
Atom LB94 from LB94
He — 2.821 — 4.275
Ne — 129.430 — 138.597
Ar — 529.173 — 547.017
Kr —2761.921 —2797.106

*All values are obtained using the path of uniformly
scaled densities (the Levy—Perdew formula).
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Total energies from model exchange potentials

original func. deriv. from
Atom LB94 revised LB94 PBE
He — 2.821 — 2.896 — 2.862
Ne — 129.430 — 128.597 — 128.547
Ar — 529.173 — 526.691 — 526.629
Kr —2761.921 —2751.519 —2751.624

*All values are obtained using the path of uniformly scaled densities
(the Levy—Perdew formula).
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Unsolved problems

Using the above method, one can construct integrable
Kohn—Sham potentials from any explicitly density-
dependent ingredients such as

p, g=Up, =0%p, w=glglp

Q: Can we construct integrable orbital-dependent potentials?

Q: In particular, can one make the Becke—Johnson model
potential integrable?

WO =0+ [ where 109 =2 3 06,0
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Summary

. Itis not difficult to reconstruct a density functional from its
functional derivative in more than one way.

. It is always possible to assign an xc-energy to a stray
model Kohn—Sham potential.

. Model potentials should by construction be functional
derivatives.

. Itis possible to construct a functional derivative
without knowing the parent density functional.

. Development of integrable model potentials reduces to
construction of simple functions of a few variables.
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