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2. Approximations and reduced models
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Starting point

Exact (non-relativistic, Born-Oppenheimer) N-electron eq. known

Hψ = Eψ, ψ = ψ(x1, .., xN ; s1, .., sN), ψ antisymm.

but not directly numerically accessible due to curse of dimension.

Recall electronic Hamiltonian:

H = Te + Vne + Vee

with

Te =
∑

i

(−1

2
∆xi ), Vne =

∑
i

vne(xi ), Vee =
∑
i<j

|xi − xj |−1

3



Starting point

Exact (non-relativistic, Born-Oppenheimer) N-electron eq. known

Hψ = Eψ, ψ = ψ(x1, .., xN ; s1, .., sN), ψ antisymm.

but not directly numerically accessible due to curse of dimension.

Recall electronic Hamiltonian:

H = Te + Vne + Vee

with

Te =
∑

i

(−1

2
∆xi ), Vne =

∑
i

vne(xi ), Vee =
∑
i<j

|xi − xj |−1

4



Starting point, ctd.

Most computationally practicable methods are not
numerical methods (in the sense in which this terminology
is used in mathematics), but reduced models.

Many reduced models exploit the variational formula for the lowest
eigenvalue of H:

E = min
ψ∈A
〈ψ|H|ψ〉

where ψ is varied over the admissible set

A = {ψ ∈ H1((R3 × Z2)N) |ψ antisymmetric, 〈ψ|ψ〉 = 1}.
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Hartree-Fock model

Keep exact energy functional, vary over smaller set of trial functions:

EHF = min
ψ∈S
〈ψ|H|ψ〉

where

S = {|ψ1 · · ·ψN〉 |ψ1, .., ψN ∈ H1(R3 × Z2), 〈ψi |ψj〉 = δij}

(set of Slater determinants), with

|ψ1 · · ·ψN〉(x1, .., xN) =
1√
N!

det

 ψ1(x1) · · · ψ1(xN)
...

...
ψN(x1) · · · ψN(xN)


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Hartree-Fock model, ctd.

Energy functional as a function of the orbitals: Notation: x = (r, s) ∈ R3 × Z2

〈ψ|H|ψ〉 =
∑

i

〈ψi | − 1
2 ∆ + vne |ψi 〉

+
1

2

∑
i,j

∫ ∫
|ψi (x)|2|ψj(x

′)|2 − ψi (x)ψj(x)ψj(x
′)ψi (x ′)

|r − r ′|
dx dx ′

Euler-Lagrange equations (Hartree-Fock equations):

fψψi = εiψi (i = 1, ..,N)

with the Fock operator

fψφ =
(
−1

2
∆+vne+

∫ ∑
i

|ψi (x
′)|2

| · −r ′|
dx ′
)
φ−
∫ ∑

i

φ(x ′)ψi (x ′)

| · −r ′|
dx ′
)
ψi

Note that the Fock operator depends itself on the ψi , so the HF
equations are nonlinear.

Easy to show that ε1, .., εN are the lowest eigenvalues of fψ. This
follows from positivity of the Hessian at a minimizer.
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Hartre-Fock model, ctd
The HF energy and HF equations have a nice density matrix
formulation.

This is because HF energy and Fock operator depend only on the
projector (density matrix)

N∑
i=1

|ψi 〉 〈ψi | =: γψ.

In particular, identifying γψ with its integral kernel γψ(x , x ′) (and
recalling x ′ = (r ′, s ′))

fψφ =
(
−1

2
∆ + vne +

∫
γψ(x ′, x ′)

| · −r ′|
dx ′
)
φ−

∫
γψ(·, x ′)φ(x ′)

| · −r ′|
dx ′

and the HF equation can be written as (writing fγψ instead of fψ)

γψ = χ(−∞,εmax ](fγψ).

Roothaan algorithm (Roothaan 1955, math. analysis: Cancès/LeBris 2000)

γk+1 = χ(−∞,εmax ](fγk
).
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Hartree-Fock model, ctd.

The HF model yields remarkably good total energies.
(about 99 percent of the experimental GS energies of atoms)

The rest is chemically important.
(energy differences such as binding energies can be off by a factor 2, as in C2, or even have the wrong sign, as in F2)

Remark from audience (G.Scuseria):
For molecules, even total energies can be poor, as in H2.
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CI and MCSCF

CI = Configuration Interaction

MCSCF = Multi-configuration self-consistent field

These are intermediate models between Hartree-Fock and full
quantum mechanics, obtained by minimization of the energy
E(ψ) = 〈ψ|H|ψ〉 over intermediate sets:

S ( ACI ( AMCSCF ( A

min
S
E min

ACI
E min

AMCSCF
E min

A
E

|| || || ||
EHF > ECI > EMCSCF > E
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CI and MCSCF, ctd.
Precise definition of the set ACI :

Linear combinations of the HF
Slater determinant and suitable “excited” Slater determinants.

Ψo = HF ground state = |ψ1 · · ·ψN〉 (fixed)
ψN+1, ..., ψK next (unoccupied) eigenstates of fΨ0 (fixed)
Ψa

i = |ψ1 · · ·ψi−1 ψa ψi+1 · · ·ψN〉 (i ≤ N, a ≥ N + 1) excitation

ACI =
{

Ψ = cΨ0 +
∑
i ,a

ciaΨa
i + 1

4

∑
i ,j ,a,b

cab
ij Ψab

ij + ...
∣∣∣

c , ca
i , cab

ij , ... ∈ C, 〈Ψ|Ψ〉 = 1
}

Full CI: include all excitations (up to Nth order)
CISD: truncate after singles and doubles

Definition of AMCSCF : Analogous, except ψ1, .., ψK are now allowed
to vary subject to orthogonality 〈ψi |ψj〉 = δij .

Thus, in CI we minimize over only expansion coefficients, while in
MCSCF we minimize over orbitals and expansion coefficients.
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Coupled Cluster method

Motivation: truncated CI not size-consistent, i.e.

ECISD(n noninteracting atoms) 6= n · ECISD(1 atom).

Fixed by the exponential (rather than linear) ansatz ΨCC = eT Ψ0

T = T1 + T2 + ... cluster operator

T1Ψ0 =
∑
i ,a

ta
i Ψa

i Second quantized notation: T1 =
∑
i,a

tai a†(a) a(i)

T2Ψ0 = 1
4

∑
i ,j ,a,b

tab
ij Ψab

ij

ECC = 〈Ψ0|e−THeT |Ψ0〉

where the coefficients ta
i , tab

ij , ... in T solve the amplitude equations

〈Ψa
i |e−THeT |Ψ0〉 = 0

〈Ψab
ij |e−THeT |Ψ0〉 = 0

...

Eqns nonlinear, no variational structure
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T = T1 + T2 + ... cluster operator

T1Ψ0 =
∑
i ,a

ta
i Ψa

i Second quantized notation: T1 =
∑
i,a

tai a†(a) a(i)

T2Ψ0 = 1
4

∑
i ,j ,a,b

tab
ij Ψab

ij

ECC = 〈Ψ0|e−THeT |Ψ0〉

where the coefficients ta
i , tab

ij , ... in T solve the amplitude equations

〈Ψa
i |e−THeT |Ψ0〉 = 0

〈Ψab
ij |e−THeT |Ψ0〉 = 0

...

Eqns nonlinear, no variational structure
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RDM method
RDM = reduced 2-body density matrix

“Dual” method – minimize over a too large set

Rapprox
N ) RN

min
Γ∈Rapprox

N

tr h Γ min
Γ∈RN

tr h Γ

|| ||
ERDM < E

The sets appearing here are subsets of the space of self-adjoint operators
on the two-electron Hilbert space L2((R3 × Z2)2).

h is the 2-body version of the N-body Hamiltonian with GS energy E ,
h = (N − 1)−1(h0(x1) + h0(x2) + 1

|x1−x2| where h0(x) = − 1
2 ∆x + vne(x).

Γψ(x1, x2, x
′
1, x
′
2) =

(
N
2

) ∫
ψ(x1, x2, z)ψ(x ′1, x

′
2, z) dz , z = (x3, .., xN)

RDM of ψ. Facts: cpct self-adj.nonneg.trace class op.; 〈ψ|H|ψ〉 = tr h Γψ

RN = {Γ | Γ = Γψ for some ψ ∈ AN} N-representable density matrices

Not known, but useful bounds known (Coleman, Percus, Erdahl)

Rapprox
N = {Γ | Γ satisfies a set of known bounds}
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DFT−LDA

Basic version of DFT.

Mathematically: similar to HF model, except the nonlocal exchange term
is replaced by a local exchange-correlation term.

EDFT = min
ADFT

EDFT

with admissible set

ADFT = {(φ1, .., φN) ∈ H1(R3 × Z2))N | 〈φi |φj〉 = δij}
(Kohn-Sham orbitals) and energy functional

EDFT =
∑
i,j

∫
1

2
|∇φi |2 +

∫
vneρ+

1

2

∫ ∫
ρ(r)ρ(r ′)

|r − r ′|
dr dr ′ +

∫
εxc(ρ),

where ρ(r) =
∑

s

∑
i |φi (r , s)|2 (density) and εxc is a “known” function of

ρ (exchange-correlation energy density of a homog.el.gas with density ρ).

Euler-Lagrange equations: (system of N coupled nonlinear PDE’s in R3)

fρφi = εiφi i = 1, ..,N

with the Kohn-Sham operator

fρ = −
1

2
∆ + vne +

∫
1

| · −r′|
ρ(r′) dr′ +

dεxc (ρ)

dρ
.
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Kinematic cost

N = no. of electrons
K = no. of one-body orbitals; assume K=c · N

HF, DFT-LDA K · N ∼ N2

CISD, CCSD
(K−N

2

)
·
(N

2

)
∼ N4

RDM
(K

2

)2 ∼ N4

CCSDTQ
(K−N

4

)
·
(N

4

)
∼ N8

FCI
(K
N

)
∼ N−1/2constN
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3. Mathematical challenges
other than designing the perfect Exc which everybody would want to use
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Challenge 1: Representability

Obtain better insight into the N-representability problem for 2-body
density matrices.

In particular, re-derive known bounds (such as Erdahl’s
3-index-conditions) by a systematic method, rather than
Guess-And-Verify.

In fact, even the nec. and suff. bounds on one-body DM’s are only
derived by Guess-And-Verify.
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Challenge 2: Empiricism in basis sets and active spaces

Remove some of the empiricism underlying the choice of basis sets
and active spaces in CI, CASSCF, MCSCF, CC.

In fact, stop claiming that wavefunction methods, unlike DFT
functionals, contain no empiricism – they do: use of

I AO’s

I their LC’s

I background Gaussian basis functions

I occupied core orbitals

I cc-pVTZ...

Yes, results would become independent of these choices in a
complete one-body basis. But the basis sets in actual computations
are far from complete, so these choices hugely matter.
That’s why wavefunction methods designed by chemists beat, e.g., clever general-purpuse sparse grid methods by

mathematicians, hands down.
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mathematicians, hands down.
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Challenge 3: Regularity/singularity structure

Current methods do not exploit recent mathematical results on the
precise regularity/singularity structure of electronic WF’s:

I local analyticity in xi , |xi |, |xi − xj | (T.Hoffmann-Ostenhof,
M.Hoffmann-Ostenhof, T.Oestargaard Soerensen, 2009)

I high mixed derivatives (H.Yserentant, 2005)

Try to exploit these results optimally.

(But beware of the difficulties with established explicitly correlated
methods and emerging sparse methods.)
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Challenge 4: Wavefunction boundary conditions

By pure luck, the kinematics of DFT (use ρ) is compatible with
periodic boundary conditions, reducing electronic structure
computations for crystalline solids to a cell problem.

Try to come up with feasible “cell problems” for WF methods.

(The naive idea to make the WF periodic in each coordinate is
clearly wrong.)

Remark from audience (K.Burke):

‘Pure luck’ is perhaps an overstatement. When first introducing DFT,

Walter Kohn – with his background in solid-state physics – did have

applicability to solids in mind.
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Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects.
Hidden because no small par. in Hamiltonian.

Example (experimental data)

Atom Li Be B C N O F Ne Cr

Ratio of first spectral gap

to ground state energy
0.0093 0.0068 0.0053 0.0012 0.0016 0.00096 0.0078 0.0047 0.00003

Multiscale strategy for this particular example:

I Identify and analyze suitable asymptotic limit in which gap
total en. → 0

(here: Z →∞ at fixed N)
GF, B.D.Goddard, SIAM J. Math. Anal. 41, 631-664, 2009; Phys. Rev. A 81, 032516, 2010

I Design asymptotics-based method that resolves gaps correctly in limit
GF, B.D.Goddard, Multiscale Model. Simul. 7, 1876-1879, 2009

I Use the method to correcty predict interconfigurational ordering of
transition metal atoms (missed by standard methods)
Ch.Mendl, GF, J.Chem.Phys. 133, 184101, 2010
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Orbital filling, 3d transition metal series, various methods

Atom Madelung HF Rel.HF LSDA Becke 88 B3LYP Expt.

Sc 4s23d1 4s23d1 4s23d1 4s23d1 4s23d1 4s23d1 4s23d1

Ti 4s23d2 4s23d2 4s23d2 4s23d2 4s13d3 4s23d2 4s23d2

V 4s23d3 4s23d3 4s23d3 4s13d4 4s13d4 4s13d4 4s23d3

Cr 4s23d4 4s23d4 4s13d5 4s13d5 4s13d5 4s13d5 4s13d5

Mn 4s23d5 4s23d5 4s13d6 4s23d5 4s23d5 4s23d5 4s23d5

Fe 4s23d6 4s23d6 4s13d7 4s23d6 4s23d6 4s23d6 4s23d6

Co 4s23d7 4s23d7 4s23d7 4s13d8 4s23d7 4s13d8 4s23d7

Ni 4s23d8 4s23d8 4s13d9 4s13d9 4s13d9 4s13d9 4s23d8

Cu 4s23d9 4s23d9 4s13d10 4s13d10 4s13d10 4s13d10 4s13d10

Red: Deviation from experiment

Blue: The first two of the 20 experimental ‘anomalies’ w.r.to the Madelung rule (fill via n + ` ∼no. of WF nodes)

HF: M.P.Melrose, E.Scerri, J.Chem.Edu.73, 498, 1996 (nice discussion of limitations)
Relativistic HF: T.Kagawa, Phys.Rev.A 12, 2245, 1975
LSDA: J.Harris, R.O.Jones, J.Chem.Phys. 68, 3316, 1978
Becke 88, B3LYP: S.Yanagisawa, T.Tsuneda, K.Hirao, J.Chem.Phys.112, 545, 2000

Ch.Mendl, GF, J.Chem.Phys. 133, 184101, 2010: anomalous filling order correctly predicted via asymptotics-based CI
method

Open: correct prediction via an asymptotics-based DFT
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Challenge 5, ctd: List of interesting asymptotic limits

Isoelectronic limit atomic ions, N fixed, Z→∞
Hylleraas, Layzer, Wilson, G.F., Goddard, Mendl

Quantum oscillations, shell structure, electron correlation

Thomas-Fermi limit neutral atoms, N=Z→∞
Lieb, Simon, Scott, Siedentop/Weikard, Hughes, Bach, Fefferman/Seco, Burke

Basic prototype of DFT, averaged semiclassics

Dissociation limit |RA − RB | → ∞
London, Casimir/Polder, ...

Leading order van der Waals term not captured by any standard DFT

Coalescence limit r12 → 0
Kato, Soerensen et al, N.R.Hill, Kutzelnigg, Goddard

Slow convergence of CI and related expansions

Thermodynamic limit N →∞, vol →∞, N
vol = const

Lieb/Lebowitz, Fefferman, Ceperley/Alder, Catto/Le Bris/Lions, Hainzl/Lewin/Solovej, Cancès/Deleurence/Lewin, ...

‘stability of matter’, ‘size consistency’, energy of defects

My current other favourite ~→ 0 limit of Exc at fixed ρ
G.F., Cotar, Klueppelberg

Work in progress: leading order term. Novel functional form.

89



Challenge 5, ctd: List of interesting asymptotic limits
Isoelectronic limit atomic ions, N fixed, Z→∞
Hylleraas, Layzer, Wilson, G.F., Goddard, Mendl

Quantum oscillations, shell structure, electron correlation

Thomas-Fermi limit neutral atoms, N=Z→∞
Lieb, Simon, Scott, Siedentop/Weikard, Hughes, Bach, Fefferman/Seco, Burke

Basic prototype of DFT, averaged semiclassics

Dissociation limit |RA − RB | → ∞
London, Casimir/Polder, ...

Leading order van der Waals term not captured by any standard DFT

Coalescence limit r12 → 0
Kato, Soerensen et al, N.R.Hill, Kutzelnigg, Goddard

Slow convergence of CI and related expansions

Thermodynamic limit N →∞, vol →∞, N
vol = const

Lieb/Lebowitz, Fefferman, Ceperley/Alder, Catto/Le Bris/Lions, Hainzl/Lewin/Solovej, Cancès/Deleurence/Lewin, ...

‘stability of matter’, ‘size consistency’, energy of defects

My current other favourite ~→ 0 limit of Exc at fixed ρ
G.F., Cotar, Klueppelberg

Work in progress: leading order term. Novel functional form.
90



Thanks for attention!
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