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A tree
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A tree T with a root o.
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Partial order and levels
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Partial order:
t � s, s � t .

Level number:

|s| := #{t : t ≺ s}.
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Gaussian summation processes

We define a tree-indexed summation process Y (s), s ∈ T .
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t0=o

t1

t2

s=t3

Y (s) = σ(s)
∑
t�s

α(t) ξ(t)

Here ξ(·) are independent N(0,1) random variables sitting at the
nodes. α(·) - non-negative weight; σ(·) - non-negative, non-increasing
weight. Used by X.Fernique (1976) in the studies of majorizing
measure criteria (σ = 1). Applications in biology, chemistry,
informatics, ...
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Tree as a metric space

Typically, a Gaussian process Y is studied via Dudley distance on T ,

dY (s, t)2 := E (Y (s)− Y (t))2.

However, for summation process another distance is easier to handle,
We construct a distance d(·, ·) on T based on the weights α and σ.
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If t � s,

d(s, t) := max
t≺v�s

 ∑
t≺u�v

α(u)2

1/2

σ(v).
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Tree as a metric space (continued)

We construct a distance d(·, ·) on T based on the weights α and σ
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If s and t are not comparable, then

d(s, t) := max {d(s, s ∧ t),d(t , s ∧ t)} .
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Covering numbers of (T ,d)
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Covering numbers:

N(T ,d , ε) := inf

n ≥ 1 : ∃{tj},T =
n⋃

j=1

Bε(tj)


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Order covering numbers of (T ,d)

A new, more convenient but equivalent concept: order covering
numbers
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Order covering numbers:

Ñ(T ,d , ε) := inf

n ≥ 1 : ∃{tj},T =
n⋃

j=1

B̃ε(tj)


where B̃ε(t) := {s ∈ T : d(s, t) ≤ ε, s � t}. Actually,

N(T ,d , ε) ≤ Ñ(T ,d , ε) ≤ N(T ,d , ε/2).
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Conditions for boundedness

Sufficient Conditions (Dudley)
Conditions ∫ ∞

0

√
ln N(T ,dY , ε)dε <∞

and ∫ ∞
0

√
ln N(T ,d , ε)dε <∞

are equivalent. Either of them yields supt∈T |Y (t)| <∞ a.s.

Necessary Conditions (Sudakov)
Conditions

sup
ε>0

ε2 ln N(T ,dY , ε) and sup
ε>0

ε2 ln N(T ,d , ε)

are equivalent. Either of them is necessary for supt∈T |Y (t)| <∞ a.s.
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Boundedness: binary tree

Let T be a binary tree, and α(t) = α(|t |), σ(t) = σ(|t |).

Case α ↓
Let α(·) be non-increasing. Then supt∈T |Y (t)| <∞ a.s. iff

sup
n

σ(n)
n∑

k=1

α(k) <∞.

Case α ↑
Let α(·) be non-decreasing. Then supt∈T |Y (t)| <∞ a.s. iff

sup
n

σ(n)
√

n

(
n∑

k=1

α(k)2

)1/2

<∞.
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Boundedness: binary tree (continued)

Let T be a binary tree, and α(t) = α(|t |), σ(t) = σ(|t |).
In many cases only the product α(·)σ(·) is important for the properties
of Y
but

An example
The process

Y ′(s) := (|s|+ 1)−1
∑
t�s

ξ(t) , s ∈ T ,

is a.s. bounded, while

Y ′′(s) :=
∑
t�s

(|t |+ 1)−1ξ(t) , s ∈ T ,

is a.s. unbounded.
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Problem setting

We study the asymptotic behavior of

P{sup
t∈T
|Y (t)| ≤ ε}, as ε→ 0.

This small deviation problem is known to be related with entropy
behavior of some linear operators.

Let us describe these operators for summation process.
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Weighted summation operator
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Take weights α(·), σ(·) on T and let Vα,σ : `1(T )→ `2(T ),

(Vα,σx)(t) := α(t)
∑
s�t

σ(s)x(s), t ∈ T ,

Dual operator

(V ∗α,σx)(s) := σ(s)
∑
t�s

α(t)x(t), s ∈ T .
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Dyadic entropy numbers

We measure compactness of operator V := Vα,σ by dyadic entropy
numbers
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en(V ) := inf

ε > 0 : ∃{yj}, {Vx : ||x ||1 ≤ 1} ⊂
2n−1⋃
j=1

Bε(yj)


Main problem in operator language
Find the behavior of en(V ), as n→∞.
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Main result

Small deviations, operator entropy, and the distance d(·, ·)
Let a > 0, b ≥ 0. If

N(T ,d , ε) ≈ ε−a| ln ε|b, as ε→ 0,

then
en(Vα,σ) ≈ n−1/a−1/2| ln n|b, as n→∞,

en(V ∗α,σ) ≈ n−1/a−1/2| ln n|b, as n→∞,

− lnP{sup
t∈T
|Y (t)| ≤ ε} ≈ ε−a| ln ε|b, as ε→ 0.

Arguments:
New: evaluation of en(V ) via distance d .
Duality theorem on entropy numbers: en(V ∗) ≈ en(V ).
Kuelbs-Li theory relating en(V ∗α,σ) to small deviations
P{supT |Y | ≤ ε}.
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Bounds via weights and tree structure

Let R(n) := #{t ∈ T : |t | = n} denote the number of nodes of level n.

Small deviations for polynomial tree and polynomial weights

Assume that R(n) ≤ c nH and α(t)σ(t) ≤ c|t |−γ/2 with γ > 1, H ≥ 0.
Then

N(T ,d , ε) ≤ Q(ε)

and
− lnP{sup

t∈T
|Y (t)| ≤ ε} ≤ Q(ε),

where

Q(ε) := C


ε
− 2H

γ−1 , γ < H + 1,
ε−2| ln ε|, γ = H + 1,

ε
− 2(H+1)

γ , γ > H + 1.
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Bounds via weights and tree structure (continued)

Small deviations for exponential tree and exponential weights

Let T be a binary tree and α(t)σ(t) ≤ c2−γ|t | with γ > 0. Then

N(T ,d , ε) ≤ Q(ε)

and
− lnP{sup

t∈T
|Y (t)| ≤ ε} ≤ Q(ε),

where
Q(ε) := C ε

− 1
γ .

This example was studied in Aurzada and Lifshits (2008).
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Bounds via weights and tree structure (continued)

Remark: there are extremely interesting and difficult examples for the
case of exponentially growing trees and polynomially decreasing
weights.

Here the study of en(Vα,σ) is meaningful
but
the study of small deviations is meaningless since the summation
process is unbounded,

P{sup
t∈T
|Y (t)| ≤ ε} = 0, ∀ε > 0.

Therefore, our results for this case belong to operator theory.

M.Lifshits (St. Petersburg), W.Linde (Jena) () Gaussian Summation Processes and Trees Banff, October 2011 22 / 26



Biased tree

One very interesting example is a biased tree: given an integer
sequence R(n) we take binary tree and for level n keep only R(n)
rightmost nodes.
Assuming R(n + 1) ≤ 2R(n) we obtain a tree whose branches may die
out very quickly, if R(·) is growing slowly.
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Biased tree, R(n) = n + 1.

M.Lifshits (St. Petersburg), W.Linde (Jena) () Gaussian Summation Processes and Trees Banff, October 2011 23 / 26



Example: bounds for biased trees

Let T be a biased tree associated with a size level sequence R(n).

Small deviations for polynomial biased tree

Assume that R(n) ≈ nH , σ(t) ≡ 1, and α(t) = |t |−γ/2 with γ > 1,
H ≥ 0.
Then

N(T ,d , ε) ≈ Q(ε)

and
− lnP{sup

t∈T
|Y (t)| ≤ ε} ≈ Q(ε),

where
Q(ε) := C ε

− 2(H+1)
γ .

This example is important for showing sharpness of our general
estimates.
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