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Let {Pθ : θ ∈ Θ}, Θ ⊂ Rd or perhaps more general, be a family of

probability measures on R, and let Π be a probability measure on

Θ, the prior distribution of θ. Let Xi be i.i.d. with law θ0 ∈ Θ, θ0

unknown. In finite dimensional problems, under fairly general

assumptions, the posterior distribution of θ given the data Xi,

i = 1, . . . , n, concentrates about the true value θ0 at the rate n−1/2,

relative to any norm, for example as a consequence of the

Bernstein-von Mises theorem. For infinite dimensional parameters,

it is known that the posterior could even be inconsistent (e.g.,

Diaconis and Freedman (1986)). Ghosal, Gosh and van der Vaart

(2000), among others, developed techniques that allow to obtain

best rates of concentration of the posterior in Hellinger metric in

density estimation, assuming the prior is chosen adequately (not

too large a support, enough mass on Kullback-Leibler divergence

neighborhoods of the true value). In particular, van der Vaart and

Zanten (2008) applied this theory to Gaussian process priors.
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With the aim of obtaining rates of concentration in the stronger

supremum norm distance, we replaced the entropy properties of the

support of the prior by approximation theoretic properties related

to wavelets, that are satisfied by Hölder (and Besov) balls, while

keeping the second condition about enough mass on

Kullback-Leibler neighborhoods. This allows for relatively more

transparent proofs that use concrete tests based on wavelets and to

get rates in sup norm. However, our rates in sup norm may not be

optimal, in fact we obtain a continuous transition of rates, from

optimal in Lr-norms, 1 ≤ r ≤ 2, to steadily lower for Lr as r grows

from 2 to ∞. Question: is this is the best one can do?

On the other hand, in non-parametric Gaussian regression the

minimax rate of contraction in the sup norm (in all the Lr norms

simultaneously) obtains for certain diagonal priors.

Our proofs use Borell and Talagrand’s inequalities and small balls

probabilities. Here is a more detailed description.
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1. Rate of posterior contraction in sup norm in

non-parametric Gaussian regression with conjugate prior.

Consider the problem of estimating a function observed in

Gaussian white noise: given a noise level 1/
√
n, n ∈ N, we observe

dY (n)(t) = f(t)dt+
1√
n
dB(t), t ∈ [0, 1], (1)

for f = f0 ∈ L2([0, 1]), where B is Brownian motion on [0, 1]. What

we observe is
∫ 1

0
h(t)dY (n)(t) for h the elements of an orthonormal

basis of L2([0, 1]), hence, for any h ∈ L2. One wishes to estimate f0

based on this observation. Assuming f0 ∈ Cα([0, 1]) for some

α > 0, we take a Cohen-Daubechies-Vial wavelet basis of regularity

r > α (a modification of a Daubechies wavelet basis to fit the

interval). Then, observing Y (n) is equivalent to observing its action

on the basis:
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yk =

∫ 1

0

φk(t)dY (n)(t) = 〈f, φk〉+
1√
n

∫ 1

0

φk(t)dB(t)

:= θk +
1√
n
gk, k = 1, . . . , N, (2)

y`k =

∫ 1

0

ψ`k(t)dY (n)(t) = 〈f, ψ`k〉+
1√
n

∫ 1

0

ψ`k(t)dB(t)

:= θ`k +
1√
n
g`k, k = 1, . . . , 2`, ` ≥ 0, (3)

with the variables gk, g`k all i.i.d. N(0, 1). So,

Y (n) = (yk, y`k) ∈ `2, where yk is N(θk, 1/n) and y`k is N(θ`k, 1/n),

all independent. f0 becomes the vector θ0 = (θ0
k, θ

0
`k)t of the

coefficients of its wavelet expansion, that is θ0
k = 〈f0, φk〉 and

θ0
`k = 〈f0, φ`k〉, and any prior Π on L2 maps onto a prior, still

denoted by Π, on the parameter space {θ : θ = (θk, θ`k)t ∈ `2}.
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Take the prior

Π = L

 N∑
k=1

gkφk +

∞∑
`=0

2`∑
k=1

√
µ`g`kψ`k

 (4)

in L2([0, 1]), with the g’s i.i.d. N(0, 1) and with

µ0 = 1, µ` = `−12−`(2α+1) ∀` > 0. (5)

(or Π = L
(
gk,
√
µ`g`k

)t
in `2, for the wavelet coefficients of f). The

posterior Π̂Y
n = Π(·|Y (n)) is then the law of θ given the observed

process Y (n), and, just as in one dimension, it is also Gaussian,

with mean and covariance

θ̂(Y ) = EΠ(θ|Y (n)) = Σ(Σ + I/n)−1Y (n) = Σ(Σ + I/n)−1(yk; y`k)t

(6)

Σ|Y (n) = Σ(nΣ + I)−1, (7)

where Σ is the covariance of Π, in our case, diagonal.
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In one dimension, Y (n) = θ + g/
√
n is N(θ, 1/n) and θ is N(0, µ)

independent of g, and it is well known and easy to see that the

posterior distribution of θ given Y (n) = y is

N

(
µy

µ+ 1/n
,

µ

nµ+ 1

)
.

The equations (6) are just this in Hilbert space.
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Theorem 1. Let 0 < α < r and let Π be the Gaussian prior on

L2([0, 1]) defined by (4) based on a Cohen-Daubechies-Vial wavelet

basis of L2([0, 1]) of smoothness at least r. Let f0 ∈ Cα([0, 1]), let

εn =

(
log n

n

)α/(2α+1)

,

and suppose we observe dY
(n)
0 (t) = f0(t)dt+ dB(t)/

√
n. Then,

there exists C <∞ and M0 <∞ depending only on the wavelet

basis, α and ‖f0‖α,∞ such that, for every M0 < M <∞, and for

all n ∈ N,

E
Y

(n)
0

Π
(
f : ‖f − f0‖∞ > Mεn

∣∣Y (n)
0

)
≤ exp(−C2(M −M0)2 log n).

(8)

This is a result on the rate of posterior concentration about the

true parameter f0 in the sup norm. Some consequences follow:
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The posterior mean given Y
(n)
0 is a formal Bayes estimator of f0

and equals

EΠ(f |Y (n)
0 ) =

N∑
k=1

1

1 + 1/n
ykφk +

∞∑
`=0

2`∑
k=1

µ`
µ` + 1/n

y`kψ`k (9)

with yk = 〈f0, φk〉+ gk/
√
n and y`k = 〈f0, ψ`k〉+ g`k/

√
n.

Corollary 1. Under the same conditions and notation as in

Theorem 1,

Pr
(
‖EΠ(f |Y (n)

0 )− f0‖∞ > 2Mεn

)
= 0 (10)

from some n onwards, in fact, at least for all n such that

exp(−C2(M −M0)2 log n) < 1/2.

Theorem 1 is thus best possible as its consequence for the Bayes

estimator EΠ(f |Y0) is.
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Not surprisingly, the proof of the theorem follows easily by the

Borel-Sudakov-Tirelson exponential inequality and a simple

estimate of the supremum of a Gaussian sequence, and that of the

corollary uses also Anderson’s inequality.
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2. Density estimation. Let P be a class of bounded continuous

probability densities on [0, 1], and let X1, . . . , Xn be a random

sample drawn from some unknown probability density p0 with joint

law PN
0 . Suppose one is given a prior probability distribution Π

defined on some σ-algebra B of P. The posterior is the random

probability measure defined on B by

Π(B|X1, . . . , Xn) =

∫
B

∏n
i=1 p(Xi)dΠ(p)∫ ∏n
i=1 p(Xi)dΠ(p)

, B ∈ B.

We describe our results on two general examples.

2.1. Uniform wavelet series. Suppose an apriori upper bound

on the Hölder norm ‖p0‖α,∞ is available, so that the prior can be

chosen to have bounded support in Cα([0, 1]).
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An example is obtained by uniformly distributing wavelet

coefficients on a Hölder ball. Let {φk, ψ`k} be a N -regular

Cohen-Daubechies-Vial-wavelet basis for L2([0, 1]), let u`k be

i.i.d. U(−B,B) random variables, and define, for α < N , the

random wavelet series

Uα(x) =
∑
k

u0kφk(x) +
∞∑
`=J0

∑
k

2−`(α+1/2)u`kψ`k(x), (11)

which has trajectories in Cα([0, 1]) ⊂ Lr([0, 1]), 1 ≤ r ≤ ∞, almost

surely since Cα([0, 1]) = Bα∞,∞([0, 1]) has a definition in terms of

the coefficients of wavelet expansions,

‖f‖α,∞,∞ = sup
k
|αk(f)|+ sup

`,k
2`(α+1/2)|β`,k(f)|.
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Since ‖Uα‖∞ ≤ C(B,α, ψ) and since the exponential map has

bounded derivatives on bounded subsets of R, the same applies to

the random density

pU,α(x) :=
eUα(x)∫ 1

0
eUα(y)dy

,

whose induced law on C([0, 1]) we denote by Πα.

Proposition 1. Let X1, . . . , Xn be i.i.d. on [0, 1] with density p0

satisfying ‖ log p0‖α,∞ ≤ B. Let 1 ≤ r ≤ ∞,

r̄ = max(2, r), r∗ = min(r, 2), and suppose α ≥ 1− 1/r∗. Then there

exist finite positive constants M,η = η(α, r) such that, as n→∞,

Πα
{
p ∈ P : ‖p− p0‖r ≥Mn−

α−1/2+1/r̄
2α+1 (log n)η

∣∣X1, . . . , Xn

}
→PN

0 0.

(12)
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For 1 ≤ r ≤ 2, the concentration rate n−
α

2α+1 (log n)η is best

possible up to the log term, but not necessarily for α > 2.

2.2. Gaussian process priors. A variety of Gaussian process

priors have been considered in the nonparametric Bayes literature

recently, mainly by van der Vaart and coauthors. For simplicity, we

restrict consideration to integrated Brownian motions.

Definition 1. Let B(t) = B1/2(t), t ∈ [0, 1], be a

(sample-continuous version of) standard Brownian motion. For

α > 1, α ∈ {n− 1/2 : n ∈ N}, setting {α} = α− [α], [α] being the

integer part of α, Bα is defined as the [α]-fold integral

Bα(t) =

∫ t

0

∫ t[α]−1

0

· · ·
∫ t2

0

∫ t1

0

B(s)dsdt1 · · · dt[α]−1

=
1

([α]− 1)!

∫ t

0

(t− s)[α]−1B(s)ds, t ∈ [0, 1],

where for [α] = 1 the multiple integral is understood to be
∫ t

0
B(s)ds.
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We would like to define our prior on densities as the probability law

of the random process
eBα∫ 1

0
eBα(t)dt

(13)

(Lenk, 1991) but we must make two corrections: First, since

B
(k)
α (0) = 0 a.s., k ≤ [α], would impose unwanted conditions on the

value at zero of the density and its derivatives, we should release

Bα at zero, i.e., take B̄α :=
∑[α]
k=0 Zkt

k/k! +Bα, where Zk are

i.i.d. N(0, 1) variables independent of Bα (see van der Vaart and

Zanten (2008)). In order to deal with bounded densities, we

introduce a second modification to (13), and define our prior (on

the Borel sets of C([0, 1])) as

Π = L

(
eB̄α∫ 1

0
eB̄α(t)dt

∣∣∣∣‖B̄α‖∞ ≤ c
)

(14)

where c is a fixed arbitrary positive constant.
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Proposition 2. Let 1 ≤ r ≤ ∞,

r̄ = max(r, 2), α ∈ {n− 1/2, n ∈ N} and assume a) p0 ∈ Cα([0, 1]),

and b) p0 is bounded and bounded away from zero, say,

2‖ log p0‖∞ ≤ c <∞. Let Π be the prior defined by (14) where α is

as in a) and c is as in b). Then, if Xi are i.i.d. with common law

P0 of density p0, there exists M <∞ s.t.

Π
{
p ∈ P : ‖p− p0‖r ≥Mn−

α−1/2+1/r̄
2α+1 (log n)(1/2)1{r=∞}

∣∣X1, . . . , Xn

}
tends to zero in PN

0 -probability as n→∞.
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The result in Proposition 2 extrapolates to fractional multiple

integrals of Brownian motion (Riemann-Liouville processes) of any

real valued index α > 1/2, and it also extends to the related

fractional Brownian motion processes.

The properties of these Gaussian processes that make them

suitable for these results are the following (only stated for

integrated Brownian motion).

One is that B̄α has its trajectories a.s. in Cα,∞,1/2, the space of

bounded continuous functions with [α] bounded derivatives and

with the [α]-th derivative with modulus of continuity

tα−[α](log t−1)1/2, and that Borell’s concentration inequality applies

for the norm in this space; we also need the more refined inequality

about concentration in sup-norm-ε-neighborhoods of RKHS balls

-in the case of released at zero integrated B.M., for each α, the

RKHS is precisely the Sobolev space Hα+1/2-.
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The second property we use is that the small ball estimate

Pr
{
‖B̄α − w‖∞ < ε

}
≥ e−φα(ε), φα(ε) = O(ε−1/α) as ε→ 0,

holds for all w ∈ Cα (Li and Linde, 1999).

These properties, suitably modified, are inherited by the processes

defining the priors.
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2.3. A general result. The previous propositions are

consequences of more general results, and the properties of

Gaussian processes just mentioned are used for checking their

conditions. Here is one of the two general results we have. Will

only consider T = [0, 1] (T = R is also possible). We need

Condition 1. Let T = [0, 1]. The sequence of operators

Kj(x, y) = 2jK(2jx, 2jy);x, y ∈ T, j ≥ 0 is called an admissible

approximating sequence if K(x, y) = K(x− y) is a standard

convolution kernel of bounded p-variation for some p ≥ 1 or if

K(x, y) =
∑
k φk(x)φk(y) is the projection kernel of a

Cohen-Daubechies-Vial (CDV) wavelet basis (boundary corrected

Daubechies wavelets) -or a Daubechies wavelet basis if T = R-.
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Theorem 2. Let P be a set of probability densities on [0, 1], and

let Πn be priors defined on some σ-algebra of P for which the maps

p 7→ p(x) are measurable for all x ∈ [0, 1]. Let Xi be i.i.d. with law

P0 and density p0 ∈ P. Let 1 ≤ r ≤ ∞ and let εn → 0 as n→∞ be

a sequence of positive numbers such that
√
nεn →∞ as n→∞. Let

δn = εn(nε2
n)

1
2−

1
2r γn (15)

for some γn ≥ 1 ∀n. Let Jn be any sequence satisfying 2Jn ≤ cnε2
n

for some fixed 0 < c <∞, and let Kj be an admissible

approximator sequence. Let Pn be a sequence of subsets of

{p ∈ P : ‖KJn(p)− p‖r ≤ C(K)δn} . (16)

where C(K) is a constant that depends only on the operator kernel

K. Assume there exists C > 0 such that, for every n large enough,

1) Πn(P \ Pn) ≤ e−(C+4)nε2n and
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2) Πn

{
p ∈ P : −P0 log p

p0
≤ ε2

n, P0

(
log p

p0

)2

≤ ε2
n

}
≥ e−Cnε2n .

Let p0 ∈ Lr([0, 1]) s.t. ‖KJn(p0)− p0‖r = O(δn). If δn → 0 as

n→∞, then there exists M <∞ such that

Πn

{
p ∈ P : ‖p− p0‖r ≥Mδn

∣∣X1, . . . , Xn

}
→ 0 as n→∞ (17)

in PN
0 -probability.

If we also impose that p0 is bounded and that

Πn(p ∈ P : ‖p‖∞ > B|X1, . . . , Xn)→ 0

as n→∞ in PN
0 -probability for some B <∞, then, for 1 < r <∞,

we can improve the rate to δn = εn(nε2
n)

1
2−

1
r∨2 γn, assuming

εn = O(γn(nε2
n)1/(r∧2)−1).
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Note that the rates interpolate between δn = εn for r = 1 (or, in

the bounded case, for r = 2) and δn =
√
nε2

n for r =∞ (slower

than εn as
√
nεn →∞).

Condition 2) handles the denominator in

Πn {p ∈ P : ‖p− p0‖r ≥Mδn|X1, . . . , Xn}

=

∫
‖p−p0‖r≥Mδn

∏n
i=1

p
p0

(Xi)dΠn(p)∫
P
∏n
i=1

p
p0

(Xi)dΠn(p)

in the sense that, basically by Chebyshev’s inequality (Ghosal,

Ghosh and van der Vaart, 2000), if Π is supported by the set in

condition 2), then one has, for all c > 0,

Pn0

{∫ n∏
i=1

p

p0
(Xi)dΠ(p) ≤ e−(1+c)nε2n

}
≤ 1

c2nε2
n

.
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The numerator can be handled with the existence of ‘tests’

-indicator functions- φn = φn(X1, . . . , Xn; p0) such that

lim
n
Pn0 φn = 0 and sup

p∈Pn:‖p−p0‖r≥Mδn

Pn(1− φn) ≤ 2e−(C+4)nε2n

(for n large enough). Van der Vaart et al. used tests specific for the

Hellinger distance derived from some abstract tests proved to exist

by LeCam and by Birgé by means of entropy conditions. Our tests

have the form

φn = I(‖p̂n − p0‖r > Mδn},

where p̂n is a kernel or wavelet type density estimator. Then, the

proofs of the above inequalities are obtained via Talagrand’s

inequality and moment bounds for ‖(Pn − P )Kj(x, ·)‖r, 1 ≤ r ≤ ∞,

together with control of bias term ‖Pnp̂n − p‖r = ‖KJnp− p‖r,
p = p0 and p ∈ Pn, using (16).
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In particular, P must satisfy some good theoretic approximation

properties, like the Cα or the Besov spaces.

The different rates for different r come from the estimation of the

p0-variance of (Kj ∗ f)(X) (or with the dominating convolution

kernel Φj in the wavelet case), f ∈ Ls, s conjugate of r,

Kj(x, y) = 2jK(2jx, 2jy), using Young’s inequalities: for p0 ∈ Lr,
we can only get

(Ep0
(Kj ∗ f)2)1/2 ≤ ‖p0‖1/2r ‖Kj ∗ f‖2s ≤ C2j(1/2−1/2r),

but for 1 < r < 2 and p0 bounded, hence in Ls/(s−2),

Ep0
(Kj∗f)2 ≤ ‖p0‖s/(s−2)‖Kj∗f‖s ≤ ‖p0‖s/(s−2)‖Kj‖21‖f‖2s = const.

For r =∞, (Ep0
Kj(x−X)2)1/2 ≤ C(K)‖p0‖1/2∞ 2j/2.
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Regarding the use of small balls probabilities in the verification of

condition 2) of the theorem, first we observe that if ‖w0‖∞ ≤ c/2
and ε ≤ c/2,

Pr
{
‖B̄α − w0‖∞| < ε

∣∣‖B̄α‖∞ < c
}

=
e−φw0

(ε)

Pr{‖B̄α‖∞ ≤ c}
;

next, that setting I(w) = ew/
∫ 1

0
ew(t)dt, that with elementary

computations, if w0 = log p0 (so, p0 = I(w0)) and p = I(w) with

‖w‖∞ ≤ c, then

−P0 log
p

p0
≤ R(c)‖w − w0‖2∞, P0

(
log

p

p0

)2

≤ R(c)‖w − w0‖2∞

hence, for any ε s.t. R−1/2ε < c/2, if w = B̄α(ω),
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Π

{
p ∈ P : −P0 log

p

p0
≤ ε2, P0

(
log

p

p0

)2

≤ ε2

}

≥ Pr
{
‖B̄α − w0‖∞| < R−1/2ε

∣∣‖B̄α‖∞ < c
}

= C(c)e−φw0 (ε).

With εn = 1/nα/(2α+1), so that ε
−1/α
n = nε2

n, we get the last

quantity bounded by e−Cnε
2
n , which verifies Condition 2) in the

general theorem, and modulo many details, yields Proposition 2.

Research to appear in Ann. Statist., [11].
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