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Assuming the first term is negligible and re-numbering (Q,, M,)
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» More precisely, let £ > 0 be such that

EIM[* = 1.

EIM|"log™ IM| < 00, E|Q|" < o0,
then there exists a C such that
P(IR| > x) ~ Cx™", as x — 0.
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n =EIn|M| <0 and |M| > 1

» This basic result has been re—proved and extended by a
number of researchers, among others Goldie (1991), Grey
(1994), Grincievitjus (1975) ...
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where k,(u) is the number of positive integers < n with the
largest prime factor no more than n'/Y, u > 1.

» other appearances of Dickman function are discussed in
Hwang and Tsai (2001) and include the analysis of
Quickselect algorithm, the degree of the largest irreducible
factor in a random polynomial over finite field, and allele
frequencies in some biological models.
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» From a different perspective Jurek (1999) showed that every
c-decomposable random variable X can be written as a
perpetuity:

XZLeTXt X,
where 7 > 0 and (7, X;) is independent of X on the rhs.

X is c-decomposable if Vc € [0,1] 3X. : X £ cX + X, with
X and X independent on the rhs.
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c1, ¢ such that if |Q| < q and |M| < 1 then for sufficiently
large x:

c
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» In particular, if Q=g >0and 0 < M <1 then
2In2

1
exp( xInpg/ax)) < P(R > x) < exp(ﬁxln P2q/x)-
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» techniques for the cases 0 < M <1 and P(M > 1) > 0 are
completely different.

» techniques previously used for an upper bound in the case
0 < M <1 were generally based on an iteration of the

equation R, 4 M,R,_1 + @, and they don't seem to work.

» However, a proof of a lower bound of Goldie—Griibel may be
used to yield an upper bound.

» Rough idea for the lower bound: for a small §, wait for the
first time when M, <1 — 4. Up to that time bound the
partial sums forming R, below by a geometric sum.

» For the upper bound: keep recording consecutive times when
My <1 -6, bound above the partial sums by weighted sums
of geometric r.v.'s and use exponential bounds for such sums
(Goh, H. (2008)).



Extremal behavior: heavy tails

We want to analyze the extremal behavior of (R,) i.e. look at the
normalizing constant a, and b, so that

an( max R, — bp)
0<k<n

converges in distribution to a non-degenerate random variable.
The theory for i.i.d. sequences (R,) is completely developed and
goes back to Fisher-Tippett (1928) and Gnedenko (1943) and is
presented e.g. in a classic Leadbetter, Lindren and Rootzén
(1988). The situation is also well understood when (R;) is a
stationary sequence. In our case, if (R,) converges in distribution

d . .
to R we can take Ry = R and turn (R,) into a stationary sequence.
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distribution with normalizing constants a, = 1/n*/* and
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_ 00 J 1y dy ;
> 0 =r [ P(supjsy [Ty Mi < ;)yﬁil, is the extremal index

of the sequence (R,).

> the existence of such 6 € [0,1] (NOT assured in general even
for stationary sequences) says that R} behaves like max of
~ @ni.i.d. variables with the same marginal distribution.
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» the assumptions on M are needed to exclude trivial cases and
the case when R (and hence each R,) is geometric.

» We may take b, so that b,Inp./p, = —©(In n) and

1 c x
2020 (g = )=o) & ~80npes),

1* 1 1 1 -
where '~' means 'often ~' and ¢ is a constant.
> the extremal index (built-in in a,, b,) is 0 =1— P(M =1).



Open problems: tail behavior

» Get the asymptotics for P(R > x) when R 2 MR + q,
0<M<1,g>0.
Knowing the tail behavior would give the asymptotics of the
normalizing constants a,, b, in the limit theorem for the
extremes.

> Get rid of the assumption Q = g and/or |Q| < q.
Without that some of the basic cases when we know the tail
behavior are not covered, e.g. the a—stable distributions:

RL2VRYRYLEMR+Q M=2" Q2o VoR

or

4

d d
M ,8(061,0&2), Q = r(a277) = R = r(Oé]_ + 062,7)~



Thank you :)
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