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Exact asymptotics for linear processes

Plan of talk

-Central limit theorem for linear processes.
-Functional central limit theorem for linear processes.
-Selfnormalized CLT.

-Exact asymptotic for linear processes
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CLT for linear processes with finite second moments

[ee]

X = Z 3k+j€'v Sp = ZX',
j=1

j==oo

(Ibragimov and Linnik, 1971) Let (G;) be i.i.d. centered with finite second
moment, Y5 ., a2 < oo and 02 = var(S,) — oo. Then

Sn/on 2 N(0,1).

(o]
2 2
o, = Z bnj , bn,j =ajt1+ ...+ ajtn-

j=—00

It was conjectured that a similar result might hold without the assumption
of finite second moment.
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CLT for linear processes with infinite second moments

(%) H(x) = E(&1(|&| < x)) is a slowly varying function at co.
Xo is well defined if

Y (sl <
jGZ,aj#O

Theorem

(P-Sang, 2011) Let (¢, )kez be i.i.d, centered. Then the following
statements are equivalent:
(1) &, is in the domain of attraction of the normal law (i.e. satisfies (x))

(2) For any sequence of constants (a,)ncz as above and 2> _ b,27j — 0
the CLT holds. (i.e. S,/ D, — N(0,1))

2
;’ékH - <1y ,and D2~y b2,
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Functional central limit theorem question.

For 0 < t <1 define

where [x] is the integer part of x.

Problem

Let (¢;) be i.i.d. centered with finite second moment, Y17 _ a; < oo and
02 = nh(n) with h(x) a function slowly varying at co. Is it true that
W,(t) = W(t), where W(t) is the standard Brownian motion?

This will necessarily imply in particular that for every € > 0,

P( max |X;| > e0,) — 0as n— oo,
1<i<n
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Functional CLT. Counterexample.

There is a linear process (Xx) such that 02 = nh(n) and such that the
weak invariance principle does not hold:

1
P(|Go| > x) ~ 108 X’
1 1 1
=0, = d = — , T > 2,
20 o log 2 ane an log(n+1) logn orn=

(7% ~ n/(log n)2 and limsupP( max |§;| > eop) = 1.
n—oo 1<i<n

v

However, when IE(|&,|>*°) < o0 and ¢2 = nh(n) the functional CLT holds.
Woodroofe-Wu (2004) and also Merlevede-P(2006),
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Regular weights and infinite variance (long memory).

a,=n"*L(n), wherel/2 <a <1,
E(25/(I] < x)) = H(x)

Example

Fractionally integrated processes. For 0 < d < 1/2 define

. _ . . o I'(i+d)
Xe=(1-B)9, = ;a,gkq where a; = TG+ 1)

and B is the backward shift operator, Bey, = €x_1.

For any real x, lim,_,0o I'(n+ x)/n*T'(n) = 1 and so

lim a,/n?! =1/T(d).
n—od
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Regularly varying weights and infinite variance; normalizers.

Define b =inf {x > 1: H(x) > 0}

ny=inf{s:s>b+1, H(s)/s*<j '}, j=12--
B2

n

i= cuH,n® "L (n) with H, = H(y,)

where

G = {/Om[xla ~ max(x — 1,0 2dx} /(1 — a)? .
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Invariance principle for regular weights and infinite variance

(long memory).

an=n""L(n), where 1/2 <a <1, n>1, E(&I(|&| < x)) = H(x),
L(n) and H(x) are both slowly varying at oco.

(P-Sang 2011) Define W,,(t) = Sy,./ By. Then, W,(t) converges weakly
to the fractional Brownian motion Wy with Hurst index 3/2 — a,
(1/2 <a <1).

Fractional Brownian motion with Hurst index 3/2 — 2«, i.e. is a Gaussian
process with covariance structure 3 (t372* 4+ §372% — (¢ — 5)372%) for
0<s<t<1.
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Selfnormalized invariance principle

Theorem
(P-Sang 2011) Under the same conditions we have

nll-l,, ign;X,z = A? where A2 = ;a,?
and therefore S /G
Wi (t)
napy/Y0_q X? A
In particular
>n = N(0, %)
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Higher moments. Exact asymptotics.

We aim to find a function N,(x) such that, as n — oo,

P(S, > xc,)

_ . 2 2
NG = L o1). with of = Sy

where x = x, > 1 (Typically x, — o).

We call IP(S, > x,0,) the probability of moderate or large deviation
probabilities depending on the speed of x, — 0.
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Exact asymptotics versus logarithmic

Exact approximation is more accurate and holds under less restrictive
moment conditions than the logarithmic version

logP(S, > x0p)
log N, (x)

=1+o0(1).

For example, suppose IP(S, > x0,) = 10~* and N,(x) = 107°; then their
logarithmic ratio is 0.8, which does not appear to be very different from 1,
while the ratio for the exact version is as big as 10.
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Nagaev Result for i.i.d.

(Nagaev, 1979) Let (§;) be i.i.d. with

h(x)

P(Gy > x) = —~(1+0(1)) as x — oo for some t > 2,
X

and for some p > 2, ¢, has absolute moment of order p. Then

P(éé’; 2 x0,) = (1= ®(x))(1+0(1)) + nP(&y > x05)(1 4 0(1))

forn — o0 and x > 1.
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Nagaev Result for i.i.d.

Notice that in this case
Na(x) = (1= D(x)) + P (&g > x0,).

If 1 — ®(x) = o[nP({, > x0,)] then in we can also choose
Np(x) =1 —®(x).

If nP(&, > xo,) = o(1 — ®(x)) we have N,(x) = nP(&, > x0,).
The critical value of x is about x. = (2log n)!/2.
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Linear Processes. Moderate and large deviation

Let (¢;) be i.i.d. with (h(x) is a slowly varying function at infinite)

P(&, > x) = h)(:: (14 0(1)) as x — oo for some t > 2,

~—

and for some p > 2, ¢, has absolute moment of order p.

(P-Sang-Zhong-Wu, 2011) Let S, = Y_I'"; X; where X is a linear process.
Then, as n — oo,

P(S) 2 x02) = (140(1)) Y P(bnio 2 x04) + (1 - D(x))(1+0(1))

|=—00

holds for all x > 0 when o, — o0, Y17 _ ai < 00 and by > 0,

bn,j = dj+1 QeceTF djtn-
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Zones of moderate and large deviations

Define the Lyapunov’'s proportion

Dot = B,,'/? By where By = Y bY..

For x > a(In D,;1)1/? with a > 21/2 we have

==
S

P(S, > xo,) = (14 0(1)) . P(cpify > x0p) as n — oo .

I
—

On the other hand, if 0 < x < b(In D,;})/? with b < 21/2 we have

P (S, > x0,) = (1—®(x))(1+0(1)) as n — 0.
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Application

Value at risk (VaR) and expected shortfall (ES) are equivalent to quantiles
and tail conditional expectations.
Under the assumption limy_,c h(x) — hg > 0

P (Sp > x0) = (1+0(1))i Dt + (1 = @(x))(1+0(1)).

Given a € (0, 1), let gy,, be defined by P(S, > gu,n) = a.
Qa,n Can be approximated by x,0, where x = X, is the solution to the
equation

)I:OD,,tJr(l—CD( ) = a.
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Extension to dependent structures

-CLT for stationary and ergodic differences innovations with finite second
moment. (P-Utev, 2006)

-invariance principles for generalized martingales Wu Woodroofe (2004),
Dedecker-Merlevede-P (2011)

-moderate deviations for generalized martingales. Merlevede-P (2010)
- CLT stationary martingales differences with infinite second moment plus
a mild mixing assumption. (P-Sang 2011)

Results for mixing sequences under various mixing assumptions.
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Some open problems

-Is the CLT for linear processes equivalent with its selfnormalized version?
n
Sn/Vn — N(0,1) where V7 = )~ X?
i=1

-CLT for linear processes with infinite variance and ergodic martingale
innovations

-Functional CLT for linear processes with i.i.d. innovations finite second
moment and var(S,) = nh(n)

(necessary and sufficient conditions on the constants)

-The same question for generalized martingales

-Exact asymptotics for classes of Markov chains

-More classes of functions of linear processes
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