Exercises on linear forms in the logarithms of algebraic numbers

Yann Bugeaud

Exercise 1.

Prove that the equation
y2 +1= M

has no solutions in rational integers (V. A. Lebesgue, 1850).

Exercise 2.

Prove that the Diophantine equation z? 4+ 7 = 2" has exactly five integer solutions,
given by
(x,n) € {(1,3),(3,4),(5,5),(11,7), (181,15)}.

Hint. Prove that n = 4 gives the only solution with n even. Assume that n is odd
and write n = 2m + 1, y = 2™. Consider the equation

z? — 2y2 = —T.
Prove that y is an element of the binary recurrence sequence (ys)scz defined by
Yo=2, y1 =3 and Ys42 =2ysy1+Ys, SEZL.
We aim to show that the only elements of (ys)scz which are powers of 2 are y_g = 128
and yp = 2. Show that we can restrict ourselves to study the sequence (us)secz, given by
us = Yss—g/8, that is, by the binary recurrence
up =16, w3 =1 and ugye = 1154usy1 — us.

Prove that if y = 2™ for some m > &, then y = 8u, for some s = 16 mod 32.

Look at the sequence (us)scz modulo the prime number 7681. Use the quadratic
reciprocity law to show that, for any s = 16 mod 32, the number ug cannot be a power of

2. Conclude.

Exercise 3.

Let aq,...,a, be algebraic numbers. Let by,...,b, be non-zero integers. Deduce
from Theorem A a lower bound for the quantity

A= abr . abe — 1,
when A # 0. (Consider separately the case where all the «; are real.)
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Exercise 4.

Let d be a non-zero integer and consider the Diophantine equation
2?4+ d=yP, inz >0 y>0andp>3 prime.

Use Theorem A to get an upper bound for p when d = -2, d = 2, d = 7, and d = 25,
respectively.

Exercise 5.

Let f(X) be an irreducible integer polynomial of degree at least 3. Prove that the
equation

flz) =y

has only finitely many integer solutions x, y.

Exercise 6.

Consider the Diophantine equation

where a is a given positive integer, x,y are coprime integers, and p > 3 is a prime.
Show that there exists an absolute constant C' such that p < C'log(2a).

Exercise 7.

Let a, b, k be non-zero integers. Prove that the equation
ax™ —by" =k,

in the four unknowns x > 2,y > 2, m > 3,n > 2, has only finitely many solutions if one of
the unknowns is fixed.

Exercise 8.
Consider the Diophantine equation in four unknowns

" —1

x—1

=y

Prove that it has only finitely many solutions if z is fixed or if n has a fixed prime divisor
or if y has a fixed prime divisor.

Assume that z is a perfect square, x = 22. Establish then an absolute (i.e., indepen-
dent of ) upper bound for g.



Exercise 9.

Let & be an irrational, real, algebraic number. Let (p,/¢n)n>1 be the sequence of
convergents to . Use Baker’s theory to get an effective lower bound for P[p,q,], where
P[] denotes the greatest prime factor.

Open problem: To get an effective lower bound for P[p,] (resp. for P[g,]).

Exercise 10.

Give an explicit lower bound for the greatest prime factor of k(k—1), when the integer
k goes to infinity.

Exercise 11.

Using only elementary method, show that there exists an absolute constant C' such
that
v5(3™ —1) < Clogm, for any m > 2.

More generally, let K be a number field of degree d, let p be a prime number and P
be a prime ideal in Ok dividing p. Then, for any algebraic integer o in K and any positive
integer m > 2 such that o™ # 1, there exists a positive constant C, depending only on d,
p and «, such that

vp(a™ —1) < Clogm.

Exercise 12.

Let py,...,pe¢ be distinct prime numbers. Let S be the set of all positive integers of
the form p{* ...py* with a; > 0. Let 1 =n; < ny < ... be the sequence of integers from S
ranged in increasing order. As above, let P[-] denote the greatest prime divisor. Give an
effective lower bound for P[n;y1 — n;] as a function on n;.

Exercise 13.

Let a, b, c and d be non-zero integers. Let p and ¢ be coprime integers. Prove that
the Diophantine equation

ap” + bqY + cp® + dq¢* =0, in non-negative integers x, vy, z, w,

has only finitely many solutions.

Exercise 14.

Let @ > 1 and d > 1 be an integer. Suppose that (z,y,m,n) with y > x is a solution

of the Diophantine equation
g™ -1 oy —1

x—1 y—1"

Assume that
m—1

ged(m —1,n— 1) =d, < a.

n—1
Apply Baker’s theory to bound d by a linear funtion of «.
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Exercise 15.

Consider the Diophantine equation z? — 2™ = 3" in positive integers y > 1, n > 2,

x,m, with x and y coprime. Show that n is bounded by an absolute numerical constant.
What happens if 2 is replaced by an odd prime number p?

Exercise 16.

Let P > 2 be an integer and S be the set of all integers which are composed of primes
less than or equal to P. Show that there are only finitely many quintuples (x,y, z, m,n)

satisfying

™ — yn — Z<m,n>,

with z,y,m,n all > 2 and z in S, where < m,n > denotes the least common multiple of
m and n.
Exercise 17.

Consider the Diophantine equation
20 420 41 =y,

in integers a > b > 0, ¢ > 2, y > 2. Prove that ¢ is bounded.

Consider the Diophantine equation
20 4 20 4 2¢ 4 1 =44,

in integers a > b > ¢ > 0, ¢ > 2, y > 2. Prove that ¢ is bounded.

What happens if one replaces 2 in the above equations by an odd prime number p?

Exercise 18.

Let a > 1, b, ¢ be non-zero integers. Prove that the equation
ax™ —by" = ¢,

in the unknowns x > 2,y > 2,n > 3 has only finitely many solutions.
Show that if ¢ and a — b are very small compared to a, then one gets an upper bound
for n independent of a, b, c.

Exercise 19.

Deduce Theorem F from Theorem C.
Hint. Establish first that, for integers b,..., b, and N

> @ > 1, there exist a
positive integer r and integers p1, ..., p, such that |[N/Q| <r < N and

bi = rpi| <rQTV bl /(2r 1) (i=1,....m).

P1

: . by — _
Then, consider the algebraic numbers o = o' ---aP» and v = a* """ .- abr~"Prq, .



