Consider the genus 2 curve
\[X : y^2 = -x^6 - x^2 + x + 2 \]

We have the following bits of information:
(i) We have the points \(P_1 = (1, 1) \in X(\mathbb{Q}) \) and \(P_2 = (1, -1) \in X(\mathbb{Q}) \)
(ii) \(\text{Pic}^0(X/\mathbb{Q}) = \langle G = [P_2 - P_1] \rangle \cong \mathbb{Z} \).
(iii)
\[\Lambda_3 = \langle 5G \rangle = \langle [Q_1 + Q_2 - 2P_1] \rangle, \]
where
\[Q_1 = (10\sqrt{3} - 44 + O(3^4), \sqrt{3} + 7 + O(3^4)) \]
\[Q_2 = (-10\sqrt{3} - 44 + O(3^4), -\sqrt{3} + 7 + O(3^4)) \]
(iv) An annihilating 3-adic differential is \(\omega = \frac{1}{y}dx + O(3) \).

Together you can use this to determine all rational points on \(X \).
(a) Determine \(X(\mathbb{F}_3) \).
(b) Determine the points where \(\omega \) vanishes modulo 3.
(c) Determine \(X(\mathbb{Q}) \).
(d) Verify (iii) assuming (ii)
(e) Verify (iv)

A classic curve for explicit Chabauty equations is a curve considered by Poonen, Schaefer and Stoll, arising from considering periodic points under quadratic polynomial maps.
\[X : y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1 \]

(a) Verify that \(X \) has good reduction at \(p = 3 \).
(b) Assume that \([(-3, 1) - (0, 1)] \) generates \(\Lambda_3 \). Determine an annihilating 3-adic differential. \([x] \) is a good uniformizer for \((0, 1) \).
(c) Determine \(X(\mathbb{F}_3) \).
(d) In order to analyze the points with \(x = \infty \), change coordinates to \((z, w) = (\frac{1}{z}, \frac{y}{x}) \). Verify that modulo 3, the annihilating differential does not have a zero with \(z = 0 \).
(e) By expanding \(\omega \) to a little higher precision around \((x, y) = (0, 1) \), you can read off that there are at most two rational points that reduce to \((0, 1) \) modulo 3.
(f) You can assemble this to a full determination of all rational points on \(X \).

Prove the baby version of Strassman’s Lemma: Let \(f(z) \sum_{i=0}^{\infty} a_i z^i \in \mathbb{Z}_p[[z]] \) be a power series that converges on \(\mathbb{Z}_p \) (i.e., \(\lim_{i \to \infty} v_p(a_i) = \infty \)). Suppose that \(v_p(a_i) > v_p(a_1) \) for all \(i = 2, \ldots \). Then \(f(z) \) has only one root in \(\mathbb{Z}_p \).

Worthwhile questions from previous exercise batches: \(\text{N7, N3} \), except you probably want to do \(x^3 - 2y^3 = 5 \) instead, in view of \(27 - 16 = 11 \).