

Subword Reversing and Ordered Groups

Patrick Dehornoy Laboratoire de Mathématiques Nicolas Oresme Université de Caen

• Use subword reversing to constructing examples of ordered groups.

 $\bullet \ \, \text{Subword Reversing is a combinatorial method} \ (\approx \text{rewrite rule on words}) \\ \text{for investigating (certain) concrete positive group presentations}.$

all relations of the form w = w' with no s^{-1} in w, w'

 Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.

all relations of the form $s_i r_i = s_{i+1}$, with r_i a positive word

- (Modest) output: a very simple (self-contained) proof of
- Proposition (Navas, Ito).— For $n,m\geqslant 1$, the group $\langle x,y\mid x^m=y^n\rangle$ is left-orderable with isolated points in the LO space.

(and a new proof of the orderability of the braid group B_3)

– Plan –

- I. What is subword reversing?
- II. Subword reversing in a triangular context
- Appendix. The μ function on positive braids

– Part I –

 $What is subword\ reversing?$

• A strategy for constructing Kampen diagrams

all relations of the form w = w' with w, w' nonempty words in S (no s^{-1})

- Let (S,R) be a positive group presentation. Then two words u,v in S represent the same element in the monoid $(S \mid R)^+$ iff there exists an R-derivation from u to $v: u \equiv_{R}^{+} v$.
- Proposition (van Kampen?).— The relation $u \equiv_{\scriptscriptstyle R}^+ v$ holds iff there exists a van Kampen diagram for (u,v).

a tesselated disk with (oriented) edges labeled by elements of S and faces labeled by relations of R, with boundary paths labeled u and v.

• Example:

$$\begin{array}{l} B_4^+ = \langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \\ \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_1 \sigma_3 = \sigma_3 \sigma_2 \rangle^+ \end{array}$$

A van Kampen diagram for $(\sigma_1\sigma_2\sigma_3\sigma_2\sigma_1\sigma_2, \sigma_2\sigma_3\sigma_2\sigma_1\sigma_2\sigma_3)$ is

- How to build a van Kampen diagram for (u, v)—when it exists?
- Definition.— Subword reversing = the "left strategy", i.e.,
 - look at the (a) leftmost pending pattern ,
 - , t
 - choose a relation s...=t... of R to close this pattern into

• Example: same as before

• Example: using subword reversing

• Another way of drawing the same diagram: "reversing diagram"

→ only vertical and horizontal arrows, plus equality signs connecting vertices that are to be identified in order to (possibly) get an actual van Kampen diagram.

• Can be applied with arbitrary (= not necessarily equivalent) initial words and then (possibly) leads to a diagram of the form

• In this way, a uniform pattern:

• Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$). The basic step reads $s^{-1}t \curvearrowright_{\mathbb{P}} vu^{-1} \ ("s^{-1}t \text{ reverses to } vu^{-1}").$

Then subword reversing means replacing -+ with +-, whence the terminology.

• Degenerated cases:

- Reversing may be stuck: $s = \frac{1}{2}$ if no relation s = t;
- Result may not be unique: $s \bigvee_{i=1}^{\infty} u_1$, $s \bigvee_{i=1}^{\infty} v_2$ u_2 , if several relations s... = t...;
- Reversing may never terminate (unless relations involve words of length \leqslant 2): assume $a^2b=ba$:

• Reversing may terminate with nonempty output words: (certainly happens if input words u, v are not equivalent)

• Lemma.—
$$u \bigvee_{\bigcap R} \bigvee_{U'} u'$$
 implies $uv' \equiv_R^+ vu'$. In particular, $u \bigvee_{\bigcap R} u' = u$ implies $u \equiv_R^+ v$.

- When is reversing useful ? ...When it succeeds in building a van Kampen diagram whenever one exists.
- Definition.— A presentation (S, R) is called complete for \curvearrowright if
- unless reversing has been proved to always terminate.
- Proposition.— Assume (S,R) is complete for \curvearrowright and contains no relation s...=s...Then the monoid $\langle S \mid R \rangle^+$ is left-cancellative (fg = fh implies g = h).
- Proof. Assume $su \equiv_{p}^{+} sv$.

- How to recognize completeness?
- Proposition.— If (S,R) is homogeneous, then (S,R) is complete for \frown iff, for all r,s,t in S, the cube condition for r,s,t is satisfied.
 - homogeneous: there exists an R-invariant function $\lambda: S^* \to \mathbb{N}$ s.t. $\lambda(sw) > \lambda(w)$. typically: $\lambda(w) = \text{length of } w \text{ if preserved by the relations of } R$ for instance: braid relations $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$
 - cube condition for three words u, v, w: some effective transitivity condition involving the reversings of $u^{-1}v$, $v^{-1}w$, and $u^{-1}w$.
- \bullet Summary.— In good cases (= complete presentations), subword reversing is useful
 - for proving cancellativity,
 - for solving word problems (both for monoids and for groups),
 - for recognizing Garside structures and computing with them, etc.
- What for a non-complete presentation? Make it complete : completion procedure...

- Part II -

Subword reversing in a triangular context

• Construct monoids in which the left-divibility relation is a linear ordering, thus leading to ordered groups of fractions.

• Definition.— For M a monoid and f, g in M, say that f is a left-divisor of g, or g is a right-multiple of f, denoted $f \leq g$, if we have fg' = g for some g' (of M).

- Recall: (S, R) triangular if $S = \{s_1, s_2, ...\}$ and $R = \{s_i r_i = s_{i+1} \mid i = 1, 2, ...\}$, with r_i word in S (no letter s^{-1}). Typically: (a, b | aba = b, b²cac² = c), ...
- Bad news: a triangular presentation is (almost) never homogeneous: e.g., aba = b makes $\lambda(b) < \lambda(ab) \leqslant \lambda(aba) = \lambda(b)$ impossible
- Good news:
- Main lemma. Every triangular presentation is complete for △.
- Proof. Show using induction on k that $u \equiv_R^{+(k)} v$ (\exists a length k derivation from u to v) implies $u \bigvee_{R} \bigvee_{R} v$.

Claim: Let \widetilde{u} be obtained from u by replacing the first letter, say s_i , with $s_1r_1...r_{i-1}$. Then $u \equiv_R^{+(k)} v$ implies $\widetilde{u} \equiv_R^{+(k)} \widetilde{v}$, and, if the first letter changes at least once in $u \equiv_R^{+(k)} v$, one even has $\widetilde{u} \equiv_R^{+(c)} \widetilde{v}$.

makes the induction possible

• Recall: Interested in the case when the left-divisibility relation \preceq — which in general is a partial (pre)-order — is a linear order: any two elements are comparable.

• Lemma.— Assume (S,R) is a triangular presentation. Then any two elements f,g of $(S\mid R)^+$ that admit a common right-multiple are comparable for \preccurlyeq .

• Proof. Choose words u, v in S^* that represent f and g. The assumption is that $uv' \equiv_R^+ vu'$ holds for some u', v'.

Step 1: Reversing u must terminate in finitely many steps.

Indeed: by completeness, we must have $\begin{array}{c|c} u & \nearrow_R & \nearrow_R \\ \hline \\ v' & \nearrow_R & \nearrow_R \end{array}$

Step 2: A terminating reversing finishes with at least one empty word. Indeed, use induction on the number n of reversing steps. For n = 1, follows from triangularity of (S, R). For n > 1, three possible ways of concatenating two reversing diagrams:

- The aim is to prove that the left-divisibility relation ≼ is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?
- Lemma. Assume that M is a monoid generated by S and δ is a central element of M that is a right-multiple of every element of S. Then every element of M left-divides δ^r for r large enough.
- Proof. Show using induction on r that $h \in S^r$ implies $h \preccurlyeq \delta^r$. By assumption, true for r=1. Assume $h \in S^r$ with r>1. Write h=fg, $f \in S^p$, $g \in S^q$ and p+q=r. By IH, there exists f',g' s.t. $ff'=\delta^p$, $gg'=\delta^q$. Then $h \cdot g'f'=fgg'f'=f\delta^qf'=ff'\delta^q=\delta^p\delta^q=\delta^r.$

• ...(under the same hypotheses) any two elements of *M* admit a common right-multiple.

- Proposition.— For $p,q\geqslant 1$, let $G_{p,q}=\langle a,b\mid (ab^p)^qa=b\rangle$. Then $G_{p,q}$ is left-orderable, and $LO(G_{p,q})$ has isolated points.
- Proof. Let $G_{p,q}^+ = \langle a,b \mid (ab^p)^q a = b \rangle^+$. The presentation $(a,b \mid (ab^p)^q a = b)$ is triangular. Hence the monoid $G_{p,q}^+$ is left-cancellative. Let $\delta = b^{p+1}$. Then $a\delta = ab^p b = ab^p (ab^p)^q a = (ab^p)^q ab^p a = bb^p a = \delta a.$

So δ lies in the center of $G_{p,q}^+$. Hence any two elements of $G_{p,q}^+$ have a common right-multiple, and the left-divisibility relation \preccurlyeq is a linear order on $G_{p,q}^+$. By symmetry, $G_{p,q}^+$ is right-cancellative. By Ores's theorem, $G_{p,q}$ is a group of fractions for $G_{p,q}^+$, and $G_{p,q}^+$ is the positive cone of a left-invariant ordering on $G_{p,q}$. \square

- Remark.— Put $x = ab^p$ and y = b. Then $(ab^p)^q a = b$ (iff) $x^{q+1} = y^{p+1}$.
- Particular cases:
 - p = q = 1: aba = b (or $x^2 = y^2$), the Klein bottle group K;
 - p = 2, q = 1: $ab^2a = b$ (or $x^2 = y^3$), the 3-strand braid group B_3 ;
 - p = 1, q = 2: ababa = b (or $x^3 = y^2$), the 3-strand braid group B_3 again.

- Appendix -

The $\boldsymbol{\mu}$ function on positive braids

...The orderability of braid groups is 20 years old this week.

$$\bullet \text{ Artin's braid group } \textit{\textbf{B}}_{\textit{n}} \colon \left\langle \sigma_{\!_{1}},...,\sigma_{\!_{n-1}} \; \middle| \; \begin{array}{cc} \sigma_{\!_{i}}\sigma_{\!_{j}} = \sigma_{\!_{j}}\sigma_{\!_{i}} & \text{for } |i-j| \geqslant 2 \\ \sigma_{\!_{i}}\sigma_{\!_{j}}\sigma_{\!_{i}} = \sigma_{\!_{j}}\sigma_{\!_{i}}\sigma_{\!_{j}} & \text{for } |i-j| = 1 \end{array} \right\rangle.$$

 \simeq { braid diagrams }/ isotopy:

$$\sigma_i \iff \prod_{i=1}^{n} \sum_{j=1}^{n} \cdots \sum_{i=1}^{n} \cdots \prod_{j=1}^{n} \cdots$$

 \simeq mapping class group of D_n (disk with *n* punctures):

• Associate with every braid β in B_n^+ a finite sequence $(...,\beta_3,\beta_2,\beta_1)$ of braids in B_{n-1}^+ : the n-splitting of β .

• Associate with every braid β in B_n^+ a finite sequence $(...,\beta_3,\beta_2,\beta_1)$ of braids in B_{n-1}^+ : the n-splitting of β .

• n-flip (= horizontal symmetry)

• n• n•

• Iterating the splitting operation gives for every β in B_n^+ a finite tree $T_n(\beta)$.

```
• Theorem (D., 2007, building on Burckel, 1997): For \beta, \beta' in B_n^+, \beta <_D \beta' is equivalent to T_n(\beta) <^{\mathsf{ShortLex}} T_n(\beta').
```

• Corollary.— The D-ordering on B_n^+ is a well-ordering of type $\omega^{\omega^{n-2}}$

- Definition (Birman-Ko-Lee, 1997).— The dual braid monoid B_n^{+*} is the submonoid of B_n generated by $(a_{i,j})_{1\leqslant i < j\leqslant n}$ with $a_{i,j} = \sigma_{i-1}^{-1}...\sigma_{i+1}^{-1}\sigma_i\sigma_{i+1}...\sigma_{i-1}$.
- Dual Garside structure for B_n , with Cat_n non-crossing partitions vs. n! permutations.
- Then similar splitting of braids in B_n^{+*} into sequences of braids in B_{n-1}^{+*} .

- Iterating the dual splitting operation gives for every β in B_n^{+*} a finite tree $T_n^*(\beta)$.
- Theorem (Fromentin, 2008): For β, β' in B_n^{+*} , $\beta <_D \beta'$ is equivalent to $T_n^*(\beta) <^{\mathsf{ShortLex}} T_n^*(\beta')$.
- Corollary.— The D-ordering on B_n^{+*} is a well-ordering of type $\omega^{\omega^{n-2}}$.

- Makes sense because $<_D$ is a well-ordering on B^+_{∞} and B^{+*}_{∞} .
- Example: $\mu(\sigma_1) = \mu(\sigma_2) = ... = \sigma_1, \ \mu(\Delta_3) = \Delta_3, ...$
- The problem : Compute μ and/or μ^* effectively (at least for 3 or 4 strands).
- Computing μ or μ^* would give a solution (of a totally new type) for the Conjugacy Problem of B_n .
- ullet Remark (good news): The (alternating and) rotating normal forms now give realistic ways of investigating the order $<_D$.
- Conjecture (D., Fromentin, Gebhardt, 2009).— For β in B_3^+ , $\mu(\beta\Delta_3^2) = \sigma_1\sigma_2^2\sigma_1\cdot\mu(\beta)\cdot\sigma_2^2.$

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups,
 J. Algebra, 328 (2011) 31-42.
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.
- P. Dehornoy, The subword reversing method,
 Intern. J. Alg. and Comput. 21 (2011) 71–118
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering Braids,
 Mathematical Surveys and Monographs vol. 148, Amer. Math. Soc. (2008).
- J. Fromentin, Every braid admits a short sigma-definite expression, J. Europ. Math. Soc. 13 (2011) 1591–1631.

www.math.unicaen.fr/~dehornoy