

Patrick Dehornoy
Laboratoire de Mathématiques Nicolas Oresme Université de Caen

- Use subword reversing to constructing examples of ordered groups.
- Subword Reversing is a combinatorial method ( $\approx$ rewrite rule on words) for investigating (certain) concrete positive group presentations.
all relations of the form $w=w^{\prime}$ with no $s^{-1}$ in $w, w^{\prime}$
- Here, case of triangular presentations: construct monoids in which the left-divisibility relation is a linear ordering.
all relations of the form $s_{i} r_{i}=s_{i+1}$, with $r_{i}$ a positive word
- (Modest) output: a very simple (self-contained) proof of
- Proposition (Navas, Ito).- For $n, m \geqslant 1$, the group $\left\langle x, y \mid x^{m}=y^{n}\right\rangle$ is left-orderable with isolated points in the LO space.
(and a new proof of the orderability of the braid group $B_{3}$ )


## - Plan -

I. What is subword reversing?
II. Subword reversing in a triangular context

Appendix. The $\mu$ function on positive braids

－A strategy for constructing Kampen diagrams
all relations of the form $w=w^{\prime}$ with $w, w^{\prime}$ nonempty words in $S\left(\right.$ no $\left.s^{-1}\right)$

- Let $(S, R)$ be a positive group presentation.

Then two words $u, v$ in $S$ represent the same element in the monoid $\langle S \mid R\rangle^{+}$ iff there exists an $R$-derivation from $u$ to $v: u \equiv_{R}^{+} v$.

- Proposition (van Kampen?).- The relation $u \overline{=}_{R}^{+} v$ holds iff there exists a van Kampen diagram for $(u, v)$.
a tesselated disk with (oriented) edges labeled by elements of $S$ and faces labeled by relations of $R$, with boundary paths labeled $u$ and $v$.
- Example:
$B_{4}^{+}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right| \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$
$\left.\sigma_{2} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} \sigma_{3}, \sigma_{1} \sigma_{3}=\sigma_{3} \sigma_{2}\right\rangle^{+}$

A van Kampen diagram for $\left(\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3}\right)$ is


- How to build a van Kampen diagram for $(u, v)$ —when it exists?
- Definition.- Subword reversing $=$ the "left strategy", i.e.,
- look at the (a) leftmost pending pattern

- choose a relation $s \ldots=t \ldots$ of $R$ to close this pattern into

- Example: same as before

- Example: using subword reversing

- Another way of drawing the same diagram: "reversing diagram"

$\rightsquigarrow$ only vertical and horizontal arrows,
plus equality signs connecting vertices that are to be identified in order to (possibly) get an actual van Kampen diagram.
- Can be applied with arbitrary (= not necessarily equivalent) initial words and then (possibly) leads to a diagram of the form

- In this way, a uniform pattern:

- Encoding by signed words: read labels from SW to NE and put a negative sign when one crosses in the wrong direction (words in $S \cup S^{-1}$ ). The basic step reads

$$
s^{-1} t \curvearrowright_{R} v u^{-1}\left(" s^{-1} t \text { reverses to } v u^{-1 "}\right) .
$$

Then subword reversing means replacing -+ with +- , whence the terminology.

- Degenerated cases:

- Reversing may be stuck: $s \downarrow$ ? if no relation $s \ldots=t \ldots$;
- Result may not be unique: $\quad s \downarrow \xrightarrow[v_{1}]{\stackrel{t}{\curvearrowright_{R}}} \downarrow u_{1}, \quad \stackrel{s}{\downarrow} \xrightarrow[V_{2}]{\stackrel{t}{\curvearrowright_{R}}} \downarrow u_{2}$, if several relations $s \ldots=t \ldots$;
- Reversing may never terminate (unless relations involve words of length $\leqslant 2$ ): assume $\mathrm{a}^{2} \mathrm{~b}=\mathrm{ba}$ :

- Reversing may terminate with nonempty output words: (certainly happens if input words $u, v$ are not equivalent)


- When is reversing useful ?
...When it succeeds in building a van Kampen diagram whenever one exists.
- Definition.- A presentation $(S, R)$ is called complete for $\curvearrowright$ if

$$
u \equiv_{R}^{+} v \text { implies }
$$



- Remark.- Completeness for $\curvearrowright$ does not imply the solvability of the word problem unless reversing has been proved to always terminate.
- Proposition.- Assume $(S, R)$ is complete for $\curvearrowright$ and contains no relation $s \ldots=s \ldots$. Then the monoid $\langle S \mid R\rangle^{+}$is left-cancellative ( $f g=f h$ implies $g=h$ ).
- Proof. Assume $s u \equiv_{R}^{+} s v$.

- How to recognize completeness?
- Proposition.- If $(S, R)$ is homogeneous, then $(S, R)$ is complete for $\curvearrowright$ iff, for all $r, s, t$ in $S$, the cube condition for $r, s, t$ is satisfied.
- homogeneous: there exists an $R$-invariant function $\lambda: S^{*} \rightarrow \mathbb{N}$ s.t. $\lambda(s w)>\lambda(w)$. typically : $\lambda(w)=$ length of $w$ if preserved by the relations of $R$ for instance : braid relations $\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j}$
- cube condition for three words $u, v, w$ : some effective transitivity condition involving the reversings of $u^{-1} v, v^{-1} w$, and $u^{-1} w$.
- Summary.- In good cases (= complete presentations), subword reversing is useful - for proving cancellativity,
- for solving word problems (both for monoids and for groups),
- for recognizing Garside structures and computing with them, etc.
- What for a non-complete presentation? Make it complete : completion procedure...


## - Part II -

Subword reversing in a triangular context

- Construct monoids in which the left-divibility relation is a linear ordering, thus leading to ordered groups of fractions.
- Definition.- For $M$ a monoid and $f, g$ in $M$, say that $f$ is a left-divisor of $g$, or $g$ is a right-multiple of $f$, denoted $f \preccurlyeq g$, if we have $f g^{\prime}=g$ for some $g^{\prime}$ (of $M$ ).
- Recall: $(S, R)$ triangular if $S=\left\{s_{1}, s_{2}, \ldots\right\}$ and $R=\left\{s_{i} r_{i}=s_{i+1} \mid i=1,2, \ldots\right\}$, with $r_{i}$ word in $S$ (no letter $s^{-1}$ ).

```
Typically: (a, b | aba = b, b}\mp@subsup{\textrm{b}}{}{2}\mp@subsup{\textrm{cac}}{}{2}=\textrm{c}),
```

- Bad news: a triangular presentation is (almost) never homogeneous:

$$
\text { e.g., aba }=\mathrm{b} \text { makes } \lambda(\mathrm{b})<\lambda(\mathrm{ab}) \leqslant \lambda(\mathrm{aba})=\lambda(\mathrm{b}) \text { impossible }
$$

- Good news:
- Main lemma.- Every triangular presentation is complete for
- Proof. Show using induction on $k$ that

$$
u \equiv_{R}^{+(k)} v(\exists \text { a length } k \text { derivation from } u \text { to } v) \text { implies }
$$



Claim: Let $\widetilde{u}$ be obtained from $u$ by replacing the first letter, say $s_{i}$, with $s_{1} r_{1} \ldots r_{i-1}$.
Then $u \equiv_{R}^{+(k)} v$ implies $\widetilde{u} \equiv_{R}^{+(k)} \widetilde{v}$, and, if the first letter changes at least once in $u \equiv_{R}^{+(k)} v$, one even has $\widetilde{u} \equiv_{R}^{+(<k)} \widetilde{v}$.
makes the induction possible

- Recall: Interested in the case when the left-divisibility relation $\preccurlyeq$ — which in general is a partial (pre)-order - is a linear order: any two elements are comparable.
- Lemma.- Assume $(S, R)$ is a triangular presentation. Then any two elements $f, g$ of $\langle S \mid R\rangle^{+}$that admit a common right-multiple are comparable for $\preccurlyeq$.
- Proof. Choose words $u, v$ in $S^{*}$ that represent $f$ and $g$. The assumption is that $u v^{\prime} \equiv{ }_{R}^{+} v u^{\prime}$ holds for some $u^{\prime}, v^{\prime}$.
Step 1: Reversing $u \downarrow \xrightarrow{v}$ must terminate in finitely many steps.

Indeed: by completeness, we must have


Step 2: A terminating reversing finishes with at least one empty word. Indeed, use induction on the number $n$ of reversing steps. For $n=1$, follows from triangularity of $(S, R)$. For $n>1$, three possible ways of concatenating two reversing diagrams:


- The aim is to prove that the left-divisibility relation $\preccurlyeq$ is (possibly) a linear ordering. By the lemma, it is enough to prove that any two elements admit a common right-multiple. How to prove that property?
- Lemma.- Assume that $M$ is a monoid generated by $S$ and $\delta$ is a central element of $M$ that is a right-multiple of every element of $S$. Then every element of $M$ left-divides $\delta^{r}$ for $r$ large enough.
- Proof. Show using induction on $r$ that $h \in S^{r}$ implies $h \preccurlyeq \delta^{r}$. By assumption, true for $r=1$. Assume $h \in S^{r}$ with $r>1$. Write $h=f g, f \in S^{p}, g \in S^{q}$ and $p+q=r$. By IH, there exists $f^{\prime}, g^{\prime}$ s.t. $f f^{\prime}=\delta^{p}, g g^{\prime}=\delta^{q}$. Then

$$
h \cdot g^{\prime} f^{\prime}=f g g^{\prime} f^{\prime}=f \delta^{q} f^{\prime}=f f^{\prime} \delta^{q}=\delta^{p} \delta^{q}=\delta^{r} .
$$

[^0]
## - Proposition.- For $p, q \geqslant 1$, let $G_{p, q}=\left\langle\mathrm{a}, \mathrm{b} \mid\left(\mathrm{ab}^{p}\right)^{q} \mathrm{a}=\mathrm{b}\right\rangle$. Then $G_{p, q}$ is leftorderable, and $L O\left(G_{p, q}\right)$ has isolated points.

- Proof. Let $G_{p, q}^{+}=\left\langle\mathrm{a}, \mathrm{b} \mid\left(\mathrm{ab}^{p}\right)^{q} \mathrm{a}=\mathrm{b}\right\rangle^{+}$. The presentation $\left(\mathrm{a}, \mathrm{b} \mid\left(\mathrm{ab}^{p}\right)^{q} \mathrm{a}=\mathrm{b}\right)$ is triangular. Hence the monoid $G_{p, q}^{+}$is left-cancellative. Let $\delta=\mathrm{b}^{p+1}$. Then

$$
\mathrm{a} \delta=\mathrm{ab}^{p} \mathrm{~b}=\mathrm{ab}^{p}\left(\mathrm{ab}^{p}\right)^{q} \mathrm{a}=\left(\mathrm{ab}^{p}\right)^{q} \mathrm{ab}^{p} \mathrm{a}=\mathrm{bb}^{p} \mathrm{a}=\delta \mathrm{a} .
$$

So $\delta$ lies in the center of $G_{p, q}^{+}$. Hence any two elements of $G_{p, q}^{+}$have a common right-multiple, and the left-divisibility relation $\preccurlyeq$ is a linear order on $G_{p, q}^{+}$. By symmetry, $G_{p, q}^{+}$is right-cancellative. By Ores's theorem, $G_{p, q}$ is a group of fractions for $G_{p, q}^{+}$, and $G_{p, q}^{+}$is the positive cone of a left-invariant ordering on $G_{p, q} . \square$

- Remark.-Put $x=\mathrm{ab}^{p}$ and $y=\mathrm{b}$. Then $\left(\mathrm{ab}^{p}\right)^{q} \mathrm{a}=\mathrm{b}$ (iff) $x^{q+1}=y^{p+1}$.
- Particular cases:
$-p=q=1: \mathrm{aba}=\mathrm{b}\left(\right.$ or $\left.x^{2}=y^{2}\right)$, the Klein bottle group $K$;
$-p=2, q=1: \mathrm{ab}^{2} \mathrm{a}=\mathrm{b}\left(\right.$ or $\left.x^{2}=y^{3}\right)$, the 3-strand braid group $B_{3}$;
$-p=1, q=2:$ ababa $=\mathrm{b}\left(\right.$ or $\left.x^{3}=y^{2}\right)$, the 3-strand braid group $B_{3}$ again.


## - Appendix -

The $\mu$ function on positive braids

..The orderability of braid groups is 20 years old this week.

- Artin's braid group $B_{n}:\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{cc}\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 \\ \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1\end{array}\right.\right\rangle$.
$\simeq\{$ braid diagrams $\} /$ isotopy:

$$
-1 i x i
$$

$\simeq$ mapping class group of $D_{n}$ (disk with $n$ punctures):


- Associate with every braid $\beta$ in $B_{n}^{+}$ a finite sequence $\left(\ldots, \beta_{3}, \beta_{2}, \beta_{1}\right)$ of braids in $B_{n-1}^{+}$: the $n$-splitting of $\beta$. $n$-flip (= horizontal symmetry) $\downarrow$

- Iterating the splitting operation gives for every $\beta$ in $B_{n}^{+}$a finite tree $T_{n}(\beta)$.
- Theorem (D., 2007, building on Burckel, 1997): For $\beta, \beta^{\prime}$ in $B_{n}^{+}$, $\beta<_{D} \beta^{\prime}$ is equivalent to $T_{n}(\beta)<$ ShortLex $T_{n}\left(\beta^{\prime}\right)$.
- Corollary.- The D-ordering on $B_{n}^{+}$is a well-ordering of type $\omega^{\omega^{n-2}}$.

The rotating normal form of braids

- Definition (Birman-Ko-Lee, 1997).- The dual braid monoid $B_{n}^{+*}$ is the submonoid of $B_{n}$ generated by $\left(a_{i, j}\right)_{1 \leqslant i<j \leqslant n}$ with $a_{i, j}=\sigma_{j-1}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1} \ldots \sigma_{j-1}$.
- Dual Garside structure for $B_{n}$, with Cat ${ }_{n}$ non-crossing partitions vs. $n$ ! permutations.
- Then similar splitting of braids in $B_{n}^{+*}$ into sequences of braids in $B_{n-1}^{+*}$.

- Iterating the dual splitting operation gives for every $\beta$ in $B_{n}^{+*}$ a finite tree $T_{n}^{*}(\beta)$.
- Theorem (Fromentin, 2008): For $\beta, \beta^{\prime}$ in $B_{n}^{+*}$,

$$
\beta<{ }_{D} \beta^{\prime} \quad \text { is equivalent to } \quad T_{n}^{*}(\beta)<\text { ShortLex } T_{n}^{*}\left(\beta^{\prime}\right) .
$$

- Corollary.- The D-ordering on $B_{n}^{+*}$ is a well-ordering of type $\omega^{\omega^{n-2}}$.
- Definition.- For $\beta$ in $B_{\infty}^{+}\left(\right.$resp. in $\left.B_{\infty}^{+*}\right)$, put

$$
\begin{gathered}
\mu(\beta)=\min _{<_{D}}\left\{\beta^{\prime} \in B_{\infty}^{+} \mid \beta^{\prime} \text { conjugate to } \beta\right\} \\
\text { (resp. } \mu^{*}(\beta)=\min _{<_{D}}\left\{\beta^{\prime} \in B_{\infty}^{+*} \mid \beta^{\prime} \text { conjugate to } \beta\right\} \text { ). }
\end{gathered}
$$

- Makes sense because $<_{D}$ is a well-ordering on $B_{\infty}^{+}$and $B_{\infty}^{+*}$.
- Example: $\mu\left(\sigma_{1}\right)=\mu\left(\sigma_{2}\right)=\ldots=\sigma_{1}, \mu\left(\Delta_{3}\right)=\Delta_{3}, \ldots$
- The problem : Compute $\mu$ and/or $\mu^{*}$ effectively (at least for 3 or 4 strands).
- Computing $\mu$ or $\mu^{*}$ would give a solution (of a totally new type) for the Conjugacy Problem of $B_{n}$.
- Remark (good news): The (alternating and) rotating normal forms now give realistic ways of investigating the order $<_{D}$.
- Conjecture (D., Fromentin, Gebhardt, 2009).— For $\beta$ in $B_{3}^{+}$,

$$
\mu\left(\beta \triangle_{3}^{2}\right)=\sigma_{1} \sigma_{2}^{2} \sigma_{1} \cdot \mu(\beta) \cdot \sigma_{2}^{2} .
$$

- A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups, J. Algebra, 328 (2011) 31-42.
- T. Ito, Dehornoy-like left-orderings and isolated left-orderings, arXiv:1103.4669.
- T. Ito, Construction of isolated left-orderings via partially central cyclic amalgamation arXiv:1107.0545.
- P. Dehornoy, The subword reversing method, Intern. J. Alg. and Comput. 21 (2011) 71-118
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering Braids, Mathematical Surveys and Monographs vol. 148, Amer. Math. Soc. (2008).
- J. Fromentin, Every braid admits a short sigma-definite expression,
J. Europ. Math. Soc. 13 (2011) 1591-1631.
www.math.unicaen.fr/~dehornoy


[^0]:    - ...(under the same hypotheses) any two elements of $M$ admit a common right-multiple.

