L-spaces and left-orderability

Cameron McA. Gordon
(joint with Steve Boyer and Liam Watson)

BIRS Workshop
Banff, February 2012

Left Orderability

A group $G \neq 1$ is left orderable (LO) if \exists strict total order $<$ on G such that $g<h \Longrightarrow f g<f h \forall f \in G$

Left Orderability

A group $G \neq 1$ is left orderable (LO) if \exists strict total order $<$ on G such that $g<h \Longrightarrow f g<f h \forall f \in G$

- \mathbb{R} is LO

Left Orderability

A group $G \neq 1$ is left orderable (LO) if \exists strict total order $<$ on G such that $g<h \Longrightarrow f g<f h \forall f \in G$

- \mathbb{R} is LO
- $G \mathrm{LO} \Longrightarrow G$ torsion-free

Left Orderability

A group $G \neq 1$ is left orderable (LO) if \exists strict total order $<$ on G such that $g<h \Longrightarrow f g<f h \forall f \in G$

- \mathbb{R} is LO
- $G \mathrm{LO} \Longrightarrow G$ torsion-free
- $G, H \mathrm{LO} \Longleftrightarrow G * H \mathrm{LO}$ (Vinogradov, 1949)

Left Orderability

A group $G \neq 1$ is left orderable (LO) if \exists strict total order $<$ on G such that $g<h \Longrightarrow f g<f h \forall f \in G$

- \mathbb{R} is LO
- $G \mathrm{LO} \Longrightarrow G$ torsion-free
- $G, H \mathrm{LO} \Longleftrightarrow G * H \mathrm{LO}$ (Vinogradov, 1949)
- G (countable) $\mathrm{LO} \Longleftrightarrow \exists$ embedding $G \subset$ Homeo $_{+}(\mathbb{R})$

Left Orderability

A group $G \neq 1$ is left orderable (LO) if \exists strict total order $<$ on G such that $g<h \Longrightarrow f g<f h \forall f \in G$

- \mathbb{R} is LO
- $G \mathrm{LO} \Longrightarrow G$ torsion-free
- $G, H \mathrm{LO} \Longleftrightarrow G * H \mathrm{LO}$ (Vinogradov, 1949)
- G (countable) $\mathrm{LO} \Longleftrightarrow \exists$ embedding $G \subset$ Homeo $_{+}(\mathbb{R})$
- $G \mathrm{LO} \Longleftrightarrow$ every finitely generated $H<G$ has an LO quotient (Burns-Hale, 1972)
G is left circularly orderable (LCO) if \exists strict circular order on G, $T \subset G^{3}$, such that $\left(g_{1}, g_{2}, g_{3}\right) \in T \Rightarrow\left(f g_{1}, f g_{2}, f g_{3}\right) \in T \forall f \in G$

G is left circularly orderable (LCO) if \exists strict circular order on G, $T \subset G^{3}$, such that $\left(g_{1}, g_{2}, g_{3}\right) \in T \Rightarrow\left(f g_{1}, f g_{2}, f g_{3}\right) \in T \forall f \in G$

- S^{1} is LCO
G is left circularly orderable (LCO) if \exists strict circular order on G, $T \subset G^{3}$, such that $\left(g_{1}, g_{2}, g_{3}\right) \in T \Rightarrow\left(f g_{1}, f g_{2}, f g_{3}\right) \in T \forall f \in G$

- S^{1} is LCO
- G (countable) $\mathrm{LCO} \Longleftrightarrow \exists$ embedding $G \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$
G is left circularly orderable (LCO) if \exists strict circular order on G, $T \subset G^{3}$, such that $\left(g_{1}, g_{2}, g_{3}\right) \in T \Rightarrow\left(f g_{1}, f g_{2}, f g_{3}\right) \in T \forall f \in G$

- S^{1} is LCO
- G (countable) $\mathrm{LCO} \Longleftrightarrow \exists$ embedding $G \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$
- $G \mathrm{LO} \Rightarrow G \mathrm{LCO}$

Theorem ((Boyer-Rolfsen-Wiest, 2005))

M a compact, orientable, prime 3-manifold (poss. with boundary).
Then $\pi_{1}(M)$ is $L O \Leftrightarrow \pi_{1}(M)$ has an $L O$ quotient.

Theorem ((Boyer-Rolfsen-Wiest, 2005))

M a compact, orientable, prime 3-manifold (poss. with boundary).
Then $\pi_{1}(M)$ is $L O \Leftrightarrow \pi_{1}(M)$ has an $L O$ quotient.

Sketch Proof. Use Burns-Hale criterion.

$$
H<\pi_{1}(M), \quad H \text { finitely generated }
$$

Theorem ((Boyer-Rolfsen-Wiest, 2005))

M a compact, orientable, prime 3-manifold (poss. with boundary).
Then $\pi_{1}(M)$ is $L O \Leftrightarrow \pi_{1}(M)$ has an $L O$ quotient.
Sketch Proof. Use Burns-Hale criterion.

$$
H<\pi_{1}(M), \quad H \text { finitely generated }
$$

H infinite index: $\quad M_{H} \rightarrow M$ cover with $\pi_{1}\left(M_{H}\right) \cong H$
Then $\beta_{1}\left(M_{H}\right)>0 \quad \therefore \exists$ epimorphism $H \rightarrow \mathbb{Z}$

Theorem ((Boyer-Rolfsen-Wiest, 2005))

M a compact, orientable, prime 3-manifold (poss. with boundary). Then $\pi_{1}(M)$ is $L O \Leftrightarrow \pi_{1}(M)$ has an $L O$ quotient.

Sketch Proof. Use Burns-Hale criterion.

$$
H<\pi_{1}(M), \quad H \text { finitely generated }
$$

H infinite index: $\quad M_{H} \rightarrow M$ cover with $\pi_{1}\left(M_{H}\right) \cong H$
Then $\beta_{1}\left(M_{H}\right)>0 \quad \therefore \exists$ epimorphism $H \rightarrow \mathbb{Z}$
H finite index:

$$
\varphi: \pi_{1}(M) \rightarrow Q, Q \mathrm{LO}
$$

Then $\varphi(H)<Q$ finite index $\quad \therefore \varphi(H) \neq 1$

Hence $\quad \beta_{1}(M)>0 \Rightarrow \pi_{1}(M)$ LO

Hence $\quad \beta_{1}(M)>0 \Rightarrow \pi_{1}(M)$ LO

So interesting case is when

$$
H_{*}(M ; \mathbb{Q}) \cong H_{*}\left(S^{3} ; \mathbb{Q}\right)
$$

M is a \mathbb{Q}-homology 3-sphere ($\mathbb{Q H S}$)

Suppose M has a (codimension 2) co-orientable taut foliation \mathcal{F} $\pi_{1}(M)$ acts on leaf space \mathcal{L} of universal covering of M

Suppose M has a (codimension 2) co-orientable taut foliation \mathcal{F}
$\pi_{1}(M)$ acts on leaf space \mathcal{L} of universal covering of M
If $\mathcal{L} \cong \mathbb{R}(\mathcal{F}$ is \mathbb{R}-covered $)$ then we get non-trivial homomorphism
$\pi_{1}(M) \rightarrow$ Homeo $_{+}(\mathbb{R}) \quad \therefore \pi_{1}(M)$ is LO

Suppose M has a (codimension 2) co-orientable taut foliation \mathcal{F}
$\pi_{1}(M)$ acts on leaf space \mathcal{L} of universal covering of M
If $\mathcal{L} \cong \mathbb{R}(\mathcal{F}$ is \mathbb{R}-covered $)$ then we get non-trivial homomorphism
$\pi_{1}(M) \rightarrow$ Homeo $_{+}(\mathbb{R}) \quad \therefore \pi_{1}(M)$ is LO

Theorem (BRW, 2005)

M a Seifert fibered $\mathbb{Q} H S$. Then $\pi_{1}(M)$ is $L O \Leftrightarrow M$ has base orbifold $S^{2}\left(a_{1}, \ldots, a_{n}\right)$ and admits a horizontal foliation.

Suppose M has a (codimension 2) co-orientable taut foliation \mathcal{F}
$\pi_{1}(M)$ acts on leaf space \mathcal{L} of universal covering of M
If $\mathcal{L} \cong \mathbb{R}(\mathcal{F}$ is \mathbb{R}-covered $)$ then we get non-trivial homomorphism
$\pi_{1}(M) \rightarrow$ Homeo $_{+}(\mathbb{R}) \quad \therefore \pi_{1}(M)$ is LO

Theorem (BRW, 2005)

M a Seifert fibered $\mathbb{Q} H S$. Then $\pi_{1}(M)$ is $L O \Leftrightarrow M$ has base orbifold $S^{2}\left(a_{1}, \ldots, a_{n}\right)$ and admits a horizontal foliation.
\exists complete arithmetic characterization of those $S^{2}\left(a_{1}, \ldots, a_{n}\right)$'s that admit horizontal foliations (Jankins-Neumann, 1985, Naimi, 1994).

Theorem (Calegari-Dunfield, 2003)

M a prime, atoroidal $\mathbb{Q} H S$ with a co-orientable taut foliation, \widetilde{M} the universal abelian cover of M. Then $\pi_{1}(\widetilde{M})$ is $L O$.

Theorem (Calegari-Dunfield, 2003)

M a prime, atoroidal $\mathbb{Q} H S$ with a co-orientable taut foliation, \widetilde{M} the universal abelian cover of M. Then $\pi_{1}(\widetilde{M})$ is $L O$.

Thurston's universal circle construction gives

$$
\rho: \pi_{1}(M) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)
$$

Theorem (Calegari-Dunfield, 2003)

M a prime, atoroidal $\mathbb{Q} H S$ with a co-orientable taut foliation, \widetilde{M} the universal abelian cover of M. Then $\pi_{1}(\widetilde{M})$ is $L O$.

Thurston's universal circle construction gives

$$
\rho: \pi_{1}(M) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)
$$

Central extension

$$
1 \rightarrow \underset{/ /}{\mathbb{Z}} \rightarrow{\widetilde{\operatorname{Homeo}_{+}}}_{+}\left(S^{1}\right) \rightarrow \text { Homeo }_{+}\left(S^{1}\right) \rightarrow 1
$$

$\{$ integer translations $\} \subset\left\{f \in \operatorname{Homeo}_{+}(\mathbb{R}): f(x+1)=f(x)+1 \forall x \in \mathbb{R}\right\}$

Theorem (Calegari-Dunfield, 2003)

M a prime, atoroidal $\mathbb{Q} H S$ with a co-orientable taut foliation, \widetilde{M} the universal abelian cover of M. Then $\pi_{1}(\widetilde{M})$ is $L O$.

Thurston's universal circle construction gives

$$
\rho: \pi_{1}(M) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)
$$

Central extension

$$
1 \rightarrow \underset{/ /}{\mathbb{Z}} \rightarrow{\widetilde{\operatorname{Homeo}_{+}}}_{+}\left(S^{1}\right) \rightarrow \text { Homeo }_{+}\left(S^{1}\right) \rightarrow 1
$$

$\{$ integer translations $\} \subset\left\{f \in \operatorname{Homeo}_{+}(\mathbb{R}): f(x+1)=f(x)+1 \forall x \in \mathbb{R}\right\}$
Restriction of ρ to $\pi_{1}(\widetilde{M})$ lifts to ${\widetilde{\operatorname{Homeo}_{+}}}_{+}\left(S^{1}\right) \subset \operatorname{Homeo}_{+}(\mathbb{R})$

Heegaard Floer Homology (Ozsváth-Szabó)

M a $\mathbb{Q} H S$. A Heegaard diagram of M gives
$\widehat{H F}(M)$: finite dimensional \mathbb{F}_{2}-vector space

Heegaard Floer Homology (Ozsváth-Szabó)

M a $\mathbb{Q} H S$. A Heegaard diagram of M gives
$\widehat{H F}(M)$: finite dimensional \mathbb{F}_{2}-vector space
\mathbb{Z}_{2}-graded: $\quad \widehat{H F}(M)=\widehat{H F}_{0}(M) \oplus \widehat{H F}_{1}(M)$

$$
\begin{aligned}
& \mathcal{X}(\widehat{H F}(M))=\left|H_{1}(M ; \mathbb{Z})\right| \\
& \therefore \quad \operatorname{dim} \widehat{H F}(M) \geq\left|H_{1}(M)\right|
\end{aligned}
$$

Heegaard Floer Homology (Ozsváth-Szabó)

M a $\mathbb{Q} H S$. A Heegaard diagram of M gives
$\widehat{H F}(M)$: finite dimensional \mathbb{F}_{2}-vector space
\mathbb{Z}_{2}-graded: $\quad \widehat{H F}(M)=\widehat{H F}_{0}(M) \oplus \widehat{H F}_{1}(M)$

$$
\begin{aligned}
& \mathcal{X}(\widehat{H F}(M))=\left|H_{1}(M ; \mathbb{Z})\right| \\
& \therefore \quad \operatorname{dim} \widehat{H F}(M) \geq\left|H_{1}(M)\right|
\end{aligned}
$$

M is an L-space if equality holds
E.g. lens spaces are L-spaces

Is there a "non-Heegaard Floer" characterization of L-spaces?

Heegaard Floer Homology (Ozsváth-Szabó)
M a $\mathbb{Q} H S$. A Heegaard diagram of M gives
$\widehat{H F}(M)$: finite dimensional \mathbb{F}_{2}-vector space
\mathbb{Z}_{2}-graded: $\quad \widehat{H F}(M)=\widehat{H F}_{0}(M) \oplus \widehat{H F}_{1}(M)$

$$
\begin{aligned}
& \mathcal{X}(\widehat{H F}(M))=\left|H_{1}(M ; \mathbb{Z})\right| \\
& \therefore \quad \operatorname{dim} \widehat{H F}(M) \geq\left|H_{1}(M)\right|
\end{aligned}
$$

M is an L-space if equality holds
E.g. lens spaces are L-spaces

Is there a "non-Heegaard Floer" characterization of L-spaces?

Conjecture

M a prime $\mathbb{Q} H S$. Then

$$
M \text { is an } L \text {-space } \Leftrightarrow \pi_{1}(M) \text { is not } L O
$$

E.g.

E.g.

Theorem (OS, 2004)

If M is an L-space then M does not admit a co-orientable taut foliation.
E.g.

Theorem (OS, 2004)

If M is an L-space then M does not admit a co-orientable taut foliation.

So Conjecture $\Rightarrow \quad: \quad$ if M has a co-orientable taut foliation then $\pi_{1}(M)$ is LO
E.g.

Theorem (OS, 2004)

If M is an L-space then M does not admit a co-orientable taut foliation.

So Conjecture $\Rightarrow \quad: \quad$ if M has a co-orientable taut foliation then $\pi_{1}(M)$ is LO

By Calegari-Dunfield we do have (if M atoroidal)
(1) $\pi_{1}(M)$ virtually LO
(2) $\pi_{1}(M) \mathrm{LCO}$

However, $\exists \mathbb{Q}$ HS's M with $\pi_{1}(M)$ LCO but not LO

However, $\exists \mathbb{Q} H S$'s M with $\pi_{1}(M)$ LCO but not LO

Example (Calegari)

M Seifert fibered $\mathbb{Q H S} \quad S^{2}\left(p_{1} / q_{1}, p_{2} / q_{2}, p_{3} / q_{3}\right), \quad \sum 1 / q_{i}<1$

However, $\exists \mathbb{Q}$ HS's M with $\pi_{1}(M)$ LCO but not LO

Example (Calegari)

M Seifert fibered $\mathbb{Q H S} \quad S^{2}\left(p_{1} / q_{1}, p_{2} / q_{2}, p_{3} / q_{3}\right), \quad \sum 1 / q_{i}<1$
\exists central extension

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} \longrightarrow \pi_{1}(M) \longrightarrow \Delta \longrightarrow 1 \\
\Delta=\left(q_{1}, q_{2}, q_{3}\right) \text {-triangle group } \\
\Delta \subset \operatorname{Isom}_{+}\left(\mathbb{H}^{2}\right) \cong P S L_{2}(\mathbb{R}) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)
\end{gathered}
$$

However, $\exists \mathbb{Q H S}$'s M with $\pi_{1}(M)$ LCO but not LO

Example (Calegari)

M Seifert fibered $\mathbb{Q H S} \quad S^{2}\left(p_{1} / q_{1}, p_{2} / q_{2}, p_{3} / q_{3}\right), \quad \sum 1 / q_{i}<1$
\exists central extension

$$
\begin{gathered}
1 \longrightarrow \mathbb{Z} \longrightarrow \pi_{1}(M) \longrightarrow \Delta \longrightarrow 1 \\
\Delta=\left(q_{1}, q_{2}, q_{3}\right) \text {-triangle group } \\
\Delta \subset \operatorname{Isom}_{+}\left(\mathbb{H}^{2}\right) \cong P S L_{2}(\mathbb{R}) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)
\end{gathered}
$$

$$
\Delta \mathrm{LCO}, \mathbb{Z} \mathrm{LO} \Longrightarrow \pi_{1}(M) \mathrm{LCO}
$$

But $\pi_{1}(M) \mathrm{LO} \Longleftrightarrow M$ admits a horizontal foliation, and this doesn't always hold.

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

Base orbifold is either $S^{2}\left(a_{1}, \ldots, a_{n}\right)$:
M an L-space $\Leftrightarrow M$ does not admit a horizontal foliation (Lisca-Stipsicz, 2007)
$\Leftrightarrow \pi_{1}(M) \operatorname{not} \mathrm{LO}(\mathrm{BRW}, 2005)$
(also observed by Peters)

(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

Base orbifold is either $S^{2}\left(a_{1}, \ldots, a_{n}\right)$:
M an L-space $\Leftrightarrow M$ does not admit a horizontal foliation (Lisca-Stipsicz, 2007)
$\Leftrightarrow \pi_{1}(M)$ not LO (BRW, 2005)
(also observed by Peters)
$P^{2}\left(a_{1}, \ldots, a_{n}\right): \quad \pi_{1}(M) \operatorname{not} \mathrm{LO} \quad(\mathrm{BRW}, 2005)$

Show M is an L-space by induction on n; surgery argument using: X compact, orientable 3-manifold, ∂X a torus; α essential scc $\subset \partial X$, $X(\alpha)=\alpha$-Dehn filling on X
Suppose $\alpha, \beta \subset \partial X, \quad \alpha \cdot \beta=1$, and

$$
\left|H_{1}(X(\alpha+\beta))=\left|H_{1}(X(\alpha))\right|+\left|H_{1}(X(\beta))\right|\right.
$$

Show M is an L-space by induction on n; surgery argument using: X compact, orientable 3-manifold, ∂X a torus; α essential scc $\subset \partial X$, $X(\alpha)=\alpha$-Dehn filling on X
Suppose $\alpha, \beta \subset \partial X, \quad \alpha \cdot \beta=1$, and

$$
\left|H_{1}(X(\alpha+\beta))=\left|H_{1}(X(\alpha))\right|+\left|H_{1}(X(\beta))\right|\right.
$$

Then

$$
\begin{equation*}
X(\alpha), X(\beta) L \text {-spaces } \Rightarrow X(\alpha+\beta) L \text {-space } \tag{*}
\end{equation*}
$$

(OS, 2005)
(uses $\widehat{H F}$ surgery exact sequence of a triad)

Graph manifold = union of Seifert fibered spaces along tori

Graph manifold $=$ union of Seifert fibered spaces along tori

Theorem (Clay-Lidman-Watson, 2011)
$M a \mathbb{Z} \mathrm{HS}$ graph manifold. Then $\pi_{1}(M)$ is LO.

Graph manifold $=$ union of Seifert fibered spaces along tori

Theorem (Clay-Lidman-Watson, 2011)

$M a \mathbb{Z}$ HS graph manifold. Then $\pi_{1}(M)$ is LO.

Theorem (Boileau-Boyer, 2011)

M a $\mathbb{Z} H S$ graph manifold. Then M admits a co-orientable taut foliation, horizontal in every Seifert piece. Hence M is not a L-space (and $\pi_{1}(M)$ is LO).

Graph manifold $=$ union of Seifert fibered spaces along tori

Theorem (Clay-Lidman-Watson, 2011)

$M a \mathbb{Z}$ HS graph manifold. Then $\pi_{1}(M)$ is LO.

Theorem (Boileau-Boyer, 2011)

M a $\mathbb{Z} H S$ graph manifold. Then M admits a co-orientable taut foliation, horizontal in every Seifert piece. Hence M is not a L-space (and $\pi_{1}(M)$ is LO).
(Also work by Boyer-Clay-Watson)
(B) Sol manifolds
$N=$ twisted I-bundle/Klein bottle

(B) Sol manifolds

$N=$ twisted I-bundle/Klein bottle
N has two Seifert structures:

$$
\begin{array}{cc}
\text { base Möbius band; } & \text { fiber } \varphi_{0} \\
\text { base } D^{2}(2,2) ; & \text { fiber } \varphi_{1} \\
\varphi_{0} \cdot \varphi_{1}=1 \text { on } \partial N &
\end{array}
$$

(B) Sol manifolds

$N=$ twisted I-bundle/Klein bottle
N has two Seifert structures:

$$
\begin{array}{ll}
\text { base Möbius band; } & \text { fiber } \varphi_{0} \\
\text { base } D^{2}(2,2) ; & \text { fiber } \varphi_{1}
\end{array}
$$

$\varphi_{0} \cdot \varphi_{1}=1$ on ∂N
$f: \partial N \rightarrow \partial N$ homeomorphism, $M=N \cup_{f} N$
Assume M a $\mathbb{Q H S} \quad\left(f\left(\varphi_{0}\right) \neq \pm \varphi_{0}\right)$

(B) Sol manifolds

$N=$ twisted I-bundle/Klein bottle
N has two Seifert structures:
base Möbius band; fiber φ_{0}
base $D^{2}(2,2) ; \quad$ fiber φ_{1}
$\varphi_{0} \cdot \varphi_{1}=1$ on ∂N
$f: \partial N \rightarrow \partial N$ homeomorphism, $M=N \cup_{f} N$
Assume M a $\mathbb{Q H S} \quad\left(f\left(\varphi_{0}\right) \neq \pm \varphi_{0}\right)$
M Seifert $\Leftrightarrow f\left(\varphi_{i}\right)= \pm \varphi_{j}($ some $i, j \in\{0,1\})$
Otherwise, M is a Sol manifold
$\pi_{1}(M)$ is not LO (BRW, 2005)
$\pi_{1}(M)$ is not LO (BRW, 2005)

$$
\pi_{1}(N)=\left\langle\varphi_{0}, t: t \varphi_{0} t^{-1}=\varphi_{0}^{-1}\right\rangle \quad\left(\varphi_{1}=t^{2}\right)
$$

$\pi_{1}(M)$ is not LO (BRW, 2005)

$$
\begin{gathered}
\pi_{1}(N)=\left\langle\varphi_{0}, t: t \varphi_{0} t^{-1}=\varphi_{0}^{-1}\right\rangle \quad\left(\varphi_{1}=t^{2}\right) \\
<\quad \text { any LO on } \pi_{1}(N) . \quad \text { Can show } \\
x \in \pi_{1}(N), \quad x \notin\left\langle\varphi_{0}\right\rangle, \quad x>1 \Longrightarrow \varphi_{0}^{n}<x \forall n \in \mathbb{Z}
\end{gathered}
$$

$\pi_{1}(M)$ is not LO (BRW, 2005)

$$
\begin{gathered}
\pi_{1}(N)=\left\langle\varphi_{0}, t: t \varphi_{0} t^{-1}=\varphi_{0}^{-1}\right\rangle \quad\left(\varphi_{1}=t^{2}\right) \\
<\quad \text { any LO on } \pi_{1}(N) . \quad \text { Can show } \\
x \in \pi_{1}(N), \quad x \notin\left\langle\varphi_{0}\right\rangle, \quad x>1 \Longrightarrow \varphi_{0}^{n}<x \forall n \in \mathbb{Z}
\end{gathered}
$$

$\therefore \pi_{1}(M) \mathrm{LO} \Longrightarrow f\left(\varphi_{0}\right)= \pm \varphi_{0} \Longrightarrow M$ Seifert (and not $\left.\mathbb{Q H S}\right)$
$\pi_{1}(M)$ is not LO (BRW, 2005)

$$
\begin{gathered}
\pi_{1}(N)=\left\langle\varphi_{0}, t: t \varphi_{0} t^{-1}=\varphi_{0}^{-1}\right\rangle \quad\left(\varphi_{1}=t^{2}\right) \\
<\quad \text { any LO on } \pi_{1}(N) . \quad \text { Can show } \\
x \in \pi_{1}(N), \quad x \notin\left\langle\varphi_{0}\right\rangle, \quad x>1 \Longrightarrow \varphi_{0}^{n}<x \forall n \in \mathbb{Z}
\end{gathered}
$$

$\therefore \pi_{1}(M) \mathrm{LO} \Longrightarrow f\left(\varphi_{0}\right)= \pm \varphi_{0} \Longrightarrow M$ Seifert (and not $\left.\mathbb{Q H S}\right)$

Theorem

M is an L-space
$\pi_{1}(M)$ is not LO (BRW, 2005)

$$
\begin{gathered}
\pi_{1}(N)=\left\langle\varphi_{0}, t: t \varphi_{0} t^{-1}=\varphi_{0}^{-1}\right\rangle \quad\left(\varphi_{1}=t^{2}\right) \\
<\quad \text { any LO on } \pi_{1}(N) . \quad \text { Can show } \\
x \in \pi_{1}(N), \quad x \notin\left\langle\varphi_{0}\right\rangle, \quad x>1 \Longrightarrow \varphi_{0}^{n}<x \forall n \in \mathbb{Z}
\end{gathered}
$$

$\therefore \pi_{1}(M) \mathrm{LO} \Longrightarrow f\left(\varphi_{0}\right)= \pm \varphi_{0} \Longrightarrow M$ Seifert (and not $\mathbb{Q H S}$)

Theorem

M is an L-space

$$
f_{*}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad(c \neq 0) \text { with respect to basis } \varphi_{0}, \varphi_{1}
$$

(1) True if $f_{*}=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]$

$$
f\left(\varphi_{1}\right)=\varphi_{0}, \quad \text { so } M \text { Seifert }
$$

(1) True if $f_{*}=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]$

$$
f\left(\varphi_{1}\right)=\varphi_{0}, \quad \text { so } M \text { Seifert }
$$

(2) True if $f_{*}=\left[\begin{array}{ll}a & b \\ 1 & d\end{array}\right]=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & d \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]\left(t_{0}\right)_{*}^{d}$ where $t_{0}: \partial N \rightarrow \partial N$ is Dehn twist along φ_{0}

Write $W(f)=N \cup_{f} N$
Bordered $\widehat{H F}$ calculation shows $\widehat{H F}(W(f)) \cong \widehat{H F}\left(W\left(f \circ t_{0}\right)\right)$
So reduced to case (1)
(1) True if $f_{*}=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]$

$$
f\left(\varphi_{1}\right)=\varphi_{0}, \quad \text { so } M \text { Seifert }
$$

(2) True if $f_{*}=\left[\begin{array}{ll}a & b \\ 1 & d\end{array}\right]=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & d \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]\left(t_{0}\right)_{*}^{d}$ where $t_{0}: \partial N \rightarrow \partial N$ is Dehn twist along φ_{0}

Write $W(f)=N \cup_{f} N$
Bordered $\widehat{H F}$ calculation shows $\widehat{H F}(W(f)) \cong \widehat{H F}\left(W\left(f \circ t_{0}\right)\right)$
So reduced to case (1)
(3) In general, induct on $|c|$: do surgery on suitable simple closed curves $\subset \partial N$ and use $(*)$

(C) Dehn surgery

Theorem (OS, 2005)

K a hyperbolic alternating knot. Then $K(r)$ is not an L-space $\forall r \in \mathbb{Q}$

(C) Dehn surgery

Theorem (OS, 2005)

K a hyperbolic alternating knot. Then $K(r)$ is not an L-space $\forall r \in \mathbb{Q}$
So Conjecture $\Longrightarrow \quad \pi_{1}(K(r))$ LO

(C) Dehn surgery

Theorem (OS, 2005)

K a hyperbolic alternating knot. Then $K(r)$ is not an L-space $\forall r \in \mathbb{Q}$
So Conjecture $\Longrightarrow \quad \pi_{1}(K(r))$ LO

Theorem (Roberts, 1995)

K an alternating knot.
(1) If K is not special alternating then $K(r)$ has a taut foliation $\forall r \in \mathbb{Q}$.
(2) If K is special alternating then $K(r)$ has a taut foliation either $\forall r>0$ or $\forall r<0$.
$K(1 / q)$ is a $\mathbb{Z} H S \quad \therefore$ foliation is co-orientable
$K(1 / q)$ is a $\mathbb{Z H S} \quad \therefore$ foliation is co-orientable $K(1 / q)$ atoroidal $\quad \therefore \quad \pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$
$K(1 / q)$ is a $\mathbb{Z} H S \quad \therefore$ foliation is co-orientable $K(1 / q)$ atoroidal $\quad \therefore \quad \pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$ $H^{2}\left(\pi_{1}(K(1 / q))\right)=0 ; \quad$ so lifts to $\pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}(\mathbb{R})$
$\therefore \quad \pi_{1}(K(1 / q))$ is LO $\quad(\forall q \neq 0$ in $(1), \forall q>0$ or $\forall q<0$ in (2))
$K(1 / q)$ is a $\mathbb{Z} H S \quad \therefore$ foliation is co-orientable $K(1 / q)$ atoroidal $\quad \therefore \quad \pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$ $H^{2}\left(\pi_{1}(K(1 / q))\right)=0 ; \quad$ so lifts to $\pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}(\mathbb{R})$
$\therefore \quad \pi_{1}(K(1 / q))$ is LO $\quad(\forall q \neq 0$ in $(1), \forall q>0$ or $\forall q<0$ in (2))

Theorem

Let K be the figure eight knot. Then $\pi_{1}(K(r))$ is LO for $-4<r<4$.
Uses representations $\quad \rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow P S L_{2}(\mathbb{R})$
$K(1 / q)$ is a $\mathbb{Z} H S \quad \therefore$ foliation is co-orientable $K(1 / q)$ atoroidal $\quad \therefore \quad \pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$ $H^{2}\left(\pi_{1}(K(1 / q))\right)=0 ; \quad$ so lifts to $\pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}(\mathbb{R})$
$\therefore \quad \pi_{1}(K(1 / q))$ is LO $\quad(\forall q \neq 0$ in $(1), \forall q>0$ or $\forall q<0$ in (2))

Theorem

Let K be the figure eight knot. Then $\pi_{1}(K(r))$ is $L O$ for $-4<r<4$.
Uses representations $\quad \rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow P S L_{2}(\mathbb{R})$
(Also true for $r= \pm 4 \quad$ (Clay-Lidman-Watson, 2011))
$K(1 / q)$ is a $\mathbb{Z} H S \quad \therefore$ foliation is co-orientable $K(1 / q)$ atoroidal $\quad \therefore \quad \pi_{1}(K(1 / q)) \subset$ Homeo $_{+}\left(S^{1}\right)$ $H^{2}\left(\pi_{1}(K(1 / q))\right)=0 ; \quad$ so lifts to $\pi_{1}(K(1 / q)) \subset \operatorname{Homeo}_{+}(\mathbb{R})$
$\therefore \quad \pi_{1}(K(1 / q))$ is LO $\quad(\forall q \neq 0$ in (1), $\forall q>0$ or $\forall q<0$ in (2))

Theorem

Let K be the figure eight knot. Then $\pi_{1}(K(r))$ is LO for $-4<r<4$.
Uses representations $\quad \rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow P S L_{2}(\mathbb{R})$
(Also true for $r= \pm 4 \quad$ (Clay-Lidman-Watson, 2011))

Theorem (Clay-Teragaito, 2011)

K a hyperbolic 2-bridge knot. If $K(r)$ is non-hyperbolic then $\pi_{1}(K(r))$ is LO.

Surgery triad exact sequence $((*))$ implies
K a knot in $S^{3}, K(s)$ an L-space for some $s \in \mathbb{Q}, s>0$.
Then $K(r)$ is an L-space for all $r \in \mathbb{Q}, r \geq s$.
(K is an L-space knot)

Surgery triad exact sequence $((*))$ implies
K a knot in $S^{3}, K(s)$ an L-space for some $s \in \mathbb{Q}, s>0$.
Then $K(r)$ is an L-space for all $r \in \mathbb{Q}, r \geq s$.
(K is an L-space knot)
So Conjecture $\Longrightarrow \pi_{1}(K(r))$ not LO, $r \geq s$

Surgery triad exact sequence $((*))$ implies
K a knot in $S^{3}, K(s)$ an L-space for some $s \in \mathbb{Q}, s>0$.
Then $K(r)$ is an L-space for all $r \in \mathbb{Q}, r \geq s$.
(K is an L-space knot)
So Conjecture $\Longrightarrow \pi_{1}(K(r))$ not LO, $r \geq s$

Example

Pretzel knot $K(-2,3, n), n$ odd ≥ 5, is an L-space knot.

Surgery triad exact sequence $((*))$ implies
K a knot in $S^{3}, K(s)$ an L-space for some $s \in \mathbb{Q}, s>0$.
Then $K(r)$ is an L-space for all $r \in \mathbb{Q}, r \geq s$.
(K is an L-space knot)
So Conjecture $\Longrightarrow \pi_{1}(K(r))$ not LO, $r \geq s$

Example

Pretzel knot $K(-2,3, n), n$ odd ≥ 5, is an L-space knot.

Theorem (Clay-Watson, 2011)

$\pi_{1}(K(-2,3, n)(r))$ is not LO if $r \geq n+10$.
(D) 2-fold branched covers
L a link in S^{3}
$\Sigma(L)=2$-fold branched cover of L

Theorem (OS, 2005)

If L is a non-split alternating link then $\Sigma(L)$ is an L-space.
(D) 2-fold branched covers
L a link in S^{3}
$\Sigma(L)=2$-fold branched cover of L

Theorem (OS, 2005)

If L is a non-split alternating link then $\Sigma(L)$ is an L-space.
(uses (*) ;

$\Longrightarrow \Sigma(L), \Sigma\left(L_{0}\right), \Sigma\left(L_{\infty}\right)$ a surgery triad
$L \quad L_{0} \quad L_{\infty}$ with $\operatorname{det} L=\operatorname{det} L_{0}+\operatorname{det} L_{\infty}$)
(D) 2-fold branched covers
L a link in S^{3}
$\Sigma(L)=2$-fold branched cover of L

Theorem (OS, 2005)

If L is a non-split alternating link then $\Sigma(L)$ is an L-space.
(uses (*) ;

$L \quad L_{0} \quad L_{\infty} \quad$ with $\left.\operatorname{det} L=\operatorname{det} L_{0}+\operatorname{det} L_{\infty}\right)$

Theorem

If L is a non-split alternating link then $\pi_{1}(\Sigma(L))$ is not $L O$.
(Also proofs by Greene, Ito)
L a link in S^{3}, D a diagram of L
Define group $\pi(D)$:

$$
\begin{gathered}
\text { generators } a_{1}, \ldots, a_{n} \longleftrightarrow \operatorname{arcs} \text { of } D \\
\text { relations } \longleftrightarrow \text { crossings of } D \\
a_{j}^{-1} a_{i} a_{j}^{-1} a_{k}
\end{gathered}
$$

L a link in S^{3}, D a diagram of L
Define group $\pi(D)$:

$$
\begin{gathered}
\text { generators } a_{1}, \ldots, a_{n} \longleftrightarrow \operatorname{arcs} \text { of } D \\
\text { relations } \longleftrightarrow \text { crossings of } D \\
a_{j}^{-1} a_{i} a_{j}^{-1} a_{k}
\end{gathered}
$$

Theorem (Wada, 1992)
$\pi(D) \cong \pi_{1}(\Sigma(L)) * \mathbb{Z}$

Suppose $\pi(D)$ LO

$$
\begin{aligned}
a_{j}^{-1} a_{i} a_{j}^{-1} a_{k}=1 & \Longleftrightarrow a_{j}^{-1} a_{i}=a_{k}^{-1} a_{j} \\
a_{i}<a_{j} & \Longleftrightarrow a_{j}^{-1} a_{i}<1
\end{aligned}
$$

\therefore at each crossing either

$$
\begin{array}{ll}
& a_{i}<a_{j}<a_{k} \\
\text { or } & a_{i}>a_{j}>a_{k} \\
\text { or } & a_{i}=a_{j}=a_{k}
\end{array}
$$

Suppose $\pi(D)$ LO

$$
\begin{aligned}
a_{j}^{-1} a_{i} a_{j}^{-1} a_{k}=1 & \Longleftrightarrow a_{j}^{-1} a_{i}=a_{k}^{-1} a_{j} \\
a_{i}<a_{j} & \Longleftrightarrow a_{j}^{-1} a_{i}<1
\end{aligned}
$$

\therefore at each crossing either

$$
\begin{array}{ll}
& a_{i}<a_{j}<a_{k} \\
\text { or } & a_{i}>a_{j}>a_{k} \\
\text { or } & a_{i}=a_{j}=a_{k}
\end{array}
$$

Shade complementary regions of D alternately Black/White Define graph $\Gamma(D) \subset S^{2}$:

$$
\text { vertices } \longleftrightarrow B \text {-regions }
$$

edges \longleftrightarrow crossings

Assume D connected, alternating
We want to show $\pi_{1}(\Sigma(L)) \quad n o t L O$
True if $\quad L=$ unknot; so assume $L \neq$ unknot
Then $\quad \pi_{1}(\Sigma(L)) \mathrm{LO} \Longleftrightarrow \pi(D) \cong \pi_{1}(\Sigma(L)) * \mathbb{Z}$ LO
So assume $\quad \pi(D)$ LO

Assume D connected, alternating
We want to show $\pi_{1}(\Sigma(L))$ not LO
True if $\quad L=$ unknot; so assume $L \neq$ unknot
Then $\pi_{1}(\Sigma(L)) \mathrm{LO} \Longleftrightarrow \pi(D) \cong \pi_{1}(\Sigma(L)) * \mathbb{Z}$ LO
So assume $\quad \pi(D)$ LO
Orient edges of $\Gamma(D)$

Γ a connected, semi-oriented graph $\subset S^{2}$
Γ a connected, semi-oriented graph $\subset S^{2}$

where, in each case, there is at least one oriented edge

Lemma

Let $\Gamma \subset S^{2}$ be a connected semi-oriented graph with at least one oriented edge. Then Γ has a sink, source or cycle.

Lemma

Let $\Gamma \subset S^{2}$ be a connected semi-oriented graph with at least one oriented edge. Then Γ has a sink, source or cycle.

Let $\quad \Gamma=\Gamma(D)$

cycle:

$$
\therefore \quad a_{i_{1}}=a_{i_{2}}=\cdots=a_{i_{r}}
$$

a contradiction, since at least one oriented edge
sink:

a contradiction, since at least one oriented edge

Similarly for a source

$$
a_{i_{1}} \geq a_{i_{2}} \geq \cdots \geq a_{i_{r}} \geq a_{i_{1}}, \text { contradiction }
$$

Similarly for a source

$$
a_{i_{1}} \geq a_{i_{2}} \geq \cdots \geq a_{i_{r}} \geq a_{i_{1}}, \text { contradiction }
$$

\therefore by Lemma, all edges of $\Gamma(D)$ are unoriented
$\therefore \quad\left(\right.$ since D connected) $\quad a_{1}=a_{2}=\cdots=a_{n}$

$$
\begin{array}{ll}
\therefore & \pi(D) \cong \mathbb{Z} \\
\therefore & \pi_{1}(\Sigma(L))=1
\end{array}
$$

$\therefore \quad L=$ unknot, contradiction

(E) Questions

Question 1

If M is a $\mathbb{Q H S}$ with a co-orientable taut foliation, is $\pi_{1}(M) \mathrm{LO}$?

(E) Questions

Question 1

If M is a $\mathbb{Q H S}$ with a co-orientable taut foliation, is $\pi_{1}(M) \mathrm{LO}$?

Question 2

If K is a hyperbolic alternating knot, is $\pi_{1}(K(r))$ LO $\forall r \in \mathbb{Q}$?

(E) Questions

Question 1

If M is a $\mathbb{Q} H S$ with a co-orientable taut foliation, is $\pi_{1}(M) \mathrm{LO}$?

Question 2

If K is a hyperbolic alternating knot, is $\pi_{1}(K(r))$ LO $\forall r \in \mathbb{Q}$?

$$
L \text { quasi-alternating } \quad \Longrightarrow \Sigma(L) \text { an } L \text {-space }
$$

(E) Questions

Question 1

If M is a $\mathbb{Q H S}$ with a co-orientable taut foliation, is $\pi_{1}(M) \mathrm{LO}$?

Question 2

If K is a hyperbolic alternating knot, is $\pi_{1}(K(r))$ LO $\forall r \in \mathbb{Q}$?

$$
L \text { quasi-alternating } \quad \Longrightarrow \Sigma(L) \text { an } L \text {-space }
$$

Question 3

Does L quasi-alternating $\Longrightarrow \quad \pi_{1}(\Sigma(L))$ not LO?

(E) Questions

Question 1

If M is a $\mathbb{Q H S}$ with a co-orientable taut foliation, is $\pi_{1}(M) \mathrm{LO}$?

Question 2

If K is a hyperbolic alternating knot, is $\pi_{1}(K(r))$ LO $\forall r \in \mathbb{Q}$?

$$
L \text { quasi-alternating } \quad \Longrightarrow \Sigma(L) \text { an } L \text {-space }
$$

Question 3

Does L quasi-alternating $\Longrightarrow \quad \pi_{1}(\Sigma(L))$ not LO?
Conjecture \Longrightarrow Q's 1, 2 and 3 have answer "yes"

Question 4

If M is a $\mathbb{Q H S}$ with $\pi_{1}(M)$ LO does M admit a co-orientable taut foliation?

Question 4

If M is a $\mathbb{Q H S}$ with $\pi_{1}(M)$ LO does M admit a co-orientable taut foliation?

Question 5

Does Conjecture hold for graph manifolds?

Question 4

If M is a $\mathbb{Q H S}$ with $\pi_{1}(M)$ LO does M admit a co-orientable taut foliation?

Question 5

Does Conjecture hold for graph manifolds?

Only known prime $\mathbb{Z} H S L$-spaces are S^{3} and Poincaré HS

Question 4

If M is a $\mathbb{Q H S}$ with $\pi_{1}(M)$ LO does M admit a co-orientable taut foliation?

Question 5

Does Conjecture hold for graph manifolds?

Only known prime $\mathbb{Z} H S L$-spaces are S^{3} and Poincaré HS

Question 6

M a hyperbolic $\mathbb{Z} H S$. Is $\pi_{1}(M) \mathrm{LO}$?

