On interactions of amenability with left-orderings

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Amenability is a fundamental notion in group theory, as evidenced by the fact that it can be defined in more than a dozen different ways. A few of these different definitions will be discussed, together with some commentary on the theorem that left-orderable amenable groups are locally indicable, and perhaps some speculation on other ways that amenability might be useful in the theory of left-orderings.

Amenability vs. left-orderings

ve Witte Morris (Univ. of Lethbridge)

Motivation

Theorem (Rhemtulla, Chiswell, Kropholler, Linnell, Morris)

- *G* left-orderable group
- G solvable (amenable)
- \Rightarrow G has a Conradian left-order. (G is locally indicable) (In fact, \exists recurrent left-order.)

Proof shows:

- *G* solvable (amenable)
- \prec any left-order on *G*

$$\Rightarrow \exists g_1, g_2, \dots, \text{ s.t. } \prec^{g_n} \rightarrow \text{Conradian (recurrent).}$$

Definition	What is amenable really?
A <i>Ponzi scheme</i> on <i>G</i> is a function $\rho: G \to G$, s.t.: • $\forall g \in G, \ \# \rho^{-1}(g) \ge 2$ (everyone got richer) • $\exists R, \forall g \in G, \ d(g, \rho(g)) \le R$ (money moves bdd dist)	Answer G is amenable \Leftrightarrow G has almost-relation
	Example
Exercise $On \mathbb{Z}^n$, \nexists Ponzi scheme. (\exists Ponzi scheme \Rightarrow exponential growth.)	G = abelian group (f.g.) = $\mathbb{Z}^2 = \langle a, G \rangle$ G acts on itself by left translation. $F = G$ -inv't subset of G , $\begin{pmatrix} aF = F, bF = \\ nonempty \end{pmatrix}$ $\implies F$ is infinite.
Solvable grps of exp1 growth do <i>not</i> have a Ponzi: Theorem (Gromov) \exists Ponzi scheme on $G \iff G$ is not "amenable".	\nexists finite, invariant subset. F = big ball \implies F is 99.99% inv $\#(F \cap aF) > (1 - \epsilon) \#F$
ave Witte Morris (Univ. of Lethbridge) Amenability vs. left-orderings Banff, February 2012 5 / 12	ave Witte Morris (Univ. of Lethbridge) Amenability vs. left-orderings

e really?

- nas *almost-invariant* subsets.
- $=\mathbb{Z}^2=\langle a,b\rangle.$
- translation.
- (aF = F, bF = F,)nonempty
- set.
- 99.99% invariant ("almost inv't"):) #F

Banff, February 2012 6 / 1

Corollary (\Leftrightarrow)

- *G* amenable,
- G acts on compact metric space X (by homeos)
- \Rightarrow every continuous function on X has an avg val
- $\Rightarrow \exists G \text{-inv't probability measure } \mu \text{ on } X. (\mu(X) = 1)$

This defn proves $LO + amenable \implies \exists$ Conradian.

Problem

Find a proof that uses a different definition. (Leads to generalization? other applications?)

Average vals of characteristic funcs of subsets of *G*:

Corollary (von Neumann's original definition)

G amen $\iff \exists$ finitely additive probability measure. te Morris (Univ of Lethbridge)

Other definitions of amenability

Notation

G f.g. $\Rightarrow \exists \phi \colon F_n \twoheadrightarrow G.$ Let $B_r = \{ \text{words of length} \le r \}$ in F_n . (Note: $\#B_{\gamma} \approx (2n-1)^{\gamma}$.)

Example

Witte Morris (Univ. of Lethbridge)

$$G = F_n \implies \#(B_r \cap \ker \phi) = 1 < (\#B_r)^{\epsilon}.$$

$$G = \mathbb{Z}^n \implies \#(B_r \cap \ker \phi) \approx \frac{\#B_r}{(2r+1)^n} = (\#B_r)^{1-\epsilon}.$$

Theorem (R. I Grigorchuk, J. M. Cohen)

ave Witte Morris (Univ. of Lethbridge) Amenability vs. left-orderings

G amenable $\iff #(B_r \cap \ker \phi) \ge (#B_r)^{1-\epsilon}$. *I.e., amenable groups have maximal cogrowth.* Amenability vs_left-ordering

Bounded cohomology

Define group cohomology as usual, except that all cochains are assumed to be bounded functions.

Theorem (B. E. Johnson)

G amenable

ave Witte Morris (Univ. of Lethbridge)

 $\Leftrightarrow H^n_{\text{bdd}}(G;V) = 0, \forall G\text{-module } V \left(\begin{smallmatrix} \text{such that } V \text{ is} \\ a \text{ Banach space} \end{smallmatrix} \right).$

Proof of (\Rightarrow) . If *G* is finite, and |G| is invertible, one proves $H^n(G; V) = 0$ by averaging:

 $\overline{\alpha}(g_1,\ldots,g_n) = \frac{1}{|G|} \sum_{g \in G} \alpha(g,g_1,\ldots,g_n).$ Since *G* is amenable, we can do exactly this kind of averaging for any *bounded* cocycle.

Amonability ve loft-ordoringe

(added after the talk)

I thank the BIRS workshop participants for being such a great audience! The many comments and *auestions during the talk were very stimulating.* Among other things, it was pointed out to me that the corollary near the start about bi-invariant restrictions to a nilpotent subgroup H is valid more generally, for locally nilpotent subgroups.