Ordering Knot Groups

Dale Rolfsen
University of British Columbia
Joint work with Bernard Perron and Adam Clay

January 2012

Ordered groups

A group is left-ordered if there is a strict total ordering $<$ of its elements such that

$$
g<h \quad \text { implies } \quad f g<f h .
$$

If P denotes the set of elements greater than the identity, then
(1) $P \cdot P \subset P$, and
(2) $P \sqcup P^{-1} \sqcup\{1\}=G$.

Conversely, if a group has a subset P satisfying the above, then it is left-ordered by the formula

$$
f<g \Longleftrightarrow f^{-1} g \in P
$$

A group is left-orderable if and only if it is right-orderable.

Ordered groups

If a group has a strict total ordering $<$ which is both right- and left-invariant, we call it bi-orderable. Equivalently, the positive cone P is invariant under conjugation.
A group is indicable if it has the integers as a quotient, and locally indicable if every nontrivial f. g. subgroup is indicable.

Theorem
Bi-orderable \Longrightarrow Locally indicable \Longrightarrow Left-orderable
Neither of these implications is reversible.

Examples

- Abelian groups are bi-orderable iff torsion-free.
- Free groups are bi-orderable.
- Braid groups are left-orderable (Dehornoy) but not bi-orderable
- Pure braid groups are bi-orderable.
- Surface groups are bi-orderable, except the Klein bottle group

$$
\left\langle a, b \mid a^{2}=b^{2}\right\rangle
$$

which is only left-orderable, and the group of the projective plane.

Properties of orderable groups

- Left-ordered groups G are torsion-free and satisfy the zero-divisor conjecture, that is, $\mathbb{Z} G$ has no zero divisors.
- (LaGrange, Rhemtulla) If G is left-orderable and H is any group, then $\mathbb{Z} G \cong \mathbb{Z} H \Longrightarrow G \cong H$.
- Bi-ordered groups have unique roots: $g^{n}=h^{n}, n>0 \Longrightarrow g=h$
- In a bi-ordered group, if g commutes with $h^{n}, n \neq 0$, then g commutes with h.
- If G is bi-ordered, then $\mathbb{Z} G$ embeds in a division ring.

Knot groups

If K is a knot in \mathbb{S}^{3}, its knot group is $\pi_{1}\left(\mathbb{S}^{3} \backslash K\right)$. Another classical knot invariant is the Alexander polynomial $\Delta_{K}(t)$. A knot is said to be fibred if there is a fibre bundle map $\mathbb{S}^{3} \backslash K \rightarrow \mathbb{S}^{1}$ with fibres being open surfaces which have K as boundary in \mathbb{S}^{3}.

Theorem

(1) (Howie-Short) All knot groups are locally indicable, hence left-orderable.
(2) (Perron - R.) If K is fibred and $\Delta_{K}(t)$ has all roots real and positive, then its group is bi-orderable.
3 (Clay-R.) If K is fibred and its group is bi-orderable, then $\Delta_{K}(t)$ has some real positive roots.

Examples

Torus knots: curves which can be inscribed on the surface of an unknotted torus in \mathbb{S}^{3}. For relatively prime integers p, q the torus knot $T_{p, q}$ has group

$$
\left\langle a, b \mid a^{p}=b^{q}\right\rangle .
$$

Note that a commutes with b^{q} but not with b (unless the group is abelian, and the knot unknotted). Therefore:

Proposition

The group of a torus knot is not bi-orderable.

Examples

The figure-eight knot 4_{1}

is fibred and has Alexander polynomial $\Delta_{4_{1}}=t^{2}-3 t+1$ with roots $\frac{3 \pm \sqrt{5}}{2}$, both real and positive. From Theorem 2 we conclude

Proposition

The group of the knot 4_{1} is bi-orderable.

More bi-orderable knot groups

$$
8_{12} \quad 1-7 t+13 t^{2}-7 t^{3}+t^{4}
$$

$$
10_{137} 1-6 t+11 t^{2}-6 t^{3}+t^{4}
$$

$$
\begin{aligned}
& 11 a_{5} 1-9 t+30 t^{2}-45 t^{3}+30 t^{4}-9 t^{5}+t^{6} \\
& 11 n_{142} 1-8 t+15 t^{2}-8 t^{3}+t^{4}
\end{aligned}
$$

More bi-orderable knot groups

More bi-orderable knot groups

More non bi-orderable knot groups

Recall Theorem 3: fibred and bi-orderable $\Longrightarrow \Delta$ has positive roots. This can be used for an alternative proof that torus knots $T_{p, q}$, which are fibred, have non-bi-orderable group, because

$$
\Delta_{T(p, q)}=\frac{\left(t^{p q}-1\right)(t-1)}{\left(t^{p}-1\right)\left(t^{q}-1\right)}
$$

whose roots are on the unit circle and not real.
There are many other fibred knots which have non-biorderable group for similar reasons

More non bi-orderable knot groups

The prime knots with 12 or fewer crossings which are known to have non-bi-orderable group, because they are fibred and have Alexander polynomials without positive real roots, are as follows:
$3_{1}, 5_{1}, 6_{3}, 7_{1}, 7_{7}, 8_{7}, 8_{10}, 8_{16}, 8_{19}, 8_{20}, 9_{1}, 9_{17}, 9_{22}, 9_{26}, 9_{28}, 9_{29}, 9_{31}$, $9_{32}, 9_{44}, 9_{47}, 10_{5}, 10_{17}, 10_{44}, 10_{47}, 10_{48}, 10_{62}, 10_{69}, 10_{73}, 10_{79}, 10_{85}$, $10_{89}, 10_{91}, 10_{99}, 10_{100}, 10_{104}, 10_{109}, 10_{118}, 10_{124}, 10_{125}, 10_{126}, 10_{132}$, $10_{139}, 10_{140}, 10_{143}, 10_{145}, 10_{148}, 10_{151}, 10_{152}, 10_{153}, 10_{154}, 10_{156}, 10_{159}$, $10_{161}, 10_{163}, 11 a_{9}, 11 a_{14}, 11 a_{22}, 11 a_{24}, 11 a_{26}, 11 a_{35}, 11 a_{40}, 11 a_{44}, 11 a_{47}$, $11 a_{53}, 11 a_{72}, 11 a_{73}, 11 a_{74}, 11 a_{76}, 11 a_{80}, 11 a_{83}, 11 a_{88}, 11 a_{106}, 11 a_{109}$, $11 a_{113}, 11 a_{121}, 11 a_{126}, 11 a_{127}, 11 a_{129}, 11 a_{160}, 11 a_{170}, 11 a_{175}, 11 a_{177}$, $11 a_{179}, 11 a_{180}, 11 a_{182}, 11 a_{189}, 11 a_{194}, 11 a_{215}, 11 a_{233}, 11 a_{250}, 11 a_{251}$, $11 a_{253}, 11 a_{257}, 11 a_{261}, 11 a_{266}, 11 a_{274}, 11 a_{287}, 11 a_{288}, 11 a_{289}, 11 a_{293}$, $11 a_{300}, 11 a_{302}, 11 a_{306}, 11 a_{315}, 11 a_{316}$,

More non bi-orderable knot groups

$11 a_{326}, 11 a_{330}, 11 a_{332}, 11 a_{346}, 11 a_{367}, 11 n_{7}, 11 n_{11}, 11 n_{12}, 11 n_{15}, 11 n_{22}$, $11 n_{23}, 11 n_{24}, 11 n_{25}, 11 n_{28}, 11 n_{41}, 11 n_{47}, 11 n_{52}, 11 n_{54}, 11 n_{56}, 11 n_{58}$, $11 n_{61}, 11 n_{74}, 11 n_{76}, 11 n_{77}, 11 n_{78}, 11 n_{82}, 11 n_{87}, 11 n_{92}, 11 n_{96}, 11 n_{106}$, $11 n_{107}, 11 n_{112}, 11 n_{124}, 11 n_{125}, 11 n_{127}, 11 n_{128}, 11 n_{129}, 11 n_{131}, 11 n_{133}$, $11 n_{145}, 11 n_{146}, 11 n_{147}, 11 n_{149}, 11 n_{153}, 11 n_{154}, 11 n_{158}, 11 n_{159}, 11 n_{160}$, $11 n_{167}, 11 n_{168}, 11 n_{173}, 11 n_{176}, 11 n_{182}, 11 n_{183}, 12 a_{0001}, 12 a_{0008}, 12 a_{0011}$, $12 a_{0013}, 12 a_{0015}, 12 a_{0016}, 12 a_{0020}, 12 a_{0024}, 12 a_{0026}, 12 a_{0030}, 12 a_{0033}$, $12 a_{0048}, 12 a_{0058}, 12 a_{0060}, 12 a_{0066}, 12 a_{0070}, 12 a_{0077}, 12 a_{0079}, 12 a_{0080}$, $12 a_{0091}, 12 a_{0099}, 12 a_{0101}, 12 a_{0111}, 12 a_{0115}, 12 a_{0119}, 12 a_{0134}, 12 a_{0139}$, $12 a_{0141}, 12 a_{0142}, 12 a_{0146}, 12 a_{0157}, 12 a_{0184}, 12 a_{0186}, 12 a_{0188}, 12 a_{0190}$, $12 a_{0209}, 12 a_{0214}, 12 a_{0217}, 12 a_{0219}, 12 a_{0222}, 12 a_{0245}, 12 a_{0246}, 12 a_{0250}$, $12 a_{0261}, 12 a_{0265}, 12 a_{0268}, 12 a_{0271}, 12 a_{0281}, 12 a_{0299}, 12 a_{0316}, 12 a_{0323}$, $12 a_{0331}, 12 a_{0333}, 12 a_{0334}, 12 a_{0349}$,

More non bi-orderable knot groups

$12 a_{0351}, 12 a_{0362}, 12 a_{0363}, 12 a_{0369}, 12 a_{0374}, 12 a_{0386}, 12 a_{0396}, 12 a_{0398}$, $12 a_{0426}, 12 a_{0439}, 12 a_{0452}, 12 a_{0464}, 12 a_{0466}, 12 a_{0469}, 12 a_{0473}, 12 a_{0476}$, $12 a_{0477}, 12 a_{0479}, 12 a_{0497}, 12 a_{0499}, 12 a_{0515}, 12 a_{0536}, 12 a_{0561}, 12 a_{0565}$, $12 a_{0569}, 12 a_{0576}, 12 a_{0579}, 12 a_{0629}, 12 a_{0662}, 12 a_{0696}, 12 a_{0697}, 12 a_{0699}$, $12 a_{0700}, 12 a_{0706}, 12 a_{0707}, 12 a_{0716}, 12 a_{0815}, 12 a_{0824}, 12 a_{0835}, 12 a_{0859}$, $12 a_{0864}, 12 a_{0867}, 12 a_{0878}, 12 a_{0898}, 12 a_{0916}, 12 a_{0928}, 12 a_{0935}, 12 a_{0981}$, $12 a_{0984}, 12 a_{0999}, 12 a_{1002}, 12 a_{1013}, 12 a_{1027}, 12 a_{1047}, 12 a_{1065}, 12 a_{1076}$, $12 a_{1105}, 12 a_{1114}, 12 a_{1120}, 12 a_{1122}, 12 a_{1128}, 12 a_{1168}, 12 a_{1176}, 12 a_{1188}$, $12 a_{1203}, 12 a_{1219}, 12 a_{1220}, 12 a_{1221}, 12 a_{1226}, 12 a_{1227}, 12 a_{1230}, 12 a_{1238}$, $12 a_{1246}, 12 a_{1248}, 12 a_{1253}, 12 n_{0005}, 12 n_{0006}, 12 n_{0007}, 12 n_{0010}, 12 n_{0016}$, $12 n_{0019}, 12 n_{0020}, 12 n_{0038}, 12 n_{0041}, 12 n_{0042}, 12 n_{0052}, 12 n_{0064}, 12 n_{0070}$, $12 n_{0073}, 12 n_{0090}, 12 n_{0091}, 12 n_{0092}, 12 n_{0098}, 12 n_{0104}, 12 n_{0105}, 12 n_{0106}$, $12 n_{0113}, 12 n_{0115}, 12 n_{0120}, 12 n_{0121}, 12 n_{0125}, 12 n_{0135}$,

More non bi-orderable knot groups

$12 n_{0136}, 12 n_{0137}, 12 n_{0139}, 12 n_{0142}, 12 n_{0148}, 12 n_{0150}, 12 n_{0151}, 12 n_{0156}$, $12 n_{0157}, 12 n_{0165}, 12 n_{0174}, 12 n_{0175}, 12 n_{0184}, 12 n_{0186}, 12 n_{0187}, 12 n_{0188}$, $12 n_{0190}, 12 n_{0192}, 12 n_{0198}, 12 n_{0199}, 12 n_{0205}, 12 n_{0226}, 12 n_{0230}, 12 n_{0233}$, $12 n_{0235}, 12 n_{0242}, 12 n_{0261}, 12 n_{0272}, 12 n_{0276}, 12 n_{0282}, 12 n_{0285}, 12 n_{0296}$, $12 n_{0309}, 12 n_{0318}, 12 n_{0326}, 12 n_{0327}, 12 n_{0328}, 12 n_{0329}, 12 n_{0344}, 12 n_{0346}$, $12 n_{0347}, 12 n_{0348}, 12 n_{0350}, 12 n_{0352}, 12 n_{0354}, 12 n_{0355}, 12 n_{0362}, 12 n_{0366}$, $12 n_{0371}, 12 n_{0372}, 12 n_{0377}, 12 n_{0390}, 12 n_{0392}, 12 n_{0401}, 12 n_{0402}, 12 n_{0405}$, $12 n_{0409}, 12 n_{0416}, 12 n_{0417}, 12 n_{0423}, 12 n_{0425}, 12 n_{0426}, 12 n_{0427}, 12 n_{0437}$, $12 n_{0439}, 12 n_{0449}, 12 n_{0451}, 12 n_{0454}, 12 n_{0456}, 12 n_{0458}, 12 n_{0459}, 12 n_{0460}$, $12 n_{0466}, 12 n_{0468}, 12 n_{0472}, 12 n_{0475}, 12 n_{0484}, 12 n_{0488}, 12 n_{0495}, 12 n_{0505}$, $12 n_{0506}, 12 n_{0508}, 12 n_{0514}, 12 n_{0517}, 12 n_{0518}, 12 n_{0522}, 12 n_{0526}, 12 n_{0528}$, $12 n_{0531}, 12 n_{0538}$,

More non bi-orderable knot groups

$12 n_{0543}, 12 n_{0549}, 12 n_{0555}, 12 n_{0558}, 12 n_{0570}, 12 n_{0574}, 12 n_{0577}, 12 n_{0579}$, $12 n_{0582}, 12 n_{0591}, 12 n_{0592}, 12 n_{0598}, 12 n_{0601}, 12 n_{0604}, 12 n_{0609}, 12 n_{0610}$, $12 n_{0613}, 12 n_{0619}, 12 n_{0621}, 12 n_{0623}, 12 n_{0627}, 12 n_{0629}, 12 n_{0634}, 12 n_{0640}$, $12 n_{0641}, 12 n_{0642}, 12 n_{0647}, 12 n_{0649}, 12 n_{0657}, 12 n_{0658}, 12 n_{0660}, 12 n_{0666}$, $12 n_{0668}, 12 n_{0670}, 12 n_{0672}, 12 n_{0673}, 12 n_{0675}, 12 n_{0679}, 12 n_{0681}, 12 n_{0683}$, $12 n_{0684}, 12 n_{0686}, 12 n_{0688}, 12 n_{0690}, 12 n_{0694}, 12 n_{0695}, 12 n_{0697}, 12 n_{0703}$, $12 n_{0707}, 12 n_{0708}, 12 n_{0709}, 12 n_{0711}, 12 n_{0717}, 12 n_{0719}, 12 n_{0721}, 12 n_{0725}$, $12 n_{0730}, 12 n_{0739}, 12 n_{0747}, 12 n_{0749}, 12 n_{0751}, 12 n_{0754}, 12 n_{0761}, 12 n_{0762}$, $12 n_{0781}, 12 n_{0790}, 12 n_{0791}, 12 n_{0798}, 12 n_{0802}, 12 n_{0803}, 12 n_{0835}, 12 n_{0837}$, $12 n_{0839}, 12 n_{0842}, 12 n_{0848}, 12 n_{0850}, 12 n_{0852}, 12 n_{0866}, 12 n_{0871}, 12 n_{0887}$, $12 n_{0888}$.

Proof sketches

Let us now turn to the proofs of the three theorems:
Theorem
(1) (Howie-Short) All knot groups are locally indicable, hence left-orderable.
(2) (Perron - R.) If K is fibred and $\Delta_{K}(t)$ has all roots real and positive, then its group is bi-orderable.
(3) (Clay-R.) If K is fibred and its group is bi-orderable, then $\Delta_{K}(t)$ has some real positive roots.

First, the local indicability of knot groups.

Knots groups are locally indicable

Consider a knot complement $X=\mathbb{S}^{3} \backslash K$. And the knot group $\pi_{1}(X)$. $\pi_{1}(X)$ is indicable, using the (surjective) Hurewicz homomorphism

$$
\pi_{1}(X) \rightarrow H_{1}(X) \cong \mathbb{Z}
$$

To show $\pi_{1}(X)$ is locally indicable, consider a finitely generated nontrivial subgroup $H<\pi_{1}(X)$. We need to find a surjection $H \rightarrow \mathbb{Z}$.

Case 1: H has finite index. This is easy; the Hurewicz map takes H to a finite index subgroup of \mathbb{Z}, which is therefore a copy of \mathbb{Z}.

Knots groups are locally indicable

Case 2: H has infinite index. Then there is a covering $p: \tilde{X} \rightarrow X$ with $p_{*} \pi_{1}(\tilde{X})=H$. \tilde{X} is noncompact, but its fundamental group is f . g. so, by a theorem of Scott, there is a compact submanifold $C \subset \tilde{X}$ with inclusion inducing an isomorphism $\pi_{1}(C) \cong \pi_{1}(\tilde{X}) \cong H$.
C necessarily has nonempty boundary. If $B \subset \partial C$ is a boundary component which is a sphere, then irreducibility implies that B bounds a 3-ball in \tilde{X}. That 3-ball either contains C or its interior is disjoint from C, and the former can't happen because that would imply the inclusion map $\pi_{1}(C) \rightarrow \pi_{1}(\tilde{X})$ is trivial. Therefore, we can adjoint that 3-ball to C removing B as a boundary component and not changing $\pi_{1}(C)$. This process allows us to assume that ∂C is nonempty and has infinite homology groups. By an Euler characteristic argument, we conclude that C also has infinite homology. Then we have surjections $H \cong \pi_{1}(C) \rightarrow H_{1}(C) \rightarrow \mathbb{Z}$ as required.

Theorem 2: Positive roots implies bi-orderable

As motivation, consider a matrix in Jordan normal form multiplied by a vector, such as:

$$
\left(\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} x_{1}+x_{2} \\
\lambda_{1} x_{2} \\
\lambda_{2} x_{3}
\end{array}\right)
$$

Now, declaring a vector (in \mathbb{R}^{3}) to be "positive" if its last nonzero entry is greater than zero, we see that, if also the eigenvectors λ_{i} are positive, then multiplication by such a matrix preserves that positive cone of \mathbb{R}^{3}, considered as an additive group. So we see

Proposition
 If all the eigenvalues of a linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are real and positive, then there is a bi-ordering of \mathbb{R}^{n} which is preserved by L.

Theorem 2: Positive roots implies bi-orderable

A fibration $X \rightarrow S^{1}$ with fibre S can be considered as the mapping cylinder of a (monodromy) homeomorphism $h: S \rightarrow S$:

$$
X \cong \frac{S \times[0,1]}{(x, 1) \sim(h(x), 0)}
$$

For a fibred knot with $X=\mathbb{S}^{3} \backslash K$ the Alexander polynomial is just the characteristic polynomial of the homology monodromy $H_{1}(S) \rightarrow H_{1}(S)$. Also, the knot group $\pi_{1}(X)$ is an HNN extension of the free group $\pi_{1}(S)$, corresponding to the homotopy monodromy $h_{*}: \pi_{1}(S) \rightarrow \pi_{1}(S)$, where $\pi_{1}(S) \cong\left\langle x_{1}, \ldots, x_{2 g}\right\rangle$ is a free group.

$$
\pi_{1}(X) \cong\left\langle x_{1}, \ldots, x_{2 g}, t \mid h_{*}\left(x_{i}\right)=t x_{i} t^{-1}\right\rangle
$$

This group is bi-orderable if and only if there is a bi-ordering of $\pi_{1}(S)$ which is preserved by h_{*}.

Theorem 2: Positive roots implies bi-orderable

So our problem reduces to showing:

Proposition

Let F be a finitely generated free group and $h: F \rightarrow F$ an automorphism. If all the eigenvalues of $h_{*}: H_{1}(F ; \mathbb{Q}) \rightarrow H_{1}(F ; \mathbb{Q})$ are real and positive, then there is a bi-ordering of F preserved by h.

One way to order a free group F is to use the lower central series $F_{1} \supset F_{2} \supset \cdots$ defined by

$$
F_{1}=F, \quad F_{i+1}=\left[F, F_{i}\right]
$$

Which has the properties that $\bigcap F_{i}=\{1\}$ and F_{i} / F_{i+1} is free abelian. Choose an arbitrary bi-ordering of F_{i} / F_{i+1}, and define a positive cone of F by declaring $1 \neq x \in F$ positive if its class in F_{i} / F_{i+1} is positive in the chosen ordering, where i is the last subscript such that $x \in F_{i}$.

Theorem 2: Positive roots implies bi-orderable

If $h: F \rightarrow F$ is an automorphism it preserves the lower central series and induces maps of the lower central quotients: $h_{i}: F_{i} / F_{i+1} \rightarrow F_{i} / F_{i+1}$. With this notation, h_{1} is just the abelianization $h_{a b}$. In a sense, all the h_{i} are determined by h_{1}. That is, there is an embedding of F_{i} / F_{i+1} in the tensor power $F_{a b}^{\otimes k}$, and the map h_{i} is just the restriction of $h_{a b}^{\otimes k}$.
The assumption that all eigenvalues of $h_{a b}$ are real and positive implies that the same is true of all its tensor powers.
This allows us to find bi-orderings of the free abelian groups F_{i} / F_{i+1} which are invariant under h_{i}. Using these to bi-order F, we get invariance under h, which proves the proposition.

Theorem 3: Bi-orderable implies some positive roots

We now turn to the proof of our third theorem: If K is fibred and its group is bi-orderable, then $\Delta_{K}(t)$ has some real positive roots. Recall that the knot group is an HNN extension of a free group, and is bi-orderable if and only if the homotopy monodromy map preserves a bi-ordering of the free group. Moreover, $\Delta_{K}(t)$ is the characteristic polynomial of the homology monodromy.
Our third theorem will follow from a more general result. If $\phi: G \rightarrow G$ is an automorphism, we can define its eigenvalues to be the eigenvalues of its induced map on the rational vector space $H_{1}(G, \mathbb{Q}) \cong G_{a b} \otimes \mathbb{Q}$.

Theorem

Suppose G is a nontrivial finitely generated bi-orderable group and that $\phi: G \rightarrow G$ preserves a bi-ordering of G. Then ϕ has a positive eigenvalue.

Theorem 3: Bi-orderable implies some positive roots

The idea is to consider the induced map ϕ_{*}, which can be considered as a linear transformation of \mathbb{Q}^{n}, which we regard as a subset of \mathbb{R}^{n}. If ϕ_{*} preserves an ordering of \mathbb{Q}^{n}, there is a hyperplane $H \subset \mathbb{R}^{n}$ defined by $H=\left\{x \in \mathbb{R}^{n} \mid\right.$ every nbhd. of x contains positive and negative points $\}$ H separates \mathbb{R}^{n} and is invariant under ϕ_{*}.
Consider the unit sphere \mathbb{S}^{n-1} of R^{n}, and let D denote the closed hemisphere of \mathbb{S}^{n-1} which lies on the "positive" side of H. There is a mapping $D \rightarrow D$ defined by

$$
x \rightarrow \phi_{*}(x) /\left|\phi_{*}(x)\right|
$$

Since D is an $(n-1)$-ball, this map has a fixed point (Brouwer). This fixed point corresponds to an eigenvector of ϕ_{*}, which has a positive real eigenvalue.

Surgery

We conclude with some applications to surgery on a knot K in \mathbb{S}^{3}. One removes a tubular neighborhood of K and attaches a solid torus $\mathbb{S}^{1} \times D^{2}$ so that the meridian $\{*\} \times S^{1}$ is attached to a specified "framing" curve on the boundary of the neighborhood.

Theorem

Suppose K is a fibred knot in S^{3} and nontrivial surgery on K produces a 3-manifold M whose fundamental group is bi-orderable. Then the surgery must be longitudinal (that is, 0 -framed) and $\Delta_{K}(t)$ has a positive real root. Moreover, M fibres over S^{1}.

Surgery

Ozsváth and Szabó define an L-space to be a closed 3-manifold M such that $H_{1}(M ; \mathbb{Q})=0$ and its Heegaard-Floer homology $\widehat{H F}(M)$ is a free abelian group of rank equal to $\left|H_{1}(M ; \mathbb{Z})\right|$. Lens spaces, and more generally 3 -manifolds with finite fundamental group are examples of L-spaces.

Theorem

If surgery on a knot K in S^{3} results in an L-space, then the knot group $\pi_{1}\left(S^{3} \backslash K\right)$ is not bi-orderable.

