Ordering Knot Groups

Dale Rolfsen

University of British Columbia Joint work with Bernard Perron and Adam Clay

January 2012

A group is left-ordered if there is a strict total ordering < of its elements such that

$$g < h$$
 implies $fg < fh$.

If P denotes the set of elements greater than the identity, then

•
$$P \cdot P \subset P$$
, and
• $P \sqcup P^{-1} \sqcup \{1\} = G$.

Conversely, if a group has a subset P satisfying the above, then it is left-ordered by the formula

$$f < g \iff f^{-1}g \in P$$

A group is left-orderable if and only if it is right-orderable.

If a group has a strict total ordering < which is both right- and left-invariant, we call it bi-orderable. Equivalently, the positive cone P is invariant under conjugation.

A group is indicable if it has the integers as a quotient, and locally indicable if every nontrivial f. g. subgroup is indicable.

Theorem

Bi-orderable \implies Locally indicable \implies Left-orderable

Neither of these implications is reversible.

- Abelian groups are bi-orderable iff torsion-free.
- Free groups are bi-orderable.
- Braid groups are left-orderable (Dehornoy) but not bi-orderable
- Pure braid groups are bi-orderable.
- Surface groups are bi-orderable, except the Klein bottle group

$$\langle a, b | a^2 = b^2 \rangle$$

which is only left-orderable, and the group of the projective plane.

Properties of orderable groups

- Left-ordered groups G are torsion-free and satisfy the zero-divisor conjecture, that is, $\mathbb{Z}G$ has no zero divisors.
- (LaGrange, Rhemtulla) If G is left-orderable and H is any group, then $\mathbb{Z}G \cong \mathbb{Z}H \implies G \cong H$.
- Bi-ordered groups have unique roots: $g^n = h^n$, $n > 0 \implies g = h$
- In a bi-ordered group, if g commutes with h^n , $n \neq 0$, then g commutes with h.
- If G is bi-ordered, then $\mathbb{Z}G$ embeds in a division ring.

Knot groups

If K is a knot in \mathbb{S}^3 , its knot group is $\pi_1(\mathbb{S}^3 \setminus K)$. Another classical knot invariant is the Alexander polynomial $\Delta_K(t)$. A knot is said to be fibred if there is a fibre bundle map $\mathbb{S}^3 \setminus K \to \mathbb{S}^1$ with fibres being open surfaces which have K as boundary in \mathbb{S}^3 .

Theorem

- (Howie-Short) All knot groups are locally indicable, hence left-orderable.
- (Perron R.) If K is fibred and $\Delta_K(t)$ has all roots real and positive, then its group is bi-orderable.
- Some real positive roots. (Clay-R.) If K is fibred and its group is bi-orderable, then $\Delta_{K}(t)$ has some real positive roots.

Torus knots: curves which can be inscribed on the surface of an unknotted torus in \mathbb{S}^3 . For relatively prime integers p, q the torus knot $T_{p,q}$ has group

$$\langle a, b | a^p = b^q \rangle.$$

Note that a commutes with b^q but not with b (unless the group is abelian, and the knot unknotted). Therefore:

Proposition

The group of a torus knot is not bi-orderable.

Examples

The figure-eight knot 4₁ is fibred and has Alexander
polynomial
$$\Delta_{4_1} = t^2 - 3t + 1$$
 with roots $\frac{3 \pm \sqrt{5}}{2}$, both real and positive.
From Theorem 2 we conclude
Proposition

The group of the knot 4_1 is bi-orderable.

More bi-orderable knot groups

More bi-orderable knot groups

$$12a_{0125} 1 - 12t + 44t^{2} - 67t^{3} + 44t^{4} - 12t^{5} + t^{6}$$
$$12a_{0181} 1 - 11t + 40t^{2} - 61t^{3} + 40t^{4} - 11t^{5} + t^{6}$$
$$12a_{1124} 1 - 13t + 50t^{2} - 77t^{3} + 50t^{4} - 13t^{5} + t^{6}$$

 $12n_{0013} 1 - 7t + 13t^2 - 7t^3 + t^4$

More bi-orderable knot groups

$$12n_{0145} \ 1 - 6t + 11t^2 - 6t^3 + t^4$$

$$12n_{0462} \ 1 - 6t + 11t^2 - 6t^3 + t^4$$

$$12n_{0838} 1 - 6t + 11t^2 - 6t^3 + t^4$$

Recall Theorem 3: fibred and bi-orderable $\implies \Delta$ has positive roots. This can be used for an alternative proof that torus knots $T_{p,q}$, which are fibred, have non-bi-orderable group, because

$$\Delta_{T(p,q)} = \frac{(t^{pq} - 1)(t - 1)}{(t^p - 1)(t^q - 1)}$$

whose roots are on the unit circle and not real.

There are many other fibred knots which have non-biorderable group for similar reasons

The prime knots with 12 or fewer crossings which are known to have nonbi-orderable group, because they are fibred and have Alexander polynomials without positive real roots, are as follows:

 $\begin{array}{l} 3_1, \ 5_1, \ 6_3, \ 7_1, \ 7_7, \ 8_7, \ 8_{10}, \ 8_{16}, \ 8_{19}, \ 8_{20}, \ 9_1, \ 9_{17}, \ 9_{22}, \ 9_{26}, \ 9_{28}, \ 9_{29}, \ 9_{31}, \\ 9_{32}, \ 9_{44}, \ 9_{47}, \ 10_5, \ 10_{17}, \ 10_{44}, \ 10_{47}, \ 10_{48}, \ 10_{62}, \ 10_{69}, \ 10_{73}, \ 10_{79}, \ 10_{85}, \\ 10_{89}, \ 10_{91}, \ 10_{99}, \ 10_{100}, \ 10_{104}, \ 10_{109}, \ 10_{118}, \ 10_{124}, \ 10_{125}, \ 10_{126}, \ 10_{132}, \\ 10_{139}, \ 10_{140}, \ 10_{143}, \ 10_{145}, \ 10_{148}, \ 10_{151}, \ 10_{152}, \ 10_{153}, \ 10_{154}, \ 10_{156}, \ 10_{159}, \\ 10_{161}, \ 10_{163}, \ 11a_{9}, \ 11a_{14}, \ 11a_{22}, \ 11a_{24}, \ 11a_{26}, \ 11a_{35}, \ 11a_{40}, \ 11a_{44}, \ 11a_{47}, \\ 11a_{53}, \ 11a_{72}, \ 11a_{73}, \ 11a_{74}, \ 11a_{76}, \ 11a_{80}, \ 11a_{83}, \ 11a_{88}, \ 11a_{106}, \ 11a_{109}, \\ 11a_{113}, \ 11a_{121}, \ 11a_{126}, \ 11a_{127}, \ 11a_{129}, \ 11a_{160}, \ 11a_{170}, \ 11a_{175}, \ 11a_{177}, \\ 11a_{179}, \ 11a_{180}, \ 11a_{182}, \ 11a_{189}, \ 11a_{194}, \ 11a_{215}, \ 11a_{233}, \ 11a_{250}, \ 11a_{251}, \\ 11a_{253}, \ 11a_{257}, \ 11a_{261}, \ 11a_{266}, \ 11a_{274}, \ 11a_{287}, \ 11a_{288}, \ 11a_{289}, \ 11a_{293}, \\ 11a_{300}, \ 11a_{302}, \ 11a_{315}, \ 11a_{316}, \end{array}$

 $11a_{326}, 11a_{330}, 11a_{332}, 11a_{346}, 11a_{367}, 11n_7, 11n_{11}, 11n_{12}, 11n_{15}, 11n_{22}, 11n_{22}, 11n_{23}, 11$ $11n_{23}, 11n_{24}, 11n_{25}, 11n_{28}, 11n_{41}, 11n_{47}, 11n_{52}, 11n_{54}, 11n_{56}, 11n_{58},$ $11n_{61}, 11n_{74}, 11n_{76}, 11n_{77}, 11n_{78}, 11n_{82}, 11n_{87}, 11n_{92}, 11n_{96}, 11n_{106},$ $11n_{107}$, $11n_{112}$, $11n_{124}$, $11n_{125}$, $11n_{127}$, $11n_{128}$, $11n_{129}$, $11n_{131}$, $11n_{133}$, $11n_{145}$, $11n_{146}$, $11n_{147}$, $11n_{149}$, $11n_{153}$, $11n_{154}$, $11n_{158}$, $11n_{159}$, $11n_{160}$, $11n_{167}, 11n_{168}, 11n_{173}, 11n_{176}, 11n_{182}, 11n_{183}, 12a_{0001}, 12a_{0008}, 12a_{0011},$ $12a_{0013}, 12a_{0015}, 12a_{0016}, 12a_{0020}, 12a_{0024}, 12a_{0026}, 12a_{0030}, 12a_{0033},$ $12a_{0048}, 12a_{0058}, 12a_{0060}, 12a_{0066}, 12a_{0070}, 12a_{0077}, 12a_{0079}, 12a_{0080},$ $12a_{0091}, 12a_{0099}, 12a_{0101}, 12a_{0111}, 12a_{0115}, 12a_{0119}, 12a_{0134}, 12a_{0139},$ $12a_{0141}, 12a_{0142}, 12a_{0146}, 12a_{0157}, 12a_{0184}, 12a_{0186}, 12a_{0188}, 12a_{0190},$ $12a_{0209}, 12a_{0214}, 12a_{0217}, 12a_{0219}, 12a_{0222}, 12a_{0245}, 12a_{0246}, 12a_{0250},$ $12a_{0261}$, $12a_{0265}$, $12a_{0268}$, $12a_{0271}$, $12a_{0281}$, $12a_{0299}$, $12a_{0316}$, $12a_{0323}$, $12a_{0331}$, $12a_{0333}$, $12a_{0334}$, $12a_{0349}$,

More non bi-orderable knot groups

 $12a_{0351}, 12a_{0362}, 12a_{0363}, 12a_{0369}, 12a_{0374}, 12a_{0386}, 12a_{0396}, 12a_{0398},$ $12a_{0426}, 12a_{0439}, 12a_{0452}, 12a_{0464}, 12a_{0466}, 12a_{0469}, 12a_{0473}, 12a_{0476},$ $12a_{0477}$, $12a_{0479}$, $12a_{0497}$, $12a_{0499}$, $12a_{0515}$, $12a_{0536}$, $12a_{0561}$, $12a_{0565}$, $12a_{0569}, 12a_{0576}, 12a_{0579}, 12a_{0629}, 12a_{0662}, 12a_{0696}, 12a_{0697}, 12a_{0699},$ $12a_{0700}, 12a_{0706}, 12a_{0707}, 12a_{0716}, 12a_{0815}, 12a_{0824}, 12a_{0835}, 12a_{0859},$ $12a_{0864}, 12a_{0867}, 12a_{0878}, 12a_{0898}, 12a_{0916}, 12a_{0928}, 12a_{0935}, 12a_{0981},$ $12a_{0984}, 12a_{0999}, 12a_{1002}, 12a_{1013}, 12a_{1027}, 12a_{1047}, 12a_{1065}, 12a_{1076},$ $12a_{1105}, 12a_{1114}, 12a_{1120}, 12a_{1122}, 12a_{1128}, 12a_{1168}, 12a_{1176}, 12a_{1188},$ $12a_{1203}, 12a_{1219}, 12a_{1220}, 12a_{1221}, 12a_{1226}, 12a_{1227}, 12a_{1230}, 12a_{1238},$ $12a_{1246}, 12a_{1248}, 12a_{1253}, 12n_{0005}, 12n_{0006}, 12n_{0007}, 12n_{0010}, 12n_{0016},$ $12n_{0019}, 12n_{0020}, 12n_{0038}, 12n_{0041}, 12n_{0042}, 12n_{0052}, 12n_{0064}, 12n_{0070},$ $12n_{0073}$, $12n_{0090}$, $12n_{0091}$, $12n_{0092}$, $12n_{0098}$, $12n_{0104}$, $12n_{0105}$, $12n_{0106}$, $12n_{0113}, 12n_{0115}, 12n_{0120}, 12n_{0121}, 12n_{0125}, 12n_{0135},$

More non bi-orderable knot groups

 $12n_{0136}, 12n_{0137}, 12n_{0139}, 12n_{0142}, 12n_{0148}, 12n_{0150}, 12n_{0151}, 12n_{0156},$ $12n_{0157}, 12n_{0165}, 12n_{0174}, 12n_{0175}, 12n_{0184}, 12n_{0186}, 12n_{0187}, 12n_{0188},$ $12n_{0190}, 12n_{0192}, 12n_{0198}, 12n_{0199}, 12n_{0205}, 12n_{0226}, 12n_{0230}, 12n_{0233},$ $12n_{0235}$, $12n_{0242}$, $12n_{0261}$, $12n_{0272}$, $12n_{0276}$, $12n_{0282}$, $12n_{0285}$, $12n_{0296}$, $12n_{0309}$, $12n_{0318}$, $12n_{0326}$, $12n_{0327}$, $12n_{0328}$, $12n_{0329}$, $12n_{0344}$, $12n_{0346}$, $12n_{0347}$, $12n_{0348}$, $12n_{0350}$, $12n_{0352}$, $12n_{0354}$, $12n_{0355}$, $12n_{0362}$, $12n_{0366}$, $12n_{0371}$, $12n_{0372}$, $12n_{0377}$, $12n_{0390}$, $12n_{0392}$, $12n_{0401}$, $12n_{0402}$, $12n_{0405}$, $12n_{0409}$, $12n_{0416}$, $12n_{0417}$, $12n_{0423}$, $12n_{0425}$, $12n_{0426}$, $12n_{0427}$, $12n_{0437}$, $12n_{0439}$, $12n_{0449}$, $12n_{0451}$, $12n_{0454}$, $12n_{0456}$, $12n_{0458}$, $12n_{0459}$, $12n_{0460}$, $12n_{0466}, 12n_{0468}, 12n_{0472}, 12n_{0475}, 12n_{0484}, 12n_{0488}, 12n_{0495}, 12n_{0505},$ $12n_{0506}$, $12n_{0508}$, $12n_{0514}$, $12n_{0517}$, $12n_{0518}$, $12n_{0522}$, $12n_{0526}$, $12n_{0528}$, $12n_{0531}, 12n_{0538},$

More non bi-orderable knot groups

 $12n_{0543}, 12n_{0549}, 12n_{0555}, 12n_{0558}, 12n_{0570}, 12n_{0574}, 12n_{0577}, 12n_{0579},$ $12n_{0582}$, $12n_{0591}$, $12n_{0592}$, $12n_{0598}$, $12n_{0601}$, $12n_{0604}$, $12n_{0609}$, $12n_{0610}$, $12n_{0613}, 12n_{0619}, 12n_{0621}, 12n_{0623}, 12n_{0627}, 12n_{0629}, 12n_{0634}, 12n_{0640},$ $12n_{0641}$, $12n_{0642}$, $12n_{0647}$, $12n_{0649}$, $12n_{0657}$, $12n_{0658}$, $12n_{0660}$, $12n_{0666}$, $12n_{0668}, 12n_{0670}, 12n_{0672}, 12n_{0673}, 12n_{0675}, 12n_{0679}, 12n_{0681}, 12n_{0683},$ $12n_{0684}, 12n_{0686}, 12n_{0688}, 12n_{0690}, 12n_{0694}, 12n_{0695}, 12n_{0697}, 12n_{0703},$ $12n_{0707}, 12n_{0708}, 12n_{0709}, 12n_{0711}, 12n_{0717}, 12n_{0719}, 12n_{0721}, 12n_{0725},$ $12n_{0730}$, $12n_{0739}$, $12n_{0747}$, $12n_{0749}$, $12n_{0751}$, $12n_{0754}$, $12n_{0761}$, $12n_{0762}$, $12n_{0781}$, $12n_{0790}$, $12n_{0791}$, $12n_{0798}$, $12n_{0802}$, $12n_{0803}$, $12n_{0835}$, $12n_{0837}$, $12n_{0839}$, $12n_{0842}$, $12n_{0848}$, $12n_{0850}$, $12n_{0852}$, $12n_{0866}$, $12n_{0871}$, $12n_{0887}$, 12*n*₀₈₈₈.

Let us now turn to the proofs of the three theorems:

Theorem

- (Howie-Short) All knot groups are locally indicable, hence left-orderable.
- (Perron R.) If K is fibred and $\Delta_K(t)$ has all roots real and positive, then its group is bi-orderable.
- (Clay-R.) If K is fibred and its group is bi-orderable, then $\Delta_{K}(t)$ has some real positive roots.

First, the local indicability of knot groups.

Consider a knot complement $X = \mathbb{S}^3 \setminus K$. And the knot group $\pi_1(X)$. $\pi_1(X)$ is indicable, using the (surjective) Hurewicz homomorphism

$$\pi_1(X) o H_1(X) \cong \mathbb{Z}$$

To show $\pi_1(X)$ is locally indicable, consider a finitely generated nontrivial subgroup $H < \pi_1(X)$. We need to find a surjection $H \to \mathbb{Z}$.

Case 1: *H* has finite index. This is easy; the Hurewicz map takes *H* to a finite index subgroup of \mathbb{Z} , which is therefore a copy of \mathbb{Z} .

Knots groups are locally indicable

Case 2: *H* has infinite index. Then there is a covering $p : \tilde{X} \to X$ with $p_*\pi_1(\tilde{X}) = H$. \tilde{X} is noncompact, but its fundamental group is f. g. so, by a theorem of Scott, there is a compact submanifold $C \subset \tilde{X}$ with inclusion inducing an isomorphism $\pi_1(C) \cong \pi_1(\tilde{X}) \cong H$. *C* necessarily has nonempty boundary. If $B \subset \partial C$ is a boundary component which is a sphere, then irreducibility implies that B bounds a 3-ball in \tilde{X} . That 3-ball either contains C or its interior is disjoint from C, and the former can't happen because that would imply the inclusion map $\pi_1(C) \to \pi_1(\tilde{X})$ is trivial. Therefore, we can adjoint that 3-ball to C removing B as a boundary component and not changing $\pi_1(C)$. This process allows us to assume that ∂C is nonempty and has infinite homology groups. By an Euler characteristic argument, we conclude that C also has infinite homology. Then we have surjections $H \cong \pi_1(C) \to H_1(C) \to \mathbb{Z}$ as required.

Theorem 2: Positive roots implies bi-orderable

As motivation, consider a matrix in Jordan normal form multiplied by a vector, such as:

$$\left(\begin{array}{ccc}\lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2\end{array}\right) \left(\begin{array}{c}x_1\\ x_2\\ x_3\end{array}\right) = \left(\begin{array}{c}\lambda_1 x_1 + x_2\\ \lambda_1 x_2\\ \lambda_2 x_3\end{array}\right)$$

Now, declaring a vector (in \mathbb{R}^3) to be "positive" if its last nonzero entry is greater than zero, we see that, if also the eigenvectors λ_i are positive, then multiplication by such a matrix preserves that positive cone of \mathbb{R}^3 , considered as an additive group. So we see

Proposition

If all the eigenvalues of a linear transformation $L : \mathbb{R}^n \to \mathbb{R}^n$ are real and positive, then there is a bi-ordering of \mathbb{R}^n which is preserved by L.

Theorem 2: Positive roots implies bi-orderable

A fibration $X \to S^1$ with fibre S can be considered as the mapping cylinder of a (monodromy) homeomorphism $h: S \to S$:

$$X \cong \frac{S \times [0,1]}{(x,1) \sim (h(x),0)}$$

For a fibred knot with $X = \mathbb{S}^3 \setminus K$ the Alexander polynomial is just the characteristic polynomial of the homology monodromy $H_1(S) \to H_1(S)$. Also, the knot group $\pi_1(X)$ is an HNN extension of the free group $\pi_1(S)$, corresponding to the homotopy monodromy $h_* : \pi_1(S) \to \pi_1(S)$, where $\pi_1(S) \cong \langle x_1, \ldots, x_{2g} \rangle$ is a free group.

$$\pi_1(X) \cong \langle x_1, \ldots, x_{2g}, t | h_*(x_i) = t x_i t^{-1} \rangle$$

This group is bi-orderable if and only if there is a bi-ordering of $\pi_1(S)$ which is preserved by h_* .

Dale Rolfsen (2012)

Theorem 2: Positive roots implies bi-orderable

So our problem reduces to showing:

Proposition

Let F be a finitely generated free group and $h: F \to F$ an automorphism. If all the eigenvalues of $h_*: H_1(F; \mathbb{Q}) \to H_1(F; \mathbb{Q})$ are real and positive, then there is a bi-ordering of F preserved by h.

One way to order a free group F is to use the lower central series $F_1 \supset F_2 \supset \cdots$ defined by

$$F_1 = F, \quad F_{i+1} = [F, F_i]$$

Which has the properties that $\bigcap F_i = \{1\}$ and F_i/F_{i+1} is free abelian. Choose an arbitrary bi-ordering of F_i/F_{i+1} , and define a positive cone of F by declaring $1 \neq x \in F$ positive if its class in F_i/F_{i+1} is positive in the chosen ordering, where i is the last subscript such that $x \in F_i$. If $h: F \to F$ is an automorphism it preserves the lower central series and induces maps of the lower central quotients: $h_i: F_i/F_{i+1} \to F_i/F_{i+1}$. With this notation, h_1 is just the abelianization h_{ab} . In a sense, all the h_i are determined by h_1 . That is, there is an embedding of F_i/F_{i+1} in the tensor power $F_{ab}^{\otimes k}$, and the map h_i is just the restriction of $h_{ab}^{\otimes k}$. The assumption that all eigenvalues of h_{ab} are real and positive implies that the same is true of all its tensor powers.

This allows us to find bi-orderings of the free abelian groups F_i/F_{i+1} which are invariant under h_i . Using these to bi-order F, we get invariance under h, which proves the proposition.

Theorem 3: Bi-orderable implies some positive roots

We now turn to the proof of our third theorem: If K is fibred and its group is bi-orderable, then $\Delta_K(t)$ has some real positive roots. Recall that the knot group is an HNN extension of a free group, and is bi-orderable if and only if the homotopy monodromy map preserves a bi-ordering of the free group. Moreover, $\Delta_K(t)$ is the characteristic polynomial of the homology monodromy.

Our third theorem will follow from a more general result. If $\phi : G \to G$ is an automorphism, we can define its eigenvalues to be the eigenvalues of its induced map on the rational vector space $H_1(G, \mathbb{Q}) \cong G_{ab} \otimes \mathbb{Q}$.

Theorem

Suppose G is a nontrivial finitely generated bi-orderable group and that $\phi: G \to G$ preserves a bi-ordering of G. Then ϕ has a positive eigenvalue.

Theorem 3: Bi-orderable implies some positive roots

The idea is to consider the induced map ϕ_* , which can be considered as a linear transformation of \mathbb{Q}^n , which we regard as a subset of \mathbb{R}^n . If ϕ_* preserves an ordering of \mathbb{Q}^n , there is a hyperplane $H \subset \mathbb{R}^n$ defined by $H = \{x \in \mathbb{R}^n | \text{ every nbhd. of } x \text{ contains positive and negative points}\}$ *H* separates \mathbb{R}^n and is invariant under ϕ_* . Consider the unit sphere \mathbb{S}^{n-1} of \mathbb{R}^n , and let *D* denote the closed hemisphere of \mathbb{S}^{n-1} which lies on the "positive" side of *H*. There is a mapping $D \to D$ defined by

$$x \to \phi_*(x)/|\phi_*(x)|$$

Since *D* is an (n-1)-ball, this map has a fixed point (Brouwer). This fixed point corresponds to an eigenvector of ϕ_* , which has a positive real eigenvalue.

We conclude with some applications to surgery on a knot K in \mathbb{S}^3 . One removes a tubular neighborhood of K and attaches a solid torus $\mathbb{S}^1 \times D^2$ so that the meridian $\{*\} \times S^1$ is attached to a specified "framing" curve on the boundary of the neighborhood.

Theorem

Suppose K is a fibred knot in S^3 and nontrivial surgery on K produces a 3-manifold M whose fundamental group is bi-orderable. Then the surgery must be longitudinal (that is, 0-framed) and $\Delta_K(t)$ has a positive real root. Moreover, M fibres over S^1 .

Ozsváth and Szabó define an *L-space* to be a closed 3-manifold M such that $H_1(M; \mathbb{Q}) = 0$ and its Heegaard-Floer homology $\widehat{HF}(M)$ is a free abelian group of rank equal to $|H_1(M; \mathbb{Z})|$. Lens spaces, and more generally 3-manifolds with finite fundamental group are examples of *L*-spaces.

Theorem

If surgery on a knot K in S^3 results in an L-space, then the knot group $\pi_1(S^3 \setminus K)$ is not bi-orderable.