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Introduction

During the present lecture, the notion of hereditary
a-universality is going to be discussed. More precisely, the
construction of a transfinite class of Banach spaces X, { < wy
is going to be described. The spaces X, are reflexive HI
spaces, the main property of which, is that every Schauder
basic sequence w®-embeds into every subspace of X¢. The
construction is based on a variant of the method of saturation
under constraints, which was described in the previous lecture.
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@ In 1996 E. Odell and Th. Schlumprecht present a new
reflexive HI space, having the remarkable and unexpected
property, that any Banach space with a monotone basis is
1+¢ block finitely representable in every block subspace.

@ We shall present a transfinite extension of this result.
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The rank of a tree

@ The rank of a tree is an ordinal index, which, among
others, determines the complexity of the finite
representability of a Schauder basic sequence into an
arbitrary Banach space X.

@ For a well founded tree 7 with a root, denoted as &, the
rank of 7" rank(7) is recursively defined.

@ For s a maximal node of T, set p(s) = 0.
@ For s a non maximal node, set p(s) = sup{p(t) +1:s < t}.

@ Then the rank of T is defined as
rank(7) = sup{p(s) +1:5€ T} =p(@)+ 1.
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Rank of embedability of a Schauder basic sequence

into a Banach space

@ Given a Schauder basic sequence {ex}x and a Banach
space X, one would like to study, the complexity of the
finite representation of { ey}« into X.

@ An approach to this problem, is to determine the rank of
the Bourgain embedability tree of {ex}, into X (J. Bourgain
1980), which is defined as follows.

@ For aconstant C > 1, we set 7 ({ex}x, C, X) to be the tree
of all finite block sequences {xx}};,, such that {xx}}_, is
C-equivalent to {ex}y ;.
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@ The embedability rank of {ex} into X is defined as
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Rank of embedability of a Schauder basic sequence

into a Banach space

@ The embedability rank of {ex} into X is defined as
Emb({ex}k, X) = suprank (T ({&x}« C, X))
C>1

>

@ We say that {ex}x a-embeds into X, if Emb({ex}«, X) > «
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Saturation under constraints

@ In the previous lecture, the definitions of «-averages and
the (0, F, o) operation were discussed, leading to the
notion of saturation under constraints.

@ The advantage of saturation under constraints, is that it
permits the space to admit many ¢y spreading models.

@ Inturn, ¢y spreading models allow the construction of
vectors having specific properties, which are used to prove
the existence of certain structures in the space.

@ While saturation under constrains allows ¢, spreading
models to appear everywhere, it completely rules out the
existence of higher order ¢y spreading models.
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Higher order ¢y spreading models

@ For a seminormalized Schauder basic sequence {x }x and

¢ a countable ordinal, we say that { xx } x generates a cg
spreading model, if there exists a constant C > 0, such

that for every F € S

122 ker Xkl < €

@ The spaces Tp 1 and X, described in the previous
lecture, do not admit a cg spreading model.
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Higher order ¢y spreading models

@ Higher order ¢y spreading models are desirable, in order to
obtain certain structures, which are of transfinite nature, for
instance the wt-embedability of a sequence into a space.

@ In order to achieve this, a variation of the method of
saturation under constraints can be used.

@ More precisely, instead of a-averages, a-special convex
combinations (a-s.c.c), are used in the construction of the
norming set.

@ Special convex combinations are generalized averages of
higher complexity. This higher complexity imposes the
existence of higher order ¢, spreading models.
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@ Let /o C Fy C--- C F; C--- be anincreasing sequence
of regular families of increasing complexity.

@ ((/,¢) basic s.c.c). A convex combination ) ;- c;e; in cyo is
said to be a

(/,€) bs.c.c. with respect to {F;}7°,
if Fe Fjandfor GC F,G € Fj_4

ZiEG CI <€

@ ((J,e) s.c.c.) Let xy < -+ < xm be vectors in ¢yp and
¥(k) = minsupp xx. Then x = >"}_; ckX is said to be a
(J,€) s.c.c. with respect to {F;} 7,

if Y k1 Ckey(k) is a (j,€) b.s.c.c.
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a-special convex combinations

@ Wefix /o C /4 C --- C F; C --- anincreasing sequence
of regular families of increasing complexity.

@ A vector « in a norming set W is said to be an a-s.c.c. of
size s(a) = Jj, if there exist f; < --- < fx in W, such that

a =>4y Mk is a (J, zt) s.c.c. with respect to {F;}72,.

@ Asequence ay < ap < --- < ap < --- IS very fast growing
(v.f.g.), ifforn > 1

S(Ozn) ~ QMaxsupp a1
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@ A norming set W is said to be closed under the
(0;, Fj, a-s.c.c.); operations, if for every {ax}y_4
Fj-admissible and very fast growing family of a-s.c.c. in W,
the functional

f=0> k1o

belongs to W.
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The space X,

Theorem (S. A. Argyros, PM.) For every & < w¢ and
bimonotone Schauder basic sequence {uk }«, there exists
a reflexive space X¢, with a Schauder basis {ex }«
satisfying the following properties.

() The space X¢, is hereditarily indecomposable.

(i) There exists £ > &, such that every subspace of X,
admits a cg spreading model.

(iii) The sequence {uk}x w-embeds into every subspace of
X,

In particular, there exists a uniform constant C, such that
for every Y subspace of X,

rank (T({uk}«, C, Y)) > w0
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The norming set W,

e We fix {m;};, {q;}; strictly increasing sequences of naturals
satisfying appropriate growth conditions.

@ We choose
FoCGiCFHC--CG CFC
regular families satisfying the following

(i) If}‘ ={FUG:F,Ge Fj}andN; = {n:n>j}, then
((F)Y % Gira)IN]] € Fag

i.e, forany F € (]—"j(z))q/ * Gjpq,j<minF, F e Fi4
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The norming set W,

(i) Forjandj > j, every F € G;[N;] maximal set supports a
(j, 57+) b.s.c.c. with respect to {7},

(iii) The Cantor-Bendixson index of F is w and there exists a
strictly increasing sequence of countable ordinals {¢;}; with
o < & such that the Cantor-Bendixson index of 7; is Wi

From now on we will denote the ordinal sup¢; by ¢.
J

@ We are now ready to define the norming set We,. Note that
all s.c.c. will be taken with respect to {F;}7,.
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@ The norming set W, is the minimal norming set satisfying
the following properties.

(i) (Type I, functionals) The set W, is closed in the
(%j,f}‘, a-s.c.c.) operations, for j > 1.
If f is of type |, and is the result of (%j,f}‘,Oé‘S.C.C.)
operation, then the weight of f is w(f) = j.

(i) (Type Il functionals) The set W,, includes all E¢, with E an
interval of the naturals and ¢ = J S"7_; A«f , where
fi <--- < fpis an Fy-admissible special family of type I,
special functionals (a special family satisfies the property,
that for kK > 1, w(fx) determines uniquely the sequence

(i)

and {A\}k € [-1,1] N Q such that
132K Al < 1
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The norming set W,

For ¢ type Il and E and interval of the naturals, the weights
of E¢ are W(¢) = {w(fx): ENsuppfx # o}.

For Eq ¢4, Ex¢o functionals of type Il and, we say that the
weights of E;¢1, Expo are incomparable, if there does not
exist a functional ¢ of type Il, such that

both W(¢) N W(é1) £ @ and W(8) N W(dp) % .

(s-averages) A [-average is an average (§ = 15 > k1 Exox,
where Ex¢y are of type Il with pairwise incomparable
weights.

The size s(3) and very fast growing sequences (Sx)x are
defined in the same manner as for a-averages.
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(iii) (Type lg functionals) The set W,, is closed in the (%j,f,-, B)
operations, for j > 1. If f is of type |3 and is the result of
(%,’]:/’ /3) operation, then the weight of f is w(f) = j.
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w*-embedability of the sequence {u}«

@ Let Y be a block subspace of X¢, and assume that there
exists a normalized block sequence {yx}« in Y generating
a cg spreading model. For any j > 1, one may find a
subset F of the naturals, such that
J < {minsupp yx : k € F} is a maximal G; set and
|| > _ker Y|l is bounded by a universal constant K.

@ Thus there exists an «a-s.c.c. a of size s(«) = J, such that
o(Xher ¥i) > 1 - <.
@ Forj > 1 Bytaking Fy < --- < Fj such that
(i) If zk = 3 ek, ¥is then {minsuppzx : k =1,...,n}isa
maximal g; set.
(i) jxk < {minsuppy; : i€ Fx}is jx admissible with
Jx > 2maxsuppYk-1 for k > 1
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@ Combining the above, we conclude that there exists
{ak}i_4 an F; admissible v.f.g. sequence of a-s.c.c. with
a(yk) > 1 —¢,thus f = %} S h_q ak is a functional of type
lo in We,.

@ Then, for {ck}f_;, such that w = >"}_ ckzx is a (j, )

1—¢

s.c.c. we have that f(w) > e

@ Moreover, {yx};_ is RIS, therefore setting x = 7w, we

conclude that {x, f} is a j-exact pair, where f is a functional
of type |,. Moreover 1 < ||x|| < M, for a universal constant

M.
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@ With some effort, it can be proven by induction on the tree
complexity of the functionals in W, that the action of any
functional not directly associated to {f}; is neutralized.
This yields that there exists a universal constant C, such
that
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@ Using the fact that special sequences are Fy-admissible
and the Cantor-Bendixson index of F is w® and an
inductive construction, it is shown that

rank (T ({uk}«, C, Y)) = w.
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@ As in the case of the space X, we associate the
behaviour of the a-s.c.c. and -averages on a sequence,
to the spreading models generated by it, by introducing the
transfinite hierarchy of o, 8. indices, ¢ < &.

@ Let {xx}« be a block sequence in X¢, and ¢ < ¢ such that
the following is satisfied.

For any j, for any very fast growing sequence {agq}q of
a-s.c.c. in W, and for any { Fy}« increasing sequence of
subsets of the naturals, such that {ag}qcF, is
Fj-admissible, the following holds.

For any { Gk}« increasing sequence of S; sets, we have
that

My > ger, lag(Xicg, Xi)| = 0.
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Then we say that the a¢-index of {xx}« is zero and write

(M(({Xk}k) =0.
The 3 indices are similarly defined.

@ The «, 8 indices provide the following criterion for
sequences generating higher order ¢y spreading models.

@ Let {x}x be a seminormalized block sequence in X¢, and
¢ <&, such that a,, ({X«}x) = 0 and 8, ({Xx}x) = 0 for all
n < ¢. Then, passing if necessary, to a subsequence, the
following holds.

(i) The sequence {xx}x generates a cg spreading model.

(ii) If ¢ > 0, then the sequence {xx}« is S¢-RIS, i.e. for any
{ Gk} increasing sequence of S¢ sets, if yx = Z,-GGK X, then
{yk}k is RIS.
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c; spreading models in subspaces of X,

@ Beginning with an arbitrary normalized block sequence
{xx }«, we are now going to describe how we may pass to a
further normalized block sequence generating a cg
spreading model.

@ Case 1: For every ¢ < &, for any N € [N] there exists
L € [N] with aC({Xk}kGL) =0 and BC ({Xk}keL) =0
Then passing, if necessary, to a subsequence, we have
that ae ({xx}x) = 0 and B¢ ({xk}x) = 0 for all ¢ < &. Hence
we achieve the desired result.

@ Case 2: If the above does not hold, set

¢1 = min{( : there exists N € [N] with a¢ ({Xk }xker) # O, for
all L € [N]}

¢ = min{( : there exists N € [N] with B ({Xx}ker) # O, for
all L [N]}
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@ Set (o = min{{y, ¢2}. We distinguish two further subcases.

@ Subcase 1: (g > 0. In this case, passing to a subsequence,
{Xk}k generates a cg" spreading model and is S¢,-RIS.

Moreover, since ag, ({Xk}x) # 0, or B¢, ({Xk}x) # 0, we
may construct a sequence of exact pairs {z, fx } k, such
that the f are either of type |, or of type I3, such that for
any k and any ¢ of type Il, w(fy) ¢ w(o).

It is proven that such a sequence admits a cg spreading
model.

@ Subcase 2: (y = 0. In this case, using classical techniques,
we construct a normalized RIS sequence {yx }«
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@ We examine all previous cases for the sequence {yx }«.

@ If we happen to end up at subcase 2 once more, then since
{¥k}k is RIS, we may construct a sequence of exact pairs
{2k, fk }k, such that the f; are either of type I, or of type I,
such that for any k and any ¢ of type Il, w(fy) ¢ w(¢).
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The hereditarily w-universal version of X,

@ By using the universal basis of Petczynski {uk }x when
defining the norming set W;,, we obtain a reflexive Hl
space, such that {ux }x w*-embeds into every subspace of
X¢,-

@ The following fact can be easily proven.

@ If ais a limit ordinal and rank (7 ({ex}«, C, X)) > o, then
for every {ex,}n subsequence of {ex}«, we have that
rank (7 ({ex,}n, C, X)) > «.

@ This yields, that the space X, is hereditarily w®-universal.

@ There seems to be no obstacle, in defining an
unconditional version of the space X, i.e. a space that
has an unconditional basis and is hereditarily wé-universal
for the unconditional basic sequences.
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HI a-minimal spaces.

@ The following definition is due to C. Rodendal.

@ Let o be countable ordinal. A Banach X space with a
Schauder basis is said to be a-minimal, if any block
sequence a-embeds into every subspace Y of X.

@ Being hereditarily w-universal, the space X, is also
w-minimal.

@ Therefore, for every a < wq, there exists an a-minimal HI
space X,,.

@ We would like to add, that there is no method known to us,
of constructing an a-minimal HI space, without using the
hereditary a-universality.



Thank you!




