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1 Overview of the Field
There are several rather different interpretations of the field model reduction in fluid mechanics. It can be
viewed from the point of view of mathematical modeling as elaborating models and their adequately reduced
versions that would simplify the underlying theory and produce, at lower computational costs, the desired
information on the fluid system in question. Mathematical analysis may see the model reduction processes
as a purely theoretical task, where the formal passage from the primitive to target systems is rigorously
justified by the tool of modern functional analysis. Model reduction at this level may also include the study
of systems reduced to invariant manifolds or attractors as well as explicit solution formulas based on group
symmetries and other physically relevant simplifications of a given problem. Probably the most specific use
of the term model reduction occurs in numerical analysis and implementations of numerical schemes. Here
model reduction or model order reduction is understood as an effective process of reducing the number of
equations used for modeling a given system, without substantial changes in the accuracy of the expected
output. Unlike researchers in the field of modeling and analysis, numerical analysts have usually very clear
ideas concerning the specific methods and tools used in the model reduction process. This holds, in particular,
in model reduction in signal and image processing, where the model reduction can often be linked with some
classical tasks of analysis and approximation theory.

The main goal of the meeting was to bring together experts in mathematical and numerical analysis as well
as mathematical modeling to examine the recently emerging problems and to share ideas in a well focused
environment. Given the diversity of the topics and the variety of reduced systems and their applications,
these researchers would have probably never met together at any other meeting. This posed a challenge for
individual presentations as well as for guiding the discussions. At the same time it gave an opportunity to see
many issues from new and unconventional perspectives.

2 State of the Art and Major Challenges
The principal topics discussed during the meeting were highlighted in the key note lectures delivered by
leading specialists in the respective field.

1



2

2.1 Mathematical theory of (complete) fluid systems
Complete fluid systems play the role of primitive systems in the theory of model reduction. They are de-
signed and believed to provide a complete description of the observed phenomena. Accordingly, the fluids
considered must feature all relevant physical properties: they are compressible, heat conducting, viscous,
chemically reacting, or enjoying other properties as the case may be. Clearly, a mathematical description of
these materials becomes rather involved; the resulting system of equations reflects the basic physical princi-
ples of conservation of mass, balance of momentum and energy, among others. The apparent mathematical
complexity, however, does not necessarily imply that the model is more difficult to handle by the available
mathematical tools. A typical example is viscosity, sometimes neglected in the models of “perfect” fluids,
that may provide a strong regularizing effect and give rise to mathematically tractable models.

The relevant mathematical theory can be developed either in the framework of classical description sup-
posing that all fields are smooth functions of space and time, or using the more recent concept of ”weak”
solutions, where the relevant physical principles are expressed by means of integral identities. Note that the
“weak” formulation is actually much closer to the original interpretation of the underlying physical principles
of balance and conservation, expressed originally in terms of integral identities rather than the more common
systems of partial differential equations derived under the assumption of smoothness of all physical fields.
This naturally reflects the principal focus of the underlying mathematical tools. While the differential opera-
tors focus on the local behaviour of the given functions, the integrals account for the global properties of the
integrands over the domain of integration.

New mathematical tools emerged quite recently to handle the problem of solvability of complete fluid
systems, among which the general concept of relative entropies (energies) and its application to the study of
the mutual relation between classical and “modern” weak solutions.

The state of the art of the well-posedness theory of complete fluid systems can be summarized as follows:

• Most of the physically consistent systems are well posed locally in time. Specifically, for a given set
of (initial) data, the problem admits a classical solution existing on an undetermined and possibly very
short interval of time, see Matsumura and Nishida [19], Valli [29], Valli and Zajackowski [30], among
others.

• The classical solutions could exist globally, provided the initial state of the system is closed to an
equilibrium. Here, the presence of viscosity or other dissipative mechanisms play a crucial role, see
Matsumura and Nishida [18].

• The weak solutions exist, under a physically grounded hypotheses imposed on the constitutive relations,
globally-in-time. In general, however, they are not (known to be) uniquely determined by the data, see
[10].

• The weak and strong solutions emanating from the same initial state coincide as long as the latter exists,
see [12].

The last statement is usually called weak-strong uniqueness principle. As shown quite recently, the prin-
ciple remain valid even in a larger class of weak solutions called dissipative solutions. The fact that the weak
solutions exist globally in time and for any physically admissible data makes them a perfect tool for studying
the problems arising in the process of model reduction, i.e., here the well justified simplification of the model
while preserving its approximation properties. It allows to exploit, in particular, the singular limits arising in
the scale analysis of more complex fluid systems, see [10].

One can however take a different standpoint and consider complete models for more complicated, con-
strained or unconstrained, fluids. Non-newtonian purely viscous or viscoelastic, compressible or incompress-
ible, fluids; Cahn-Hillard, Allen-Cahn or Korteweg type generalizations of Navier-Stokes fluids; or equations
describing flows through porous (rigid or elastic) media; or complete models arising from the theory of
interacting continua can serve as examples of complete systems that differ from the compressible Navier-
Stokes-Fourier fluid model and where in its full generality the mathematical theory is rather in its pregnant
state.
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2.2 Mathematical theory of incompressible fluids
The so-called incompressible (Newtonian) fluids can already be viewed as an example of a model reduction,
here we wish to mean the well justified modification, obtained by means of the low Mach number (or in-
compressible) limit of a complete fluid system. Classical solvability of the underlying Navier-Stokes system
represents an outstanding open problem of the theory of partial differential equations, also very popular as
one of the ”millenium problems”, see Fefferman [9]. Numerical experiments may to a certain extent indicate
the limitations of the rigorous mathematical theory, and the newly emerging mathematical models may offer
an attractive alternative to the classical systems.

On the other hand, there are many fluids or fluid-like materials that can be well modeled as incompress-
ible, yet their behavior cannot be described by the linear relation between the Cauchy stress and the symmetric
part of the velocity gradient. As there are many such non-Newtonian features there are many different sys-
tems that have been proposed for their description. To be more specific, non-Newtonian phenomena called
shear-thinning/shear-thickening and pressure thickening connected with significant heat conduction can be
described by a viscous heat-conducting incompressible fluid model in which the viscosity depends on the
pressure, shear rate and the temperature. The large data existence of weak solution for certain class of initial
and boundary value problems is established in [3], see also Diening et al. [5] and [2] for stronger results in
case where the material coefficients are independent of the pressure.

2.3 Scale analysis and singular limits
As already pointed out, singular limits give rise to reduced models after performing a scale analysis and
letting some characteristic numbers go to zero or become infinite. The incompressible Navier-Stokes system,
the Euler equations of gas dynamics, the Oberbeck-Boussinesq and anelastic approximation may be viewed
as singular limits of complete fluid systems. Singular limits are often performed formally by means of
asymptotic expansion of all quantities with respect to a singular parameter, see for example the survey paper
by Klein et al. [16]. Their rigorous justification is, however, usually considerably more difficult. Recent
development of the mathematical theory of complete fluid systems enables to perform rigorously certain
singular limits, even in the case of the so-called ill-prepared data, where the primitive system is in a state that
is ”far away” from the target stay, see [10]. Here, the new tools based on the concept of relative entropies
applied to the primitive (full) system proved to be rather efficient, [11].

In non-Newtonian fluid mechanics or in the theory of mixtures, higher complexity of the models as well
as the need to solve computationally given problems, the model reduction is frequently the only possible
method of choice, see [27]. Reduction of the complete models can be due to constraints (such as incom-
pressibility, rigid body dynamics, restriction to isothermal processes or no-slip boundary conditions) or due
to geometrical setting in which the considered class of processes with given fluid model takes place (if one
direction in the setting is significantly small it then leads for example to thin film, shallow water or shallow
ice approximations) or due to other geometrical restrictions (to small deformation gradients, for example).

Clearly, a proper scaling cannot be decided by the theory but rather by experiments performed in the real
world situation or by collecting and comparing numerous observations of practical experiments, numerical
experiments included. On the other hand, the process of filtering, meaning omitting certain features of the
complete system that are not “observed” in the experiments, should be rigorously justified by careful math-
ematical analysis in order to avoid, or at least understand, spurious solutions and unexpected oscillations in
the numerical computations. Clearly, a concerted action of the specialists in the field of modeling, analysis,
and numerics is needed.

2.4 Analysis of multiscale problems
Asymptotic analysis plays a crucial role in the design of efficient numerical methods for flows in a singular
regime. These problems are characterized by multiple space and time scales, and by the fact that the standard
numerical methods may either completely fail or become expensive. As the goal is to apply numerical
methods to complete fluid systems, it is important to understand the qualitative changes of solutions in the
singular limit regime. A typical example are rapid oscillations of acoustic waves in the low Mach number
limit that can be eliminated by the method of acoustic filtering. Clearly, applying similar techniques requires
a detailed mathematical analysis of the problem.
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2.5 Mathematical modeling of new materials
Mathematical modeling of a large variety of new materials represents a true challenge. Liquid crystals, poly-
meric fluids, geological materials, biological liquids and soft tissues, ”smart” materials require a substantial
modification of rheological laws as well as the underlying mathematical theory. Without an appropriate un-
derstanding the physical structure of materials it is impossible to develop a meaningful mathematical model.
In addition, future material models must address complicated and interconnected thermal, mechanical and
chemical processes that go far beyond the classical approaches. Growth and deformation of biological tis-
sues, deformation of composite materials and shape memory alloys, flows of polymer or metal melts, flows
of mixtures and geophysical materials, liquefaction of soil, transport processes in porous media and their
interaction with the substrate form a base for important real-world applications. Theory that is developed to
describe the macroscopic behaviour of complex bodies should be built on a continuum mechanics approach
without incorporating ad hoc state variables that do not have a clear physical meaning. An artificial combi-
nation of microscopic and macroscopic theories should also be avoided (this by no means underestimates the
role of multiscale approaches to computations).

On the other hand, mathematical properties of the rheologically more complex fluids may shed some light
on the nowadays unsurmountable classical problems, the difficulty of which might be attributed to the fact
that they are “incomplete”, so that the information provided is not sufficient for their well-posedness in the
mathematical sense. Of course, these systems are more complex than the classical models of fluid mechanics
and thermodynamics. Thus, the need to find appropriate approximate models is of high importance.

2.6 Discretisation, numerical analysis and computation
Numerical computation assumes a finite dimensional approximation of the mathematical model. This is typ-
ically done using some spatial meshes over the given domain and by some form of time discretisation. The
unknown functions are then approximated as linear combinations of a finite number of basis functions, which
leads to of a finite dimensional representation of the original model. As the mesh refines and/or the parame-
ter(s) characterizing the quality of the discretization (such as the time step or the size of the mesh elements)
goes to zero, the state-of-the-art paradigm investigates convergence of the finite dimensional solution to the
solution of the original model. Proving such convergence often requires fine mathematical techniques. Here
a-priori error analysis indicates how the error (asymptotically) decreases as the mesh is refined. Bounds of
this type do not involve computed approximate solution and their actual value is uncomputable because it
typically involves the unknown solution of the problem. When performing computations, one needs to esti-
mate the size of the actual error. This is done using the so-called a posteriori error analysis and it allows to
stop the computations when the required accuracy is reached.

The numerical solution process represents in case of difficult problems a tremendous challenge. Despite
the fact that discretisation, a-priori and a-posteriori error estimation and algebraic (matrix) computations rep-
resent well-established fields, many fundamental issues remain open. They should not be studied separately
after the mathematical model, its possible analysis and reduction has been performed. Modeling with its
mathematical analysis together with discretisation, error estimation and solving the resulting finite dimen-
sional discrete problems should be considered interdependent and closely related tasks of a single solution
process. A failure in one subtask may at the end simply mean forming of a numerically unsolvable problem
and therefore failure of the whole numerical solution process.

The fact that the state-of-the-art results often give rather partial answers can be documented on the pre-
vailing approach to proving convergence of the discrete approximate solution when the mesh refines using
some form of adaptation. The proofs are based on seeing individual mesh refinement steps as contractions for
some error estimators with some fixed contraction parameter independent of the mesh. This seemingly allows
reaching an arbitrary prescribed accuracy in a finite number of contraction steps, which is also claimed in lit-
erature. This is, however, impossible, simply due to the fact that the discretised algebraic problem needs to
be solved numerically and, apart from trivial cases, it cannot be solved exactly; see the reviews [28] and [1].
In difficult problems we even do not wish to seek a highly accurate numerical solutions of the discretised
problems since that would make the whole solution process unfeasible. The principal questions which needs
to be addressed is therefore what is the size of the maximal attainable accuracy of our computations, whether
the prescribed required accuracy can be reached and at which price.
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3 Presentation Highlights
In accordance with the general idea of the meeting, the presentations were of survey character of the state of
the art in the respective fields, rather than highly specialized talks on particular technical results accessible
only to the specialists in the field.

3.1 Mathematical analysis
Several presentations, including the key note lecture, were devoted to the mathematical theory of complete
fluid systems. The existence results for both evolutionary and stationary problems in the framework of weak
and dissipative solutions were discussed. The method of relative entropies was exploited both in the context
of the complete fluid systems (study of singular limits, weak-strong uniqueness, long-time behavior) and in
the analysis of stability of the shock waves in inviscid fluids.

The problem of regularity or conditional regularity plays a crucial role in the analysis of the systems of
partial differential equations arising in fluid mechanics. Since the weak solutions exist globally-in-time, it
is of great interest to know whether these solutions are, in fact, smooth. On the other hand, if the solutions
are not (or not known to be) smooth, the regularity criteria provides a useful insight in the mechanism of
a possible blow up and help to eliminate the unphysical situations. Note that regularity of solutions of the
inviscid incompressible (Euler) equations still remains one of the most challenging open problems, where the
alternative weak solutions exhibit a number of rather pathological properties, see DeLellis and Székehylidi
[4].

Rigorous analysis of singular limits is an undeniable part of the model reduction process. Here, the prim-
itive system is put in a dimensionless form, where several characteristic numbers appear as new parameters
of the problem. Identifying the limit system when one or several of these parameters vanish or become in-
finite is a mathematical challenge. At the level of analysis, “identifying” means proving convergence of the
solutions of the primitive system to those of the target system. This can be done either by compactness ar-
guments based on uniform bounds, or by means of measuring the distance from the limit system by means
of a relative entropy. This procedure, rather new in the context of heat conducting fluids, was highlighted by
several speakers. Mathematical analysis of the limit system, like Oberbeck-Boussinesq system or anelastic
approximation was also discussed.

3.2 Mathematical modeling
The leading topic of the modeling part of the workshop was the recent development of the implicit constitutive
theory. A simply looking basic idea of this approach, namely writing the constitutive equation interrelating
two quantities A, B in the form

F(A, B) = 0 instead of A = G(B) or B = C(A),

leads to completely new complex models of materials with complicated rheology, and the use of this method
in the process of model reduction is one of the revolutionary leading ideas of the workshop.

The primal advantage of the implicit constitutive theory consists in the possibility to describe much larger
class of material responses. In addition, as the quantity A and B appears in the classical theories (A and B can
stand for the Cauchy stress and the velocity gradient, or heat flux and the temperature gradient, or the Cauchy
stress and the deformation gradient) there is no apriori need to introduce new type of boundary conditions.
Even more, the implicit constitutive theory brings clarity and simplicity to the theoretical foundation of
continuum mechanics: it gives transparent justification to incompressible fluids with pressure and shear-
rate dependent viscosity as well as to nonlinear models within the framework of linearized elasticity (small
gradients of the displacement); see Rajagopal [21] and [22].

The considered models should obey the laws of thermodynamics. The development of the implicit consti-
tutive relations is therefore combined with another recent ingredient, namely the principle of the maximization
of the rate of entropy production, see Rajagopal and Srinivasa [23]. Such a framework allows developing ther-
modynamically consistent fully three-dimensional constitutive models. Here the material is characterized by
the way how it stores energy and the way how it produces entropy. These storage and production mechanisms
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are specified by a choice of the constitutive equation for the entropy (or another suitable thermodynamic po-
tential) and the rate of entropy production. Concepts of implicit constitutive relations allow to handle very
general forms of storage and dissipation mechanisms. The entropy production is then maximized with re-
spect to a constraint enforcing the validity of the reduced dissipation identity, and possibly also with respect
to other constraints such as the incompressibility of the material. As a condition identifying the maximum
one gets the required relation between the quantity A (for example the Cauchy stress) and the quantity B (for
example the symmetric part of the velocity gradient).

Such approach is based on a small set of well articulated and justified fundamental (axiomatic) assump-
tions. So far, this approach has been successful in providing:

• appropriate thermodynamic setting for compressible heat-conducting fluids of a Korteweg type (see
[14]),

• different viewpoints on Bingham and Herschel-Bulkley fluids (and other activation or deactivation
criteria in general) (see [24] and [2]),

• an approach to characterize the structure of the boundary conditions (important for complex materials)
as the constitutive equations on the surface (see Heida [13]).

The effective use of this new methodology was highlighted in several talks and possible applications, in
particular in mathematical analysis and numerical implementations discussed.

3.3 Discretisation, numerical analysis and computation
Besides the standard numerical topics concerning the design and analysis of convergence of the new discreti-
sation schemes applied to complex fluid systems, a substantial part of the numerical talks was devoted to a
posteriori estimates and the problem of reliability of numerical methods. The decisive criterion is the degree
of precision in which the results of computations reflect the properties of the genuine (analytical) solution of
a given equation or system.

The key lectures were devoted to the topics of adaptivity as a form of the discretised model reduction, con-
struction of efficient and robust computational algorithms and the control of errors of computed approximate
solutions. All speakers emphasized the interplay between the infinite dimensional function representation
and the reduced discrete representation of the model. In control of the discretisation and computational error,
a-posteriori error analysis must consider algebraic errors and must include investigation of numerical stabil-
ity; see, e.g. [15, 26, 8] an the recent survey paper by Rannacher [25] which all contain many references to
other relevant works.

Construction of efficient computational algorithms requires global communication transferring the infor-
mation obtained for different times and/or at different (and possibly distant) parts of the solution domain.
It was demonstrated how this can be achieved, e.g., via incorporating coarse space components in domain
decomposition methods; see [6]. The coarse components representation can be considered a form of the
model reduction which can be used for substantial acceleration of computations. Efficient preconditioning
represent another principal tool for achieving the same goal; see, e.g., the classical book by Elman, Sil-
vester and Wathen [7], which is currently being revised and extended for the second edition. Preconditioning
should reflect the physical nature of the problem expressed in the mathematical model. It can be motivated
using a functional analytic operator description (so called “operator preconditioning”). Practical derivation
of computational algorithms is, however, often much easier using a finite dimensional algebraic setting with
its description via matrices. Combination of both views can lead to development of fast and robust solvers,
with Krylov subspace methods (see the recent book [17]) as a possible basic underlying iterative scheme.
Finally, construction of fully computable a-posteriori error estimators which allow for the local error control
and comparison of the size of the error from different sources (discretisation, linearization, inexact algebraic
computation) is a prerequisite for reliable, robust and efficient adaptive approaches [1]. This requires combi-
nation of rather diverse techniques from functional analysis through numerical analysis to analysis of iterative
matrix computations including effects of rounding errors.
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4 Scientific Progress Made
One of the main achievements of the meeting was dissemination of the new methods, sofar known only to
specialists in their specific (sometimes even narrow) fields, to the representatives of the modeling, analysis,
discretisation and computational communities. Several possibilities of applications of theoretical tools in
the analysis of convergence of numerical schemes emerged, as well as new directions in the theoretical
studies discovered in the framework of the implicit constitutive theory. Last but the least, the necessity of
effective feedback and comparison of results and methods used in the three leading areas - modeling, analysis,
numerics - appeared as necessary for the progress in the field of model reduction, where the last term may
have many (interrelated) meanings.

It becomes very clear that a goal of reaching a substantial progress in model reduction in continuum
thermodynamics, which would open new ways of research substantially beyond the current state-of-the-art,
requires utilization of specific knowledge of the physical nature of a well chosen specific problems used as
case studies. There is no hope for aiming at a general approach developing a universal computational frame-
work. The hope is rather in investigating important particular examples with utilizing similarities between
mathematical description of real phenomena from different fields with cautious well-justified generalizations
to possible large classes of problems whenever applicable.

5 Outcome of the Meeting
The nature of the workshop has evoked much more questions then gave answers. For various reasons, sci-
ence is getting more and more specialized, which brings, together with large benefits, also a great danger of
fragmentation. Researchers working in different fields of the same scientific discipline (such as mathemat-
ics) see each other more and more rarely, and they rarely communicate across the disciplines with papers
which are widely read and discussed. Sometimes we can observe growing isolation instead of tightening
links between communities and scientific schools. Results are developed within one field without being com-
municated to, considered and used within related fields. It also becomes rather difficult to challenge common
well established views and approaches. The widely adopted malign overemphasizing the publish or perish
policy stimulates much more the standard mainstream production over a difficult and cross-disciplinary com-
munication. But such communication is, in our opinion, desperately needed not only for solving difficult
real-world-inspired problems, but for sake of the science itself.

This workshop tried to go in the direction of building bridges between different areas of mathematics
related to the main topic, with including fundamental motivations from the corresponding parts of physics.
The gaps which we need to deal with are neither narrow nor shallow, and a considerable effort will be
needed just to establish a regular and fruitful communication. We consider such effort immensely important.
Intensive discussions between participants proved that it can work. We believe that coming months will bring
materialized outcomes in the form of joint work and papers.

Among the widely discussed questions which will be further discussed or investigated we mention:

• The prevailing paradigm in numerical solving of mathematical modeling problems is based on discrete
approximation of the infinite dimensional problem via the Finite Element Method (FEM). Such ap-
proximation is constructed using locally supported basis functions which results in algebraic problems
formulated using sparse matrices. This is presented as a principal advantage of FEM. The common
view, that the locality of FEM bases and sparsity of the resulting matrices gives a great advantage of
the FEM approach over some alternative approaches in particular when solving the discretized alge-
braic problems, might be worth of a second thought. As mentioned above, difficult problems can not
be solved without exploiting the global transfer of information in time and over the domain. This
requirement seems to be in some controversy with the philosophy of FEM and with the sparsity of
the resulting matrices. Algebraic computations then can not be efficiently done without incorporating
powerful global transfers of information which is handled by computational techniques such as pre-
conditioning in iterative methods. It seems that here algebraic computations is getting difficult partially
due to form of discretisation which prefers local approximation. The difficulty may show up, e.g., in
comparison (including their spatial distribution) of the errors from different sources; see [20].
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• Efficient numerical computations requires reconciling of different mathematical and computational re-
quirements which are not always in line. Parallelism and scalability do not always go along with
numerical stability and a need for global communication. Computer science tools do not always serve
mathematical needs. There seems to be, in general, an insufficient communication between the com-
puter science, mathematical modeling and applied mathematics communities. The trend seems to be
rather to the worse then to the better.

• An interplay of the mathematical descriptions of problems on different levels (modeling - discretisation
- computation) with tools ranging from fundamental mathematical analysis to construction and analysis
of methods in matrix computations (including numerical stability analysis) represents a tremendous
challenge by itself. Without a genuine will for collaboration of experts in all these fields, no real
breakthrough in the topic of the workshop can be achieved.

• In linear model reduction known in linear dynamical systems and control there is a deep underlying
mathematical background such as Padé approximation, Gauss-Christoffel quadrature, continued frac-
tions, problem of moments, minimal partial realization etc. (just give a few examples) which also
links classical topics from analysis and approximation theory to modern computational tools such as
Krylov subspace methods; see [17]. Nonlinearity makes things from this point of view extraordinary
complicated. No similar unified mathematical background essentially exists and solid mathematical
foundations are yet to be built.

As appeared several times in our report, no significant progress in challenges mentioned above can be
achieved, in our opinion, by a group of researchers working within a narrow field. In order to bridge the
gaps, a well coordinated effort of all sides is needed. This workshop has tried to make a first step in this
direction.
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