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Outline

Present a more realistic (?) particle system, based on
the Cucker-Smale alignment model, that describes the
collective behavior of swarms ( e.g., birds, fish, insects,
mammals).
Here, we’ll talk about birds. But our model adapts to other types of
swarms (e.g., fish, mammals, ...); the interaction rules will need
adjustments from case to case.

Derive the associated kinetic equation, useful when the
number of birds is very large.

Discuss well-posedness, and the convergence of the
particle model to the kinetic equation as the number of
birds grows very large.

Numerical simulations in 3-D of our particle model.
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Basic rules in models for swarming

Most of the basic particle models for swarming are based
on three behavioral rules between animals: rules:

short-range repulsion. Birds in the swarm keep a
minimum distance between each other so as to move
freely; this explains why collisions are avoided.

Alignment or Orientation. Birds tend to align themselves
with those at intermediate distances; this explains how
they produce synchronized structures.

Long-range attraction. Birds are attracted to those at
farther distances. This explains why they move in
groups.

These basic rules are used as building blocks to make up
other more realistic particle models, by simply including in
the basic models some more realistic features.
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Basic particle models

There are many basic swarming particle models in the
biology literature; e.g., the three-zone models by [Aoki,
1982], [Huth & Wissel, 1992], [Couzin et al., 2002], ...

Another basic model often used in the mathematics
literature is the Cucker-Smale model. It is similar to existing
models of interacting particles, and leads to a
Vlasov-like kinetic equation.

Cucker-Smale model (2007). It is an alignment model
where the velocity of each bird is updated by taking a
weighted average of its relative velocities w.r.t. all the
birds in the flock; and the weight of this averaging
process takes into account the distances between the
birds, in a way that closer birds have stronger influence
than far distant ones.
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The Cucker-Smale model

Particle model. The position xi(t) and velocity vi(t) of a
bird i vary according to:

{

ẋi(t) = vi(t)

v̇i(t) = 1
N

∑N
j=1 H (|xi − xj|) (vj − vi)

with H(r) = γ
(1+r2)σ for some parameters γ, σ > 0.

This system is the discrete version of the kinetic eqn .

∂tf + v · ∇xf = −∇v · [ξ(f)f ] , where

ξ(f)(t, x, v) =
∫

IR3

×IR3 H (|x − y|) (w − v)f(t, y, w)dydw.

Both equations are the same; the former is a special
case of the latter, arising in the case where f is a
discrete measure given by

∑

δ(x − xi(t))δ(v − vi(t)).
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Some known results about this model

Momentum conservation. (Cucker, Smale, Ha, Liu,

Tadmor, ...): d
dt

(

∑N
i=1 vi(t)

)

= 0.

Exponential convergence of the flock for σ ≤ 1/2. (Cucker,
Smale, Ha, Liu, Carrillo, Fornasier, Rosado, Toscani,
...): When t → ∞ then vi(t) → v̄ exponentially fast for all i,
where v̄ is the initial mean velocity of all the birds. Moreover,
|xi(t) − (x̄ + v̄t)| < ǫ for all i, where ǫ > 0 depends only on the
initial configuration of the swarm, and x̄ is the initial center of mass
of the swarm. In other words, in the long time, all the birds
will move in a single group and with the same velocity
(this is called “unconditional flocking”).

The key ingredient in the proofs is the symmetry of the
interaction rule in the Cucker-Smale model, namely, the
force that bird i exerts on bird j is the same as that of bird j onto i.
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Weakness of this model

While the “unconditional flocking" is a nice feature to
emerge from a model, it is NOT what we generally see
in swarms.
Observations suggest that while a swarm will persist for
a long time, NOT all birds will in general acquire the
same velocity, and NOT all of them will in general move
in one group. Swarms undulate, grow branches,
disperse, merge, and so on. So, in general, splitting of a
swarm into many groups is possible.

Therefore, the symmetry of the interaction rule in the
Cucker-Smale model is an excessively strong
constraint. Here is an example of 2 birds: bird 1 following
bird 2, but bird 2 does not see bird 1 and therefore does
not react to its presence. Hence their interactions are
not symmetric, and momentum is not conserved.
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Refinements

Our modified Cucker-Smale model are based on 4 specific
local rules; it does NOT conserve momentum, and therefore
“unconditional flocking” does NOT hold. These rules are:

Friction . There is a cruise speed that every bird attempts
to fly with (in the absence of other forces). It is denoted
by

√

α/β where α, β > 0 are some parameters.

Repulsion . Birds keep a minimum distance (denoted by d0)
between each other at all times.

Alignment . It is based on the Cucker-Smale interaction
rule, BUT with a “vision cone” for every bird, so that interactions
with other birds are allowed only when they are in the vision cone.

Boundary effect . A fast bird close to the edge of the swarm will
correct (via a “turning force”) to stay inside the swarm.
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A refined Cucker-Smale model

Our particle system is:
{

ẋi(t) = vi(t)

v̇i(t) = Fi(t) + Ri(t) + Ai(t) + Bi(t)

where Fi(t), Ri(t), Ai(t), Bi(t) are respectively the friction,
repulsion, alignment and boundary forces exerted on bird i
at time t.

Friction force (always active). Fi(t) =
(

α − β|vi(t)|
2
)

vi(t).

Repulsion force. Active when the distance |xi − xj | ≤ d0.

Ri(t) = ρ1

N

∑N
j=1 S0 (|xi(t) − xj(t)|)

xi(t)−xj(t)

(1+|xi(t)−xj(t)|2)
β1

where S0 is a (smooth) cutoff function; S0(r) = 1 if r ≤ d0

and S0(r) = 0 if r ≥ d0 + ǫ0, with d0, ǫ0, β1, ρ1 > 0.
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The cutoff function S0
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The alignment/flocking force

It is active if the distance between 2 birds is larger than d0.
Denote by α1 the opening angle of the vision cone for each
bird, and set δ1 = cos(α1).

Tentative definition.

Ãi(t) =
1

N

N
∑

j=1

[1 − S0 (|xi − xj|)] W̃ (xi − xj , vi)(vj − vi)

where

W̃ (x − y, v) =
γ

(1 + |x − y|2)
σ S2

(

(y − x) · v

|y − x||v|

)

and S2(δ) is a (smooth) cutoff function approximating
χ[δ1,1] on [−1, 1], and δ = cos(α).
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The vision cone

The interpretation of the cutoff function S2(δ) is that while
the angle ∠(y − x, v) increases from arccos(δ1) to arccos(δ2),
bird j is seen in the peripheral vision of bird i, which
gradually diminishes as the angle increases and is zero
once the bird is outside the cone with angle arccos(δ2).
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The alignment/flocking force

Modified defintion. Note that if v = 0 (unrealistic! but

mathematically possible), then S2

(

(y−x)·v
|y−x||v|

)

is not

well-defined. Therefore, in the rare scenario when
v = 0, we introduce a “speed cutoff" function S1(|v|)

much like S0(r), s.t. S2

(

(y−x)·v
|y−x||v|

)

applies only when |v| is

larger than a minimum speed (i.e., |v| > d1 for some
d1 > 0). Then the alignment/flocking force becomes:

Ai(t) = 1
N

∑N
j=1 [1 − S0 (|xi − xj|)] W (xi − xj , vi)(vj − vi),

where
W (x − y, v)

= γ
(1+|x−y|2)σ

{

S1(|v|) + [1 − S1(|v|)] S2

(

(y−x)·v
|y−x||v|

)}

and S1(|v|) = 1 if |v| ≤ d1, S1(|v|) = 0 if |v| ≥ d1 + ǫ1.
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The boundary/turning force

For a fast bird on the edge of the swarm and flying outward,
W will be negligibly small, so this bird will simply continue to
fly outward and not change speed or direction unless
overtaken by other birds. In reality, birds “facing a void” in
this way will make an effort to stay with the swarm.
We model this by requiring that such a bird experiences a
“turning” force that changes its direction; and this force smoothly
increases with growing “loneliness” measured by the distance
between the bird and others. This effect is important to keep the
swarm together. Assume we are in 3-D and include gravity
as a guiding force, pointing in the direction −k = 〈0, 0,−1〉.

Bi(t) = CS3 (ρi(t)) (vi(t) × k) , where

ρi(t) = 1
N

∑N
j=1

1
1+|xi(t)−xj(t)|2

measures “loneliness”, C > 0,

and S3 is a smooth cutoff function much like S0.
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Why so many smooth cutoffs?

It is likely to be realistic; in reality, transitions such as
peripheral vision and the drive to turn around would not happen
abrutly, but according to some smooth transition laws.

Our analysis requires it; otherwise, we would face systems of
ordinary differential equations with discontinuous right-hand sides.
Such ODEs can create unnecessary difficulties at both analytic and
numerical levels.
Elementary example : ẋ(t) = 1 − 2χ{x(t)>1}, x(0) = 0.

They are needed to study well-posedness and stability
analysis for swarms of any size; e.g., following the classical
proof of well-posedness for Vlasov-like kinetic equations
([Dobrushin, 1979], [Neunzert, 1984, 1997], ...), one requires some
Lipschitz properties on the right-hand sides of the ODEs.
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Velocity bounds

It is not possible to make assertions about the asymptotic
behavior of the swarm (this is really the point!). But some things
are easily seen. Ignore the repulsive force (i.e., set S0 = 0).
Theorem 1 Let R(t) = maxi=1,···N |vi(t)| and assume

R(0) ≥
√

α
β . Then R(t) ≤ R(0) for all t > 0, that is, the velocity

support of the swarm stays bounded by R(0).

Proof: Assume w.l.o.g. that R(t) = |v1(t)| ≥
√

α
β for some

[a, b] ∋ t. By Cauchy-Schwarz inequality, vj · v1 − v2
1 ≤ 0, so

that
1
2

dR2(t)
dt = v1 · v̇1

= (α−β|v1|
2)v2

1 + 1
N

∑N
j=1 W (x1−xj , v1)(vj−v1) ·v1+B1 ·v1.

Then dR2(t)
dt ≤ 0 because B1 · v1 = 0 and (vj − v1) · v1 ≤ 0.
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Kinetic equations

Why kinetic equations ?
They are useful when the number of birds is very large.

For large swarms (i.e., for N very large), individual birds
carry little “weight”.

In reality (?) what matters in this case is the local
density of birds in the flock.

Mathematically, it is often convenient to deal with one
continuous equation (the kinetic equation) than a large
system of ODEs (the particle system).

This translates into a mathematical “stability” question:
Is the swarm behavior stable as the number of birds grows very
large?

– p. 17



Associated kinetic equation

Let f(t, x, v) be the density of birds at (t, x, v). Then f(t, x, v)
solves the kinetic equation

∂tf + v · ∇xf = −∇v ·
{[

(α − β|v|2)v + ξ(f)
]

f
}

where ξ(f) = ξR(f) + ξA(f) + ξB(f), and
ξR(f)(t, x) = ρ1

∫ ∫ x−y
(1+|x−y|2)β1

S0(|x − y|)f(y, w, t)dwdy,

ξA(f)(t, x, v) =

∫ ∫

W (x−y, v)(w−v)(1−S0(|x−y|))f(y, w, t)dwdy

ξB(f)(t, x, v) = CS3(ρ(x, t))(v × k) with

ρ(x, t) =
∫ ∫ f(y,w,t)

1+|x−y|2 dwdy
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Well-posedness

For the particle system : ODEs with smooth r.h.s.
Theorem 2 (kinetic equation). Assume that f0(x, v) is
compactly supported. Then the kinetic equation has a
unique weak solution f(t) with compact support for all
t ∈ [0, T ] and for some T > 0, s.t. f(t = 0) = f0.
This solution is constructible via a fixed point argument in
the space C

(

[0, T ],Pc(IR
6)

)

(of continuous functions in t

with values in the compactly supported probability densities
on IR6) equipped with the L1-Wasserstein metric

W1(f, g) := sup
t∈[0,T ]

W1 (f(t), g(t)) , ∀f, g ∈ C
(

[0, T ],Pc(IR
3 × IR3)

)

• The theorem applies, in general, to compactly supported
probability measures µ0 and µt.
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Stability

The solution of the kinetic equation depends continuously
on the initial datum:
Theorem 3 If µ0, ν0 ∈ Pc(IR

6), and µt, νt ∈ C
(

[0, T ],Pc(IR
6)

)

are resp. the solutions of the kinetic equation starting from
µ0 and ν0, then there exists a continuous function
r : [0, T ] → IR+ with r(0) = 1, s.t.

W1 (µt, νt) ≤ r(t)W1 (µ0, ν0)

In particular, the particle system converges to the
kinetic equation as N → ∞.

It follows that the behavior of a very large flock of birds
can (in principle, and on finite intervals) be simulated by
solving a system of ODEs for a reasonably large
number of birds.
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Numerical simulations

Thank you!

– p. 21


	Outline
	Basic rules in models for swarming
	Basic particle models
	The Cucker-Smale model
	Some known results about this model
	Weakness of this model
	Refinements
	A refined Cucker-Smale model
	The cutoff function $S_0$
	The alignment/flocking force
	The vision cone
	The alignment/flocking force
	The boundary/turning force
	Why so many smooth cutoffs?
	Velocity bounds
	Kinetic equations
	Associated kinetic equation
	Well-posedness
	Stability
	Numerical simulations

