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Introduction

We consider the problem given by

pt = —div[pv] in RN x [0, T]
v=—-VWxp
p(0) = po = 0.
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Introduction

We consider the problem given by

pt = —div[pv] in RN x [0, T]
v=—-VWxp
p(0) = po = 0.

Here p(x, t) is a density of particles located at position x at time t
and W is a given interaction potential.
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What do we know about the solutions?

@ Existence and uniqueness of weak solutions for the aggregation
equation in Po(RN) N LP(RN), for po € LP and VW € Wh9,

Daniel Balagué Guardia Stationary states for the aggregation equation 3/23



What do we know about the solutions?

@ Existence and uniqueness of weak solutions for the aggregation
equation in Po(RN) N LP(RN), for po € LP and VW € Wh9,

@ Global existence when AW is bounded from above.

Daniel Balagué Guardia Stationary states for the aggregation equation 3/23



What do we know about the solutions?

@ Existence and uniqueness of weak solutions for the aggregation
equation in Po(RN) N LP(RN), for po € LP and VW € Wh9,

@ Global existence when AW is bounded from above.

@ Weak measure solutions to the the Cauchy problem for the
aggregation equation.

Daniel Balagué Guardia Stationary states for the aggregation equation 3/23



What do we know about the solutions?

@ Existence and uniqueness of weak solutions for the aggregation
equation in Po(RN) N LP(RN), for po € LP and VW € Wh9,

@ Global existence when AW is bounded from above.

@ Weak measure solutions to the the Cauchy problem for the
aggregation equation.

o The problem is global-in-time well-posed in LP(RV) under
Osgood conditions, and there is blow-up of the LP-norm when
this condition is violated.
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We will suppose that:

@ the potential W is attractive-repulsive, radially symetric and
smooth away from the origin,
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We will suppose that:

@ the potential W is attractive-repulsive, radially symetric and
smooth away from the origin,

e if 4 is a radially symmetric measure then fi € P([0,+00)) is

defined by
r
[ it = [ dutx.
n n<|x|<r
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We will suppose that:

@ the potential W is attractive-repulsive, radially symetric and
smooth away from the origin,

e if 4 is a radially symmetric measure then fi € P([0,+00)) is

r
/ di(r) = / du(x).
n n<|x|<r

Definition (Spherical shell)

defined by

A delta on a sphere of radius R (“spherical shell”, 565(0’,?)),

denoted it by dg, is a uniform distribution on a sphere
OB(0,R) = {x e RN : |x| = R}.
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Understanding the velocity

The velocity field at a point x generated by a g is given by:

v=—-VWxdg(x)
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Understanding the velocity

The velocity field at a point x generated by a g is given by:
v=—-VWxdg(x)

and, by symmetry, exists a function w(ry, r2) such that

X

v=—-VWx0dr(x) =w(|x|,R)—

[x]
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Understanding the velocity

The velocity field at a point x generated by a g is given by:
v=—-VWxdg(x)

and, by symmetry, exists a function w(ry, r2) such that

V= —VW % 5g(x) = w(|x], R) .

[x]

Then y can be written as a sum of dg, [° 6,-dfi(r). And,

o= —(TW ) = [ wllxl. 1)

x|
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The problem in radial coordinates

In radially symmetric coordinates, the equation reads:
Ol + 0,(iV) = 0,

“+oo
o(r, 1) = /0 w(r,m)dpe(n).
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The problem in radial coordinates

In radially symmetric coordinates, the equation reads:
Deft + 0, (V) = 0,
“+oo
o(re)= [ wlemdin(o)

The function w is defined by

1
w(r,n) = —— VW(rey —ny) - erdo(y),
9B(0,1)

where o is the surface area of the unit ball in RN and e; is the
first vector of the canonical basis of RV.
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Stationary states

Definition

A probability measure ;i € P(RN) is a stationary state for the
aggregation equation if

—(VW s p)(x) =0 forall x & supp(u).
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Stationary states

Definition

A probability measure ;i € P(RN) is a stationary state for the
aggregation equation if

—(VW s p)(x) =0 forall x & supp(u).

According to the given interpretation of the velocity field, a dr is a
stationary state for the aggregation equation if and only if

w(R,R) = 0.
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Energetic point of view

The aggregation equation is a gradient flow! of the following
energy functional

1
el =5 ([, Wi )dux)du(y)
RN xRN
w.r.t. the euclidean Wasserstein distance

By = inf [ x=yPdnter) ).
weM(v,p) RN xRN

where T(v, p) stands for the set of joint distributions with
marginals v i p.

! Ambrosio, L. A.; Gigli, N.; Savaré, G. Gradient flows in metric spaces and in
the space of probability measures. Lectures in Mathematics, Birkhauser, 2005.
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Then, the stationary states asymptotically stable are local
minimizers of the energy. Let us see the conditions for a dr

Suppose w € C! and let dg be a stationary state, w(R, R) = 0.
then,

(i) If O1w(R, R) > 0 exists drg > 0 such that, given
0 < |dr| < dr,

E[(1 —€)dr + €d0rrdr] < E[0R],

for € small enough.
(i) If O1w(R, R) + 02(R, R) > 0 exists dry > 0 such that

E[0R+dr] < E[R];

for all 0 < |dr| < dro.
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Instability conditions

Suppose that dg is a stationary state, w(R, R) = 0, and that one
of the following cases is satisfied:
(i) we CHR2) and dw(R, R) > 0.
(i) w e C(R2)N CY(R2 \ D) and
lim Aw(r, rn) = +oo.

(r,r)¢D
(rl,r2)~>(R,R)

Conclusion: It is not possible for an LP radially symmetric solution
to converge toward a dg when t — oco.
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Idea for the instability

One first observes that

wlx] R)

n

(divv)(x) = =AW % 6r(x) = rw(|x], R) + (N — 1)
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Idea for the instability

One first observes that

(dive)(x) = —AW % g (x) = dreo((xl, R) + (N — 1) XL R)

n

Then we can reformulate the theorem with the condition

(divv)(x) = =(AW % dg)(x) >0 forall x e dB(0,R).
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Idea for the instability

One first observes that

(divv)(x) = ~ AW x 6r(x) = Drao(|x], R) + (N — 1) 2LXF)

n

Then we can reformulate the theorem with the condition

(divv)(x) = =(AW % dg)(x) >0 forall x e dB(0,R).
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Conditions for the stability

For the stability we suppose that w € C! and that dg is an
stationary state. Moreover, suppose that

(i) d1w(R,R) <0,
(i) D1w(R, R) + (R, R) < 0.

Daniel Balagué Guardia Stationary states for the aggregation equation 12/23



Conditions for the stability

For the stability we suppose that w € C! and that dg is an
stationary state. Moreover, suppose that

(i) d1w(R,R) <0,
(i) D1w(R, R) + (R, R) < 0.

The interpretation is similar...
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Instability: non-radial case

Consider an steady state 1 of the form
P dil) = [ X)) dot), YF e CRM),
M

where M is a C? hypersurface and do is the volume element on

M.

Suppose that one of the two conditions holds:
(i) AW is locally integrable on hypersurfaces, ¢ € L>°(M) and

RN

(divv(x) .= —(AW x@)(x) >0 Vx € supp(n),
(i) AW is not locally integrable on hypersurfaces and
d(x) > ¢o > 0 for all x € M.

Conclusion: it is not possible for an LP solution to converge to
w.r.t. the ds-topology.
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An example with powers

Consider now power law potentials:

<P P

2-N<b
2 b <b<a

W(x) =
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<P P
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2 b <b<a

W(x) =
Some properties:

@ The condition b < a ensures that the potential is repulsive in
the short range and attractive in the long range.
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An example with powers

Consider now power law potentials:
X* P

W=7 "%

2-N<b<a
Some properties:

@ The condition b < a ensures that the potential is repulsive in
the short range and attractive in the long range.

@ The condition 2 — N < b ensures that the potential is in
WEI(RN) for some 1 < g < co.

loc
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Or in the power law case

For the case of powers one has a formula for the function w(r,n):

w(r,n) = rPYy(n/r) — r*Ypa(n/r),
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Or in the power law case

For the case of powers one has a formula for the function w(r,n):

w(r,n) = rPYy(n/r) — r*Ypa(n/r),

where

1 [T(1- 0)(sin )N —2
¢a(5):UN 1/ (1 — scosf)(sin )bdﬁ.
on Jo (1+s?—2scosf)z
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Or in the power law case

For the case of powers one has a formula for the function w(r,n):

w(r,n) = rPYy(n/r) — r*Ypa(n/r),

where

_1 [T (1 —scosf)(sinf)N 2
¢a(5):GN 1/ (1 — scosf)(sin )bdﬁ.
on Jo (1+s?—2scosf)z

Then, a dgr is a stationary state for the aggregation equation if and

only if
w(R,R) =0, R=Ry= (ZZ’EB) .
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Value of R?

In the power law case, the radius R can be computed explicitly:

1
b+N—1 N—1\\ a-b
R:Rabzl ﬁ(a-l—I%l—l’Nz—l)
2\ p(==55)
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In /stability for powers

a b
Suppose that W(x) = |Xa| — % and consider a dg,, an stationary

state.
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In /stability for powers

X Ix

Suppose that W(x) = =5 p~ and consider a dg,, an stationary

state.

(i) f2— N < b<3— N thenw e C(R2)N CYR2 \ D) and for
all (R,R) € D

lim Ow(r, rn) = +oo.
(rn,rn)¢D
(rl,rg)—>(R,R)
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In /stability for powers

X Ix

Suppose that W(x) = =5 p~ and consider a dg,, an stationary
state.

(i) f2— N < b<3— N thenw e C(R2)N CYR2 \ D) and for
all (R,R) € D
lim Ow(r, rn) = +oo.

(rn,rn)¢D
(rl,rg)—>(R,R)

(i) 1 be (3— N, EIHINN then o & €T and

61w(Rab, Rab) > 0.
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In /stability for powers

X Ix

Suppose that W(x) = =5 p~ and consider a dg,, an stationary
state.

(i) f2— N < b<3— N thenw e C(R2)N CYR2 \ D) and for
all (R,R) € D
lim Ow(r, rn) = +oo.

(rn,rn)¢D
(rl,rg)—>(R,R)

(i) 1 be (3— N, EIHINN then o & €T and

61w(Rab, Rab) > 0.

(i) 1f b e (S=M20INNE 5) then w e C? and

Olw(Rab, Rab) <0 i (91W(Rab, Rab) + 82w(Rab, Rab) < 0.
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|dea of the proof (i)

(i) Case 2 — N < b <3 — N. One has w € C}((R* x RT)\D)
and

X (rom) = 26— Vyunn/r) — (o i)
=2 [(a=1)a(n/)—(n/N)h(n/r)| i (RE,RI\D.
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|dea of the proof (i)

(i) Case 2 — N < b <3 — N. One has w € C}((R* x RT)\D)
and

X (rom) = 26— Vyunn/r) — (o i)
=2 [(a=1)a(n/)—(n/N)h(n/r)| i (RE,RI\D.

Calculating the limit,

lim 8—w(r ) = +00
(r)ya(RR) O T T
(rm)¢D
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Idea of the proof (ii)

(i) Case 3— N < b< (3_N)Z;}\(I)f37N_N2. In this case,
w € CHRT x RY).
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Idea of the proof (ii)

(i) Case 3— N < b< (B=N)a—10+7N-N" | this case,

a+N—

w e CHRT x RT). Condthrion3
Ow (1) (1)
5, (Rab, Rap) > 0 <= a - e <b_ e
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|dea of the proof (iii)

A change of variable in the expression of 1),(1) shows that

WN—1 N—3 at+N-1 N-1
1) = —/——2°F
va(1) = 5( )
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|dea of the proof (iii)

A change of variable in the expression of 1,(1) shows that

WN—1 N—3 at+N-1 N-1
1) = —/——2°F
va(1) = 5( )

and for 9/(1)

) _wN,l(a—Z)(a+N—2) N+ta—a a+N-3 N+1
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|dea of the proof (iii)

A change of variable in the expression of 1,(1) shows that

WN-1 N—3 a+N-1 N-1
1) = ==—=23F
va(1) = = 5( )

and for 9/(1)

piy wn—1(@a—=2)(a+N—-2) nisa,[a+N-3 N+1
va(l) = WN N—1 2 b 2 72 )

ot Ya(l)
Then the quotient 20 becomes

) _1(a—-2)(a+N-2)
)= .

2 a+N-3

¥s(1
a1
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Some pictures for the velocity field w(r, Rap), N = 2

b=2, Rab=0.5773502691896258

a=2, b=1, Rab=0.6366197723675602

~
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Z
b— (38=N)a—10+TN-N> ~
- a+N—-3 ___
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Thank you for your attention.
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