Stationary states for the aggregation equation with power law attractive-repulsive potentials

Daniel Balagué

Joint work with J.A. Carrillo, T. Laurent and G. Raoul
Universitat Autònoma de Barcelona

BIRS - Multi-particle systems with non-local interactions 22-27 January 2012 - Banff, Canada

Introduction

We consider the problem given by

$$ho_t = -\operatorname{div}[
ho v] \quad ext{in} \quad \mathbb{R}^N \times [0, T]$$

$$ho = -\nabla W *
ho$$

$$ho(0) =
ho_0 \ge 0.$$

Introduction

We consider the problem given by

$$ho_t = -\operatorname{div}[
ho v] \quad \text{in} \quad \mathbb{R}^N \times [0, T]$$

$$ho = -\nabla W *
ho$$

$$ho(0) =
ho_0 \ge 0.$$

Here $\rho(x, t)$ is a density of particles located at position x at time t and W is a given interaction potential.

• Existence and uniqueness of weak solutions for the aggregation equation in $\mathcal{P}_2(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)$, for $\rho_0 \in L^p$ and $\nabla W \in W^{1,q}$.

- Existence and uniqueness of weak solutions for the aggregation equation in $\mathcal{P}_2(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)$, for $\rho_0 \in L^p$ and $\nabla W \in W^{1,q}$.
- Global existence when ΔW is bounded from above.

- Existence and uniqueness of weak solutions for the aggregation equation in $\mathcal{P}_2(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)$, for $\rho_0 \in L^p$ and $\nabla W \in W^{1,q}$.
- Global existence when ΔW is bounded from above.
- Weak measure solutions to the the Cauchy problem for the aggregation equation.

- Existence and uniqueness of weak solutions for the aggregation equation in $\mathcal{P}_2(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)$, for $\rho_0 \in L^p$ and $\nabla W \in W^{1,q}$.
- Global existence when ΔW is bounded from above.
- Weak measure solutions to the the Cauchy problem for the aggregation equation.
- The problem is global-in-time well-posed in $L^p(\mathbb{R}^N)$ under Osgood conditions, and there is blow-up of the L^p -norm when this condition is violated.

Assumptions

We will suppose that:

ullet the potential W is attractive-repulsive, radially symetric and smooth away from the origin,

Assumptions

We will suppose that:

- the potential W is attractive-repulsive, radially symetric and smooth away from the origin,
- if μ is a radially symmetric measure then $\hat{\mu} \in \mathcal{P}([0,+\infty))$ is defined by

$$\int_{r_1}^{r_2} d\hat{\mu}(r) = \int_{r_1 < |x| < r_2} d\mu(x).$$

Assumptions

We will suppose that:

- the potential W is attractive-repulsive, radially symetric and smooth away from the origin,
- if μ is a radially symmetric measure then $\hat{\mu} \in \mathcal{P}([0,+\infty))$ is defined by

$$\int_{r_1}^{r_2} d\hat{\mu}(r) = \int_{r_1 < |x| < r_2} d\mu(x).$$

Definition (Spherical shell)

A delta on a sphere of radius R ("spherical shell", $\delta_{\partial B(0,R)}$), denoted it by δ_R , is a uniform distribution on a sphere $\partial B(0,R) = \{x \in \mathbb{R}^N : |x| = R\}.$

Understanding the velocity

The velocity field at a point x generated by a δ_R is given by:

$$v = -\nabla W * \delta_R(x)$$

Understanding the velocity

The velocity field at a point x generated by a δ_R is given by:

$$v = -\nabla W * \delta_R(x)$$

and, by symmetry, exists a function $\omega(r_1, r_2)$ such that

$$v = -\nabla W * \delta_R(x) = \omega(|x|, R) \frac{x}{|x|}.$$

Understanding the velocity

The velocity field at a point x generated by a δ_R is given by:

$$v = -\nabla W * \delta_R(x)$$

and, by symmetry, exists a function $\omega(r_1, r_2)$ such that

$$v = -\nabla W * \delta_R(x) = \omega(|x|, R) \frac{x}{|x|}.$$

Remark

Then μ can be written as a sum of δ_R , $\int_0^\infty \delta_r d\hat{\mu}(r)$. And,

$$v = -(\nabla W * \mu)(x) = \int_0^\infty \omega(|x|, r) d\hat{\mu}(r) \frac{x}{|x|}.$$

The problem in radial coordinates

In radially symmetric coordinates, the equation reads:

$$egin{aligned} \partial_t \hat{\mu} + \partial_r (\hat{\mu} \hat{v}) &= 0, \ \hat{v}(r,t) &= \int_0^{+\infty} \omega(r,\eta) d\hat{\mu}_t(\eta). \end{aligned}$$

The problem in radial coordinates

In radially symmetric coordinates, the equation reads:

$$egin{aligned} \partial_t \hat{\mu} + \partial_r (\hat{\mu} \hat{\mathbf{v}}) &= 0, \ \hat{\mathbf{v}}(r,t) &= \int_0^{+\infty} \omega(r,\eta) d\hat{\mu}_t(\eta). \end{aligned}$$

The function ω is defined by

$$\omega(r,\eta) = -\frac{1}{\sigma_N} \int_{\partial B(0,1)} \nabla W(re_1 - \eta y) \cdot e_1 d\sigma(y),$$

where σ_N is the surface area of the unit ball in \mathbb{R}^N and e_1 is the first vector of the canonical basis of \mathbb{R}^N .

Stationary states

Definition

A probability measure $\mu \in \mathcal{P}(\mathbb{R}^N)$ is a stationary state for the aggregation equation if

$$-(\nabla W * \mu)(x) = 0$$
 for all $x \in \text{supp}(\mu)$.

Stationary states

Definition

A probability measure $\mu \in \mathcal{P}(\mathbb{R}^N)$ is a stationary state for the aggregation equation if

$$-(\nabla W * \mu)(x) = 0$$
 for all $x \in \text{supp}(\mu)$.

According to the given interpretation of the velocity field, a δ_R is a stationary state for the aggregation equation if and only if

$$\omega(R,R)=0.$$

Energetic point of view

The aggregation equation is a gradient flow¹ of the following energy functional

$$E[\mu] = \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} W(x - y) d\mu(x) d\mu(y)$$

w.r.t. the euclidean Wasserstein distance

$$d_2^2(\nu,\rho) = \inf_{\pi \in \Pi(\nu,\rho)} \left\{ \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^2 d\pi(x,y) \right\},\,$$

where $\Pi(\nu, \rho)$ stands for the set of joint distributions with marginals ν i ρ .

¹Ambrosio, L. A.; Gigli, N.; Savaré, G. *Gradient flows in metric spaces and in the space of probability measures*. Lectures in Mathematics, Birkhäuser, 2005.

Then, the stationary states asymptotically stable are local minimizers of the energy. Let us see the conditions for a δ_R

Proposition

Suppose $\omega \in C^1$ and let δ_R be a stationary state, $\omega(R,R) = 0$. then,

(i) If $\partial_1 \omega(R,R) > 0$ exists $dr_0 > 0$ such that, given $0 < |dr| < dr_0$,

$$E[(1-\epsilon)\delta_R + \epsilon \delta_{R+dr}] < E[\delta_R],$$

for ϵ small enough.

(ii) If $\partial_1 \omega(R,R) + \partial_2(R,R) > 0$ exists $dr_0 > 0$ such that

$$E[\delta_{R+dr_0}] < E[\delta_R],$$

for all $0 < |dr| < dr_0$.

Instability conditions

Theorem

Suppose that δ_R is a stationary state, $\omega(R,R)=0$, and that one of the following cases is satisfied:

- (i) $\omega \in C^1(\mathbb{R}^2_+)$ and $\partial_1 \omega(R,R) > 0$.
- (ii) $\omega \in C(\mathbb{R}^2_+) \cap C^1(\mathbb{R}^2_+ \setminus \mathcal{D})$ and

$$\lim_{\substack{(r_1,r_2) \not\in \mathcal{D} \\ (r_1,r_2) \to (R,R)}} \partial_1 \omega(r_1,r_2) = +\infty.$$

Conclusion: It is not possible for an L^p radially symmetric solution to converge toward a δ_R when $t \to \infty$.

Idea for the instability

One first observes that

$$(\operatorname{div} v)(x) = -\Delta W * \delta_R(x) = \partial_1 \omega(|x|, R) + (N-1) \frac{\omega(|x|, R)}{r_1}.$$

Idea for the instability

One first observes that

$$(\operatorname{div} v)(x) = -\Delta W * \delta_R(x) = \partial_1 \omega(|x|, R) + (N-1) \frac{\omega(|x|, R)}{r_1}.$$

Then we can reformulate the theorem with the condition

$$(\operatorname{div} v)(x) = -(\Delta W * \delta_R)(x) > 0$$
 for all $x \in \partial B(0, R)$.

Idea for the instability

One first observes that

$$(\operatorname{div} v)(x) = -\Delta W * \delta_R(x) = \partial_1 \omega(|x|, R) + (N-1) \frac{\omega(|x|, R)}{r_1}.$$

Then we can reformulate the theorem with the condition

$$(\operatorname{div} v)(x) = -(\Delta W * \delta_R)(x) > 0$$
 for all $x \in \partial B(0, R)$.

Conditions for the stability

For the stability we suppose that $\omega \in C^1$ and that δ_R is an stationary state. Moreover, suppose that

- (i) $\partial_1 \omega(R,R) < 0$,
- (ii) $\partial_1 \omega(R,R) + \partial_2 \omega(R,R) < 0$.

Conditions for the stability

For the stability we suppose that $\omega \in C^1$ and that δ_R is an stationary state. Moreover, suppose that

- (i) $\partial_1 \omega(R,R) < 0$,
- (ii) $\partial_1 \omega(R,R) + \partial_2 \omega(R,R) < 0$.

The interpretation is similar...

Instability: non-radial case

Consider an steady state $\overline{\mu}$ of the form

$$\int_{\mathbb{R}^N} f(x) d\overline{\mu}(x) = \int_{\mathcal{M}} f(x) \phi(x) d\sigma(x), \quad \forall f \in C(\mathbb{R}^N),$$

where \mathcal{M} is a C^2 hypersurface and $d\sigma$ is the volume element on \mathcal{M} .

Proposition

Suppose that one of the two conditions holds:

(i) ΔW is locally integrable on hypersurfaces, $\phi \in L^\infty(\mathcal{M})$ and

$$(\operatorname{div} \overline{v}(x) := -(\Delta W * \overline{\mu})(x) > 0 \quad \forall x \in \operatorname{supp}(\overline{\mu}),$$

(ii) ΔW is not locally integrable on hypersurfaces and $\phi(x) > \phi_0 > 0$ for all $x \in \mathcal{M}$.

Conclusion: it is not possible for an L^p solution to converge to $\overline{\mu}$ w.r.t. the d_{∞} -topology.

An example with powers

Consider now power law potentials:

$$W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$$
 $2 - N < b < a$

An example with powers

Consider now power law potentials:

$$W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$$
 $2 - N < b < a$

Some properties:

 The condition b < a ensures that the potential is repulsive in the short range and attractive in the long range.

An example with powers

Consider now power law potentials:

$$W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$$
 $2 - N < b < a$

Some properties:

- The condition b < a ensures that the potential is repulsive in the short range and attractive in the long range.
- The condition 2 N < b ensures that the potential is in $W^{1,q}_{loc}(\mathbb{R}^N)$ for some $1 < q < \infty$.

δ_R in the power law case

For the case of powers one has a formula for the function $\omega(r,\eta)$:

$$\omega(r,\eta) = r^{b-1}\psi_b(\eta/r) - r^{a-1}\psi_a(\eta/r),$$

δ_R in the power law case

For the case of powers one has a formula for the function $\omega(r,\eta)$:

$$\omega(r,\eta) = r^{b-1}\psi_b(\eta/r) - r^{a-1}\psi_a(\eta/r),$$

where

$$\psi_a(s) = \frac{\sigma_{N-1}}{\sigma_N} \int_0^{\pi} \frac{(1-s\cos\theta)(\sin\theta)^{N-2}}{(1+s^2-2s\cos\theta)^{\frac{2-a}{2}}} d\theta.$$

δ_R in the power law case

For the case of powers one has a formula for the function $\omega(r,\eta)$:

$$\omega(r,\eta) = r^{b-1}\psi_b(\eta/r) - r^{a-1}\psi_a(\eta/r),$$

where

$$\psi_a(s) = \frac{\sigma_{N-1}}{\sigma_N} \int_0^{\pi} \frac{(1-s\cos\theta)(\sin\theta)^{N-2}}{(1+s^2-2s\cos\theta)^{\frac{2-a}{2}}} d\theta.$$

Then, a δ_R is a stationary state for the aggregation equation if and only if

$$\omega(R,R)=0, \quad R=R_{ab}=\left(\frac{\psi_b(1)}{\psi_a(1)}\right)^{\frac{1}{a-b}}.$$

Value of R?

In the power law case, the radius R can be computed explicitly:

$$R = R_{ab} = \frac{1}{2} \left(\frac{\beta(\frac{b+N-1}{2}, \frac{N-1}{2})}{\beta(\frac{a+N-1}{2}, \frac{N-1}{2})} \right)^{\frac{1}{a-b}}$$

Suppose that $W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$ and consider a $\delta_{R_{ab}}$ an stationary state.

Suppose that $W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$ and consider a $\delta_{R_{ab}}$ an stationary state.

(i) If $2-N < b \le 3-N$ then $\omega \in C(\mathbb{R}^2_+) \cap C^1(\mathbb{R}^2_+ \setminus \mathcal{D})$ and for all $(R,R) \in \mathcal{D}$

$$\lim_{\substack{(r_1,r_2)\neq\mathcal{D}\\(r_1,r_2)\rightarrow(R,R)}}\partial_1\omega(r_1,r_2)=+\infty.$$

Suppose that $W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$ and consider a $\delta_{R_{ab}}$ an stationary state.

(i) If $2-N < b \le 3-N$ then $\omega \in C(\mathbb{R}^2_+) \cap C^1(\mathbb{R}^2_+ \setminus \mathcal{D})$ and for all $(R,R) \in \mathcal{D}$

$$\lim_{\substack{(r_1,r_2)\not\in\mathcal{D}\\(r_1,r_2)\to(R,R)}}\partial_1\omega(r_1,r_2)=+\infty.$$

(ii) If
$$b\in \left(3-N,\frac{(3-N)a-10+7N-N^2}{a+N-3}\right)$$
 then $\omega\in C^1$ and
$$\partial_1\omega(R_{ab},R_{ab})>0.$$

Suppose that $W(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$ and consider a $\delta_{R_{ab}}$ an stationary state.

(i) If $2-N < b \le 3-N$ then $\omega \in C(\mathbb{R}^2_+) \cap C^1(\mathbb{R}^2_+ \setminus \mathcal{D})$ and for all $(R,R) \in \mathcal{D}$

$$\lim_{\substack{(r_1,r_2) \notin \mathcal{D} \\ (r_1,r_2) \to (R,R)}} \partial_1 \omega(r_1,r_2) = +\infty.$$

(ii) If
$$b \in \left(3-N, \frac{(3-N)a-10+7N-N^2}{a+N-3}\right)$$
 then $\omega \in C^1$ and
$$\partial_1 \omega(R_{ab}, R_{ab}) > 0.$$

(iii) If
$$b \in \left(\frac{(3-N)a-10+7N-N^2}{a+N-3}, a\right)$$
 then $\omega \in C^1$ and
$$\partial_1 \omega(R_{ab}, R_{ab}) < 0 \quad \text{i} \quad \partial_1 \omega(R_{ab}, R_{ab}) + \partial_2 \omega(R_{ab}, R_{ab}) < 0.$$

Idea of the proof (i)

(i) Case $2 - N < b \le 3 - N$. One has $\omega \in C^1((\mathbb{R}^+ \times \mathbb{R}^+) \setminus \mathcal{D})$ and

$$\begin{split} &\frac{\partial \omega}{\partial r}(r,\eta) = r^{b-2} \Big[(b-1)\psi_b(\eta/r) - (\eta/r)\psi_b'(\eta/r) \Big] \\ &- r^{a-2} \Big[(a-1)\psi_a(\eta/r) - (\eta/r)\psi_a'(\eta/r) \Big] \qquad \text{in } (\mathbb{R}^+,\mathbb{R}^+) \backslash \mathcal{D}. \end{split}$$

Idea of the proof (i)

(i) Case $2 - N < b \le 3 - N$. One has $\omega \in C^1((\mathbb{R}^+ \times \mathbb{R}^+) \setminus \mathcal{D})$ and

$$\begin{split} &\frac{\partial \omega}{\partial r}(r,\eta) = r^{b-2} \Big[(b-1) \psi_b(\eta/r) - (\eta/r) \psi_b'(\eta/r) \Big] \\ &- r^{a-2} \Big[(a-1) \psi_a(\eta/r) - (\eta/r) \psi_a'(\eta/r) \Big] \qquad \text{in } (\mathbb{R}^+,\mathbb{R}^+) \backslash \mathcal{D}. \end{split}$$

Calculating the limit,

$$\lim_{\substack{(r,\eta)\to(R,R)\\(r,\eta)\notin\mathcal{D}}}\frac{\partial\omega}{\partial r}(r,\eta)=+\infty.$$

Idea of the proof (ii)

(ii) Case
$$3 - N < b < \frac{(3-N)a-10+7N-N^2}{a+N-3}$$
. In this case, $\omega \in C^1(\mathbb{R}^+ \times \mathbb{R}^+)$.

Idea of the proof (ii)

(ii) Case
$$3 - N < b < \frac{(3-N)a-10+7N-N^2}{a+N-3}$$
. In this case, $\omega \in C^1(\mathbb{R}^+ \times \mathbb{R}^+)$. Condition

$$\frac{\partial \omega}{\partial r}(R_{ab},R_{ab}) > 0 \Longleftrightarrow a - \frac{\psi_a'(1)}{\psi_a(1)} < b - \frac{\psi_b'(1)}{\psi_b(1)}$$

Idea of the proof (iii)

A change of variable in the expression of $\psi_a(1)$ shows that

$$\psi_{\mathsf{a}}(1) = rac{\omega_{\mathsf{N}-1}}{\omega_{\mathsf{N}}} 2^{\mathsf{a}+\mathsf{N}-3} \beta\left(rac{\mathsf{a}+\mathsf{N}-1}{2},rac{\mathsf{N}-1}{2}
ight),$$

Idea of the proof (iii)

A change of variable in the expression of $\psi_a(1)$ shows that

$$\psi_{\mathsf{a}}(1) = \frac{\omega_{\mathsf{N}-1}}{\omega_{\mathsf{N}}} 2^{\mathsf{a}+\mathsf{N}-3} \beta\left(\frac{\mathsf{a}+\mathsf{N}-1}{2}, \frac{\mathsf{N}-1}{2}\right),$$

and for $\psi_a'(1)$

$$\psi_a'(1) = \frac{\omega_{N-1}}{\omega_N} \frac{(a-2)(a+N-2)}{N-1} 2^{N+a-4} \beta\left(\frac{a+N-3}{2}, \frac{N+1}{2}\right).$$

Idea of the proof (iii)

A change of variable in the expression of $\psi_a(1)$ shows that

$$\psi_{a}(1) = \frac{\omega_{N-1}}{\omega_{N}} 2^{a+N-3} \beta\left(\frac{a+N-1}{2}, \frac{N-1}{2}\right),$$

and for $\psi_a'(1)$

$$\psi_a'(1) = \frac{\omega_{N-1}}{\omega_N} \frac{(a-2)(a+N-2)}{N-1} 2^{N+a-4} \beta\left(\frac{a+N-3}{2}, \frac{N+1}{2}\right).$$

Then the quotient $\frac{\psi_{a}'(1)}{\psi_{a}(1)}$ becomes

$$\frac{\psi_a'(1)}{\psi_a(1)} = \frac{1}{2} \frac{(a-2)(a+N-2)}{a+N-3}.$$

П

Some pictures for the velocity field $\omega(r, R_{ab}), N = 2$

Summary

Thank you for your attention.