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Swarming by Nature or by design?

Tho ghysice o flocking

Fish schools and Birds flocks.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle

operation.
ATTRACTION

Interaction regions between individuals®

aA(yki, Helmerijk et al., Barbaro, Birnir et al.
@ Repulsion Region: Ry.
@ Attraction Region: Ay.

@ Orientation Region: Ok.
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dx,-
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E - Ly
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L= (=B l)vi— > VU(xi = x)).
i
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U(r)

Pair-wise




Motivations
000800
Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

dvi 2
m—- = (a =Bl - ;VU(LX,- — xj)).
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determines an asymptotic speed of U
Jalp.

@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).

Pair-wise

U(r) = —Cue "t 4 Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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2nd Order Model: Newton’s like equations

dvi 2
L= (=B l)vi— > VU(xi = x)).

J#

Model assumptions: C=Cr/Cx>1,L=1lg/ls <1and
CP <1
@ Self-propulsion and friction terms

determines an asymptotic speed of U
Va/B.

@ Attraction/Repulsion modeled by an
effective pairwise potential U (x).

Pair-wise

U(r) = —Cue "t 4 Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dX,‘

— =,
dt v
N

dV,‘
e ZHU (v —vi),

j=1
with the communication rate, v > 0:

1

ajj = a(|x,~ *Xj|) = m
i A
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dX,‘

— =,
dt v
N

dV,‘
e ZHU (v —vi),

j=1
with the communication rate, v > 0:

1

ajj = a(|x,~ *Xj|) = m
i A

Asymptotic flocking: v < 1/2; Cucker-Smale.
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Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

o= Z a(lxi — x;|)(vi — i)

where ¥;(r) C {1,...,N} is the set of dependence, given by
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Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

?;; =V,
S CEICE)
JEX; (1)

where ¥;(r) C {1,...,N} is the set of dependence, given by

2,‘(1‘) = {ISKSNMZO‘}
x| vi
Cone of Vision:
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Variations

Roosting Forces

Adding a roosting area to the model:

dx _
d "

dv; 2 i 1L e 1
= (=B — D VU =) =it Vi [6(x) - vit]

i 4
. . . . b
with the roosting potential ¢ given by ¢(x) := — (ﬂ) .
4 RRoost
Roosting effect: milling flocks N = 400, Rioost = 20.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:
Xi:ZVh
dvi= | (o= B il )vi = Vi, Y U(xi — x|) | dt+ V20 dDi(r)
jF#i

where I';(¢) are N independent copies of standard Wiener processes with values in
R and ¢ > 0 is the noise strength.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:
Xi:ZVh
dvi= | (o= B il )vi = Vi, Y U(xi — x|) | dt+ V20 dDi(r)
jF#i

where I';(¢) are N independent copies of standard Wiener processes with values in
R? and ¢ > 0 is the noise strength. The Cucker—Smale Particle Model with Noise:

dxizzvmh,

N m

dvi = E (hy — %) (v —vi)dt + |20 a(|x; — xi[) dT(1) -
j=1
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dXi = Vidt,

i
av, =V2P(V)) o dB, — P(V) | & SOKX=X)(V, — V) | ar.

j=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
inR% ie.,

VRV

P(yv) =1 —
R TTE

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Caifiizo-Carrillo.

Main issue: phase transition? Degond-Liu-Frouvelle.
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Particle-Particle Interaction

Assumption: agents interact binary (like molecules in a Boltzmann gas):
Carlen-Degond-Wennberg.

CL model (choose the leader): each time that a interaction happens, with certain
probability, one agent decides to follow the other instantaneously.

BDG model (Bertin-Droz-Grégoire): each time that a interaction happens, with
certain probability, both agents decide to follow their average velocity
instantaneously.

Propagation of chaos: finite versus infinite number of particles. In the N — oo limit,
they lead to Boltzmann like models.
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

g +v - Vif +div,[(a—p

o VW] = dive (VU % p)f] = 0.
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

Lty W+ divl(a— AP — div, (V.U % p)f] = .

Velocity consensus Model:

of - V—w o PR
a +v-Vyf =V, [(/&2(/ W.f@:”ﬁ) dy dW).f(X-,‘vt)}

=E() (xv,1)

Orientation, Attraction and Repulsion:

% + v Vif —divy [(V2U * p)f] = Vo - [€(F) (x, v, 0)f (x, v, 1)] -
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Vlasov-like Models

Definition of the distance

Transporting measures:

Given T : RY — RY mesurable, we say that v = T#p, if v[K] := u[T~"(K)] for all
mesurable sets K C R, equivalently
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Transporting measures:

Given T : RY — RY mesurable, we say that v = T#p, if v[K] := u[T~"(K)] for all
mesurable sets K C R, equivalently

/ pdv = / (poT)du for all p € C,(R?).
R4 R4
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Transporting measures:
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Random variables:
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Vlasov-like Models

Definition of the distance

Transporting measures:

Given T : RY — RY mesurable, we say that v = T#p, if v[K] := u[T~"(K)] for all
mesurable sets K C R, equivalently

/ pdv = / (poT)du forall ¢ € C,(RY).
R4 R4

Random variables:

Say that X is a random variable with law given by p, is to say
X :(Q, A, P) — (R B,) is a mesurable map such that X#P = p, i.e.,

[ ewdn= [ (wox)ap=Elpx).

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
W) (p,v) = infrx vy {E[|X — Y[}

where (X, Y) are all possible couples of random variables with 1 and v as respective
laws.

v
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Well-posedness in probability measures!

Existence, uniqueness and stability

Take a potential U € Cf(Rd ), and fy a measure on RY x R? with compact support.
There exists a solution f € C([0, +00); P1(R?)) in the sense of solving the equation
through the characteristics: f; := P'#fy with P’ the flow map associated to the
equation.

1 Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Well-posedness in probability measures!

Existence, uniqueness and stability

Take a potential U € Cf(Rd ), and fy a measure on RY x R? with compact support.
There exists a solution f € C([0, +00); P1(R?)) in the sense of solving the equation
through the characteristics: f; := P'#fy with P’ the flow map associated to the
equation.

Moreover, the solutions remains compactly supported for all time with a possibly
growing in time support.

Moreover, given any two solutions f and g with initial data fy and g, there is an
increasing function depending on the size of the support of the solutions and the
parameters, such that

Wi(fi, 8) < a(t) Wi(fo, go)

Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that
IVU| < r~ %, witha < 1.

1 Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Convergence of the particle method

@ Empirical measures: if x;,v; : [0, T) — R, fori = 1,..., N, is a solution to the

ODE system,
dX[
— =V
dt '
al - +
dr

then the f : [0, T) — Py (R?) given by

N
(1) =D midq )
i=1

is the solution corresponding to initial atomic measures.
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Convergence of the particle method

@ Empirical measures: if x;,v; : [0, T) — R, fori = 1,..., N, is a solution to the

ODE system,
dX[
— =V
dt '
propulsion-friction attraction-repulsion
dv,-
o = (@=8 Vil i = > mVU(l —x[) +

J#

then the f : [0, T) — Py (R?) given by

N
(1) =D midq )
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is the solution corresponding to initial atomic measures.
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Convergence of the particle method

@ Empirical measures: if x;,v; : [0, T) — R, fori = 1,..., N, is a solution to the

ODE system,
dX[
— =V
dt ' ) )
. L. . . orientation
propulsion-friction attraction-repulsion
dV' N
- = (a=p Vil = > mVU( —x)) + D> miag (v — i)

JF#i J=1

then the f : [0, T) — Py (R?) given by

N
(1) =D midq )
i=1

is the solution corresponding to initial atomic measures.
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Convergence of the particle method

@ Empirical measures: if x;,v; : [0, T) — R, fori = 1,..., N, is a solution to the
ODE system,
dX[
— =V
dt ' ) )
. . orientation
propulsion-friction attraction-repulsion
N
dv; 2 d
o = (a=BWhPv - D omVU(lxi —x1) + Y myag (v —vi) .
J# j=1

then the f : [0, T) — Py (R?) given by

N
(1) =D midq )
i=1

is the solution corresponding to initial atomic measures.

@ Convergence of approximations of measures by particles due to the stability at
any given time T as an alternative derivation of the kinetic models.
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Mean-Field Limit

Just take as many particles as needed in order to have
Wi(fi f) < ) Wi(fo,fo') >0 asN — o0

by sampling the initial data in a suitable way.
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Mean-Field Limit

Just take as many particles as needed in order to have
Wi(fi f) < ) Wi(fo,fo') >0 asN — o0

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W,
converging to the solution of the kinetic equation.
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Stochastic Particle System

General Interacting Particle System with Noise:

N interacting R*-valued processes (X, V/);>o with 1 < i < N solution of

dX! = Vidt,
N

i i i i l i j i j
dVi = \2dB. — F(X!, V})dr — N > H(X] - X],V, — Vi)t

=1

with independent and commonly distributed initial data (X(’), V(’)) with 1 <i < N.
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Stochastic Particle System

General Interacting Particle System with Noise:

N interacting R*-valued processes (X, V/);>o with 1 < i < N solution of

dX! = Vidt,
. . o 1 & . o .
dVi = \2dB. — F(X!, V})dr — N > H(X] - X],V, — Vi)t

=1

with independent and commonly distributed initial data (X(’), V(’)) with 1 <i < N.

Empirical Measure:

N
- 1
N
‘f[ - N Z 6()(;'"/]1
i=1
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Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Yf, Vﬁ),zo solutions of the kinetic McKean-Vlasov type
equation on R*:

dX, =V dt
dVi, = \2dB, — F(X;,V})dt — H = f,(X,, V) dt,
(Xo, Vo) = (X0, V), fi = law(X,, V).
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Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Yf, Vﬁ),zo solutions of the kinetic McKean-Vlasov type
equation on R*:

dX, = V,dt
dV, = V2dB, — F(X;, V})dt — H % f,(X;, V1) dt,
(Y:)nvf)) = (X(i)-, V(i))a fi= law(Y:,Vﬁ).
The stochastic processes are independent and identically distributed according to

Ofs +v-Vifi = Afi + Vo - (F+Hxf)f,), t>0,xveR.
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Coupling Method 2

Conjecture: The N interacting processes (X!, Vi)i>0 behave as N — oo like the
processes (X, V;):>o associated to the PDE.
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More precisely, the objective is to estimate the convergence as N — oo of

E[1X; — XiI* + Vi = Vi['] <e)
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Stochastic Mean-Field Limit

Coupling Method 2

Conjecture: The N interacting processes (X!, Vi)i>0 behave as N — oo like the
processes (X, V;):>o associated to the PDE.

More precisely, the objective is to estimate the convergence as N — oo of

E[1X; — XiI* + Vi = Vi['] <e)

Consequences

1. f,(l) of any of the particles X/ at time # converges to f; as N goes to infinity:

Wi (V. f) <E[IX =X + Vi = Vil"] <e(N).
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Coupling Method 3

Consequences

2. Propagation of chaos: The law f,(k) of any k particles (X!, V/) converges to the
tensor product /¥ as N goes to infinity:

Wi (Y £85) < ke(N).
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Coupling Method 3

Consequences

2. Propagation of chaos: The law f,(k) of any k particles (X!, V/) converges to the
tensor product /¥ as N goes to infinity:

Wi (Y £85) < ke(N).

3. Convergence of the empirical measure f* to f;: if ( is a Lipschitz map on R*,

then
1 o ' 2
E ‘N;‘P(Xnvr)f‘/kw@df/
o R 1 N P 2
<2E |[o(X), V) — (X, VI + ’NZ’»D(XLVI)*/IM/‘; }
i—1 J R
C
< e(N —
<e( )+N
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Main Result

Previous Results: If the functions involved F and H are globally Lipschitz then there
are classical results by Snitzman and Meleard, implying that

The typical F and H in our Cucker-Smale and D’Orsogna etal model are not globally
Lipschitz.

Hypotheses:

Assume that F and H with H(—x, —v) = —H(x, v), satisfy

2
v—w|

—(v=w) - (F(x,v) — F(x,w)) <A
[F(x,v) = F(y,v)| < Lmin{lx — y[, 1}(1 + ")

for all x, y, v, w in R?, and analogously for H instead of F.
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Main Result 2

Properties of the Stochastic Processes and PDE:
Assume that the particle system and the processes have global solutions on [0, T
with initial data (Xp, Vi) such that the uniform moment condition holds:

sup |H(x — y,v — w)|dfi(x,v)dfi(y, w) + / (x* + M )dfy(x, v)} < 400
R2d

0<i<T~J R4

with f; = law(X,, V}) and some p’ > p.
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Stochastic Mean-Field Limit

Main Result 2

Properties of the Stochastic Processes and PDE:
Assume that the particle system and the processes have global solutions on [0, T
with initial data (X, V;) such that the uniform moment condition holds:

|H(x — y,v — w)|dfi(x,v)dfi(y, w) + / (x* + e"w/ )dfy(x, v)} < +o0
R2d

sup
0<i<7\ JRad

with f; = law(fi,Vi) and some p’ > p.
Result:

For all 0 < e < 1 there exists a constant C such that
1 i i C
E[|X17Xr| +|Vrfvr‘ } < Nl—e

forall0 <¢t<TandN > 1.
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Asymptotic Flocking

Let us consider the N,-particle system:

dx; 0

E = Vi ’ X,‘(O) =X
A

dV,’

=Y malln =5l (= v) u(0) =,

j=1
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Asymptotic Flocking

Let us consider the N,-particle system:

dx; 0

E = Vi ’ X,‘(O) =X
A

dV,’

dar > ma(|xi = x0) (v = i), vi(0) =7,
j=1

Due to translation invariancy, w.l.0.g. the mean velocity is zero and thus the center of

mass is preserved along the evolution, i.e.,
N, Ny

Z mvi(t) =0 and Z mixi(t) = xc

i=l1

i=1

forall 7 > 0 and x. € R%.
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Asymptotic Flocking

Find a bound independent of
the number of particles for the
time it takes for all the particles
to travel at the mean velocity.

'
)

)

P R
¢ % sa e
*Yhee,

’
i




Qualitative Properties
oooe

Cucker-Smale model

Asymptotic Flocking

Unconditional Non-universal Asymptotic Flocking: C.-Fornasier-Rosado-Toscani

Given po € M(R*") compactly supported, then the unique measure-valued solution
to the CS kinetic model with v < 1/2, satisfies the following bounds on their
supports:

supp (1) C B(xc(0) + mt, R*(¢)) x B(m,R" (1))
for all > 0, with R*(r) < Rand R() < Ry e~ with R* depending only on the
initial support radius.

=) - =0
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Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
S, v, 1) = p(x, 1) 6(v — u(x, 1)) is a distributional solution if and only if,
0 .
0—/; + divy(pu) = 0,

P 5? + P(M-Vx)u =p ((]{ _ 5\M|2)u —p (v\U N p)
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value 8|u(x, 1)|* = a.

Flocking

Traveling wave case, u = const such that S|u(x, 1)|* = a, then p(x, ) = p(x — ut),
and the density is determined by

ﬁ(VXU*ﬁ) = 07




Qualitative Properties
feYel Yo
Qualitative Properties: Model with asymptotic speed

Particular solutions

Let us look for stationary solutions with an asymptotic speed value 8|u(x, 1)|* = a.

Flocking

Traveling wave case, u = const such that S|u(x, 1)|* = a, then p(x, ) = p(x — ut),
and the density is determined by

ﬁ(VXU*ﬁ) = 07

from which
Uxp=C, F#0,

in the support of p if the support has not empty interior.
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value 8|u(x, 1)|* = a.

Flocking

Traveling wave case, u = const such that S|u(x, 1)|* = a, then p(x, ) = p(x — ut),
and the density is determined by

ﬁ(VXU*ﬁ) = 07

from which
Uxp=C, F#0,

in the support of p if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are
open problems.
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value B|u(x, £)|* = o
Milling

we set u in a rotatory state,

1

o X

=+, /=
CTEVB D

where x = (x1,x2), x~ = (—x2,x), and look for p = p(|x|) radial, then

Uxp=D+ %log|x\, whenever p # 0.
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Let us look for stationary solutions with an asymptotic speed value B|u(x, £)|* = o
Milling

we set u in a rotatory state,
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where x = (x1,x2), x~ = (—x2,x), and look for p = p(|x|) radial, then
Uxp=D+ %log|x\, whenever p # 0.

A special family of singular solutions are given by p(r) = ¢ d(r — ro).
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value B|u(x, £)|* = o
Milling

we set u in a rotatory state,
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where x = (x1,x2), x~ = (—x2,x), and look for p = p(|x|) radial, then
Uxp=D+ %log|x\, whenever p # 0.

A special family of singular solutions are given by p(r) = ¢ d(r — ro).

Complete set of solutions depending on regularity of the potential and stability are
open problems.
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