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Introduction

I Collective motion of systems have long been observed in biological
populations.

I Mathematical studies of swarming behavior:
I Provided examples of biological patterns.
I Led to intelligent design and control of man-made vehicles.

I Two main types of models:
I Continuum-based.
I Individual-based (Can be deterministic or stochastic).

I Emergence of ordered swarm states from initial disordered state:
I Translational or rotational in motion.
I Spatially distributed or localized in clusters.

I Effect of time delayed interactions (finite communication times).
I Detailed bifurcation study.
I Effect of noise on the system bifurcations.
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Swarms
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The Swarm Model
ṙi = vi

v̇i = (1− |vi|2)vi −
a
N

N∑
j=1
i 6=j

(ri(t)− rj(t − τ)) + ηi(t)

ηi(t) = (η
(1)
i , η

(2)
i )

〈η(`)i (t)〉 = 0 and 〈η(`)i (t)η(k)j (t′)〉 = 2Dδ(t − t′)δijδ`k

D = σ2/2 i, j = 1, 2, . . . ,N `, k = 1, 2

a - particle interaction coupling parameter
N - number of particles
τ - constant communication time delay
D - intensity of noise
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Noise Induced Transition (No Time Delay)

Erdmann, et al. (2005), Forgoston and Schwartz (2008).
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a = 100, N = 300, τ = 0, and D = 0.08. Noise switched on at t = 10.
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Time Delay Induced Transition (No Transition)
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a = 2, N = 300, τ = 1, and D = 0.08.
Noise switched on at t = 10. Time delay switched on at t = 40.
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Time Delay Induced Transition
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t = 50, t = 60, t = 62, t = 64, . . . , t = 72, t = 74, t = 76.

a = 4, N = 300, τ = 1, and D = 0.08.
Noise switched on at t = 10. Time delay switched on at t = 40.

Forgoston and Schwartz (2008).
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Compact, Rotating Aligned Swarm State
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R(t) = (1/N)
∑

i ri(t)

a = 4, N = 300, τ = 1, and D = 0.08.

BIRS, January 23-27, 2012 8/21



Mean Field Equation for Center of Mass

Center of mass: R(t) = 1
N

N∑
i=1

ri(t)

Decompose position of ith particle: ri = R + δri, i = 1, 2, . . . ,N

Substitute ri into the governing equations with D = 0, sum all i of
these equations, and neglect all fluctuation terms =⇒

R̈ =
(

1− |Ṙ|2
)

Ṙ− a (R(t)− R(t − τ))

where we approximate a N−1
N ≈ a since we consider the

thermodynamic limit.
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Pitchfork Bifurcation
Write in component form with R = (X,Y) and Ṙ = (U,V).

Ẋ = U

U̇ = (1− U2 − V2)U − a(X − X(t − τ))
Ẏ = V

V̇ = (1− U2 − V2)V − a(Y − Y(t − τ))

Translationally invariant stationary solutions:
X = X0, U = 0, Y = Y0, V = 0

Uniformly translating solutions:
X = U0t + X0, U = U0, Y = V0t + Y0, V = V0

Requires U2
0 + V2

0 = 1− aτ (exists only for aτ < 1).

The hyperbola aτ = 1 is a pitchfork bifurcation curve on which
the uniformly translating states are born from the stationary state
(X0, 0,Y0, 0).
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Hopf Bifurcation

Linearize about the stationary state.

Characteristic equation:
(
a(1− e−λτ )− λ+ λ2

)2
= 0

To identify Hopf bifurcations, let λ = iω. Substitution =⇒

aH(ω) =
1 + ω2

2

τHn(ω) =
1
ω

(
arctan

(
2ω

1− ω2

)
+ 2nπ

)
, n = 0, 1, . . .
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Hopf Bifurcation
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Pitchfork and Hopf Bifurcation

τP(a) =
1
a

τHn(a) =
1√

2a− 1

(
arctan

(√
2a− 1
1− a

)
+ 2nπ

)
, n = 0, 1, . . .
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Eigenvalue Structure Around Bogdanov-Takens Point
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Swarm Structure in the (a, τ) Plane
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1: Swarm translates along line with unit speed. Direction depends on IC.

0: Swarm particles are distributed on a ring.

2: Swarm collapses to a point and either rotates in a circular orbit or
oscillates back and forth along a line. The state depends on IC.
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Stationary Center of Mass: the Ring State

R = const. satisfies the mean field equation with
N∑

i=1
δṙ2

i δṙi = 0.

δr̈i =
(
1− δṙ2

i

)
δṙi − a (N−1)

N δri − a
N δri (t − τ)

Thermodynamic limit =⇒ δr̈i =
(
1− δṙ2

i

)
δṙi − aδri

δrj = (δxj, δyj) and define δzj = δxj + iδyj =⇒

δz̈j =
(
1− |δżj|2

)
δżj − aδzj

Write in polar form δzj = ρjeiθj , and separate into Re and Im parts.

Ring state solution: ρj =
1√
a , θ̇j = ±

√
a
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Stationary Center of Mass: the Ring State

Analytical ring state solution: ρ0 = 1√
a , ω =

√
a

Numerical simulation ◦
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Moving Center of Mass: the Circular Orbit
After Hopf bifurcation, particles collapse to a point so that δri = 0.

R̈ =
(

1− Ṙ2
)

Ṙ− a (R(t)− R(t − τ))

R = (X,Y) and define Z = X + iY =⇒

Z̈ =
(
1− |Ż|2

)
Ż − α(Z(t)− Z(t − τ))

Write in polar form Z = ρeiθ, and separate into Re and Im parts.

Circular orbit solution: ρ = ρ0 and θ = ωt + θ0 satisfying

ω2 =a · (1− cosωτ),

ρ0 =
1
|ω|

√
1− a

sinωτ
ω
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Moving Center of Mass: the Circular Orbit
Analytical circular orbit solution:

ω2 = a · (1− cosωτ), ρ0 = 1
|ω|

√
1− a sinωτ

ω

Numerical simulation ◦
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In absence of coupling, particles move with speed one.

The period of oscillation 2π/ω > τ =⇒ R(t − τ) is ahead of R(t).

The attraction that a particle feels to the delayed position of the rest
forces the whole system to move faster.
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Interplay of Delay, Noise, and Initial Conditions
(τ = 2, a = 2)
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Particles initially aligned with unit x and y
speeds. They settle into rotating state with
swarm moving with high density. As noise
increases, the large scale rotation stops.

Particles initially distributed uniformly over
unit square and at rest. For noise σ < 0.25
particles distributed on ring. For higher
noise σ > 0.25, ring transitions into rotating
state which breaks up as noise increases
further (σ > 0.8).
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Conclusions
I Considered model of self-propelling particles interacting

through pairwise force in presence of noise and time delay.
I Used bifurcation analysis to identify different coherent

structures of the swarm in different regions of (a, τ) space.
I Analyzed the coherent structures and derived relations that

govern their spatio-temporal length scales.
I Showed how stochasticity modifies the coherent structures

and attractor sensitivity.

Future Work
I Generalize to other inter-agent potential functions.
I Consider internal delays, random delays, swarm control.
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