Complex patterns in patricle aggregation
models of biological formation
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Introduction

e Animals often aggregate in groups

e Biologically, it can provide protection from predators; conserve heat, act without an
apparent leader, enable collective behaviour

e Examples include bacteria, ants, fish, birds, bees....















Aggregation model

We consider a simple model of particle interaction,

dz;
— = F(|lz; — '=1...N 1
o N >, Fllo; a:k|>| ‘ J (1)
k=1..N
k#j

e Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

e Interaction force F'(r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

e Note that acceleration effects are ignored as a first-order approximation.
e Mathematically F'(r) is positive for small 7, but negative for large 7.

e Alternative formulation: (1) is a gradient flow of the minimization problem

min £ (x1,...xy) where E = ZZPW ) with F(r) = —P'(r).



Confining vs. spreading

e Consider a Morse interaction force

F(r)g.g
F(?“) _ exp(—?“) — Gexp(—T/L); G < 1, L>1 Oi\lw (2)

e If GL? > 1, the morse potential is confining (or catastrophic): doubling N doubles
the density but cloud volume is unchanged:

r=1.3978 r=1.43535 r=1.44716
o c e,

N=‘I'00 N=400

e If GL? < 1, the system is non-confining (or h-stable): doubling N doubles the cloud
volume but density is unchanged:

r=9.56367 r=13.3742 r=19.3298
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Continuum Ilimit

e For confining potentials, we can take the continuum limit as the number of particles

N — oo.

e \We define the density p as
#particles inside domain D
p(x)dr ~
D

N

e The flow is then characterized by density p and velocity field v:

ot V(o) =05 ta)= [ Pl o) S gty

e Variational formulation: Let

// P(|z — y|)dzdy; P'(r)=—F(r)

Then (3) is the gradient flow of £; minima of £ are stable equilibria of (3).

e Questions
1. Describe the equilibrium cloud shape in the limit ¢ — oo

2. What about dynamics?

3)

(4)



Linear force: F(r)=min(ar+b,1—r)
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Ring-type steady states

e Seek steady state of the form x; = r (cos (275 /N) ,sin (275 /N)), j=1...N.

e In the limit N — oo the radius of the ring must be the root of

I(r) = /2 F(2rsin @) sin 6df = 0. (5)
0

e For Morse force F'(1) = exp(—r)—G exp(—r/L), such root exists whenever G L* >
1 [coincides with 1D catastrophic regime]

e For general repulsive-attractive force F'(r), aring steady state exists if F'(r) < C' < 0
for all large 7.

e Even if the ring steady-state exists, the time-dependent problem can be ill-posed!

11



Continuum limit for curve solutions

e If particles concentrate on a curve, in the limit N — 0o we obtain

< 2o Pt >
pr = p Qt ;=K xp (6)

|24

where 2 («; t) is a parametrization of the solution curve; p («; t) is its density and

Koxp= / F(Jz(a) = z(a)]) ééi% - iggp(a’,wds(a’)- (7)

e Depending on F'(r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

e \We used a Lagrange particle-based numerical method to resolve (6).
- Agrees with direct simulation of the ODE system (1):

W Lt

S0 ido t=300

QOOO@

=90 t=100 t=110 t=147
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Local stability of a ring

e Linearize: x;; = rgexp (2wik/N) (1 + exp(tA)¢y) where ¢ < 1.

e Ring is stable of Re (A) < 0 for all pair (\, ¢). There are three zero eigenvalues
corresponding to rotation and translation invariance; all other eigenvalues come in
pairs due to rotational invariance.

e )\ is the eigenvalue of

_ [ Lilm) Lim) |
2 [ F'(2rsin6) N .
;/0 orsin + F'(2rsin (9)_ sin® ((m + 1)0) do; (9a)
_2 (F(2rsing) .9 9
/0 rend F'(2r sin 9)} [sm (m#) — sin (9)} df.  (9b)

e Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
the circle.

m=3, N=50, lambda=0.05 m=25, N=50, lambda=-1.17

1



Quadratic force Fr)=r —r?

e Computing explicitly,
(4m4 —m?— 9)
(4m?2 — 1)(4m?2 — 9)
3m?(2m* + 1)

det M (m) = (Im? — 9)(AmZ — 1)? >0, m=2,3,...

tr M (m)=— <0, m=2,3,...

e Conclusion: ring pattern correspondingto  F(r) =r — 72 is locally stable

e For large m, the two eigenvalues are A ~ —i and \ ~ —% — 0asm — o0. The

presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.

t=0 t=6 t=20 t=1000 t=10000
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General power force

F(r)

e The mode m = oo is stable if and only if pg

e Stability of other modes can be expressed in

rP—ri 0<p<yq

> landp < 1.

terms of Gamma functions.

e The dominant unstable mode corresponds to m = 3; the boundary is given by

0 =723 — 594(p + q) — 27(p* + ¢*) — 431pq + 106 (pg® + p’q) + 19 (p*q + pg®)

+ 10 (1t)3612 +p2q3) + 6 (p3 + qg) + pgqg;

45, ...

e Boundaries for m
polynomials in p, q.

(0.5, 6)

15

are similarly expressed in terms of higher order

t=0 =2 t=40 t=300
e V- S, L " ( \ /
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oA . & "'».__‘_/' -
t=1 t=2 t=100 t=1000
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Weakly nonlinear analysis

e Near the instability threshold, higher-order analysis shows a supercritical pitchfork
bifurcation, whereby a ring solution bifurcates into an m—symmetry breaking
solution

e This shows existence of nonlocal solutions.

e Example: F'(r) = rl?

analysis predicts

— r4; bifurcation m = 3 occurs at ¢ = q. ~ 4.9696; nonlinear

max |z;| — min |z;| = v/max (0, 7(q¢ — ¢.)); 7 ~ 0.109.

0.03 , _.p-'\,'

0.025 k e

0.021

Ar .

"0.015} _/" )

0.01} N~
0.005 |
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q
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Point-concentration (hole) solutions

F(r) = min(ar,r — r?

Solutions consist of /& “clusters”, where each cluster has N/K points inside. The number

K depends on a :
a:0l2 O O .
./-'--. -
= Q0O
/.

a=0.6 |
\ _ .

=0 =50 t=1000
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Theorem: K hole solution is guaranteed to be stable if a € (a1, a2) whose values are
summarized in the following table:

K r aq as

3 37 V205773 0 0.5
4 0585736 0.171573 0.656851
5 0.587785  0.309017 0.736067

6 0533457  0.411543 0.788636 (10)

7 0583735 0.489115 0.819194
8 0.588367  0.549301 0.841735
2 2
> 1 S -t 1

1Q



Spots: “degenerate” holes

F(r)=min(ar +4,1 —7); 01

e Points degenerate into spots of size O(4). eg. a = 0.3,6 = 0.05 :

— () reduced
zoom system
N=400 n = 1000,

a=1,3=0.484.

e Inside each of the cluster, the reduced problem is:
—~ h—¢ 0
1 — @ Q
¢) = E —n { ] @
—h. 0
e «,  depend only on F'(r) noton N.

10



Reduced problem: stripe or blob??

—~ h—¢ 0
I — @ Q
¢ = E —n [ ] o]
iy 0
£ ‘Qb[ ij‘ 6
e Admits the steady state consisting of particles located uniformly along a vertical line
of length 2/3, centered at the origin.

e Such “one-dimensional” equilibrium is stable if

el e (11)
2 n—1 f
unstable otherwise.
e For large n, (11) becomes
n < exp(a/B — ) = 0.5614 exp(a/f) (12)
n=30R=0  n=40R=0.0144 n=300R=00225 n=800 R=0.0249 n=1000 R=0.0256 n=3000 R=0.0263 n=5000 R=0.0266

Th00e

!

01 O 01014 O 0101 ©0 0101 0 0101 O 01-01 0 01 -01 0 01

Take o = 1, 8 = 0.25; then rhs(12)=30.6. Line is stable when n = 30; unstable for
n = 40.

AV O N A

20



Stability of vertical "stripe™: key steps

e Perturbations in vertical direction are stable

e In horizontal direction, stability reduces to study of

Uy — 1,
My =) ‘ll_j‘% l=1...n. (13)
=1..n
i

e Lemma: The n eigenvalues of (13) are given by A\, = 2 Z k=0...n—1.

) - o)
x)‘/o ey

eigenvalues are polynomials of the form 1(z) = 2 +. .. ; with \;, = 2 Zj . j, =
0,1, 2, ... The discrete problem is the same except k = O coon— 1.

Jj= 1]’

e Proof: Continuum limit yields

21



(In)stability of m > 1 modes

e If A\(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed .

e For ill-posed problems, the ring can degenerate into either an annulus (eg. F'(x) =
0.5+ z — %) or discrete set of points (eg F'(z) = z'* — %)

e . if F(r)is C* on [0,2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F(0)=0, F"(0)<0 and (14)
/2 .
/ (F 2rsind) _ priopsin 9)) do < 0. (15)
0 27 sin

e Ring solution for the morse force F'(r) = exp(—r)—G exp(—r/L) is always ill-posed
since F'(0) > 0.

29



Bifurcation to annulus:

Consider
Fry=r—1r"+6, 0<6<1.

e A ring is stable of radius R ~ ?{—g + %5 + O(6%) if & = 0 but high modes become
unstable for 6 > 0

e The most unstable mode in the discrete system is m = N/2 and can be stable even
if the continuous model is ill-posed!

s 32
N, ~ZetTexp [ =) .
TR (645)

e Proposition: Let

The ring is stable if N < N.,.

e For N > N_.but N ~ N, solution consists of two radii R 4= £ where

3 [ 128 —4R? + Rm /2
= — |1 1+—6|; B~4Re?
R % ( + +37r25> . B Re exp( 5 )

22




e Example: § = 0.35 = N, ~ 90, 28 ~ 0.033. Numerically, we obtain 25 =
0.036. Good agreement!

80 100 300 400 600 1200 . 1900 .2500 3000

e Increasing N further, more rings appear until we get a thin annulus of width O(3).

0.78
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Annulus: continuum Imit N > N,

e Fir)=r—r*+0, 0<di<k1

e Main result: In the limit 0 — 0, the annulus inner and outer radii R, 5 are given by

3 2
R~ X125 R ~R—f Ry~R+§0
16 7
where )
3me 1
~ 3me _— ) 1.
15 e exp( 645><< <
The radial density profile inside the annulus is

C

p(x) ~ 4 /82— (R~ [a])?

0, otherwise

, |R—z|< Bkl

e Annulus is exponentially thinin  d... note the 1/sqrt singularity near the edges!

d=0.35 6=10.35 6=0.2
0.15 gvres 40 . ’ 200 T !
o o |l 18031 &1 I
0.1 o i | i
30 i i 160 I I
0.05 h ol 1403 < o}
’ p(?") o |ll "| p(T)120 ) \‘. i
0 20, I - 100 | N
5 I X b 80 :fn :1"
-0.05 0 o ci - o0 / i i 'T-\‘\ J/ d i
SooooERE=E——" JC;'_ N & o®

0.1 I i 40 | Pseano00222-” |
| | 20 | |
it ! ! | !

07 075 08 0073 075 077 079 0 069 0695 0.7 0.705

i T
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Key steps for computing annulus
profile

e For radially symmetric density, the velocity field reduces to a 1D problem:
(0. ¢]
) = [ Klsripls)sds
0

2
K(S,T):—/O (r—scos@)f(\/7“2—|—32—27“3(3089)d9; f(r)zl—r—i—g

e Assume thin annulus; expand all integrals:

r=R+¢& s=R+n (n<ikl

e The singular part ¢ /r” yields a log:

~1/2

g(t) = 2/ (t — cos@) (1 i 275008(9) do;
0
gl +¢e)~4—2le|+£(6In2—2)+ O Inle|)

26



e |t boils down to integral equation

B
/ nln = €l ooy = 1 forai € € a9

e Explicit solution is a special case of Formula 3.4.2 from “Handbook of integral
equations” A.Polyanin and A.Manzhirov:

C

Q(f)zw

e The inverse root law blowup near the boundaries is the same as computed for "radial
blobs” by Bernoff et.al. [preprint]

27



Annulus for Newtonian repulsion

K(s,r):—/ (r —scosf) f (\/7“ +82—2r50089>d9.

0

Expand
3

r=Ry+¢& s=Ro+n &n=0(00); Ry= 7

Annulus inner/outer radii:
Ri~Ry+a, Ry~Ry+p3; a,=00)<1

then

¢ 8
45/ Q(n)dﬁNRO/ (€ +3n)o(n)dn, &€ (a,B);

8
45@(€)~Ro/ 0

2Q

(16)

(17)
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3D sphere instabllities

e Radius satisfies: [ F'(2rqsin6)sinfsin 20 = 0

e Instability can be done using spherical harmonics

20N



Stability of a spherical shell

Define

_ F(V2s)
g(s) == Vol

The spherical shell has a radius given implicitly by

0= /1 g(R*(1 — 8))(1 — s)ds.

Its stability is given by a sequence of 2x2 eigenvalue problems
A [(l+ 1)\
\ (cl) _ (a + Ni(g1) (Z(ZL)) 5(92)) (cl> 1—92.34...
C2 Ai(g2) 7 A1(G3) C2

N(f):=2m /1f(s)Pl(s) ds;
with P(s) the Legendre polynomial and
o = 8mg(2R?) 4+ Xo(g(R*(1 — 57))
gi(s) = R°g'(R*(1 — s))(1 — 5)” — g(R*(1 — 5))

where

S
R%(1—s)

ga(s) = g(R*(1 — 5))(1 — s); g3(s) = 0 g(z)dz.

1



Well-posedness in 3D

Suppose that g(s) can be written in terms of the generalized power series as

o0

g(s) = Zcispi, P <py<--- with ¢ > 0.
i=1

Then the ring is well-posed [i.e. A < 0 for all sufficiently large [] if
(i) <0 and (i) p; € (—=1,0)J(1,2)J(3,4)...
The ring is ill-posed [ i.e. A > 0 for all sufficiently large [] if either « > 0 or p; ¢

[—1, 0]JU[L, 2][3, 4] - ..

29



Key identity to prove well-posedness:

1
L (I —p)T 2
[0 appio ds = 27 T DD
. p+ 1T+ p+2)(—p)
~ 1 sin (7p) T(p + 1)2PT%72  as] — oo.
T

Proof:

e Use hypergeometric representation: P;(s) = oF} ( [+ i’ —! ,%) .
e Use generalized Euler transform
1
ai,...,aq4,cC F(d) c—1 d—c—1 apy...,04,(
F ; = (1t F
At B+1(b17"'7bB7d’Z> F(C)F(d—C)/O ( ) ATB b17"'7bB70
1 _ opoptl p+17l+la_l
toget [ (1—s)PP(s)ds= SRR ( D21 1) .

e Apply the Saalschiitz Theorem to simplify

p+1,01+1,—I F(l—p)F(p—l—Q)
55 1) = .

22



Generalized Lennard-Jones interaction

g(s)=sP—s1 0<pg<l; p>gq

e Well posed if ¢ < %; ill-posed if g > %.

Example: steady state with N = 1000 particles. (a) (p,q) = (1/3,1/6). Particles
concentrate uniformly on a surface of the sphere, with no particles in the interior. (b)
(p,q) = (1/2,1/4). Particles fill the interior of a ball. The particles are color-coded
according to their distance from the center of mass.

22A



Custom-designed kernels

e In 3D, we can design force F'(r) which is stable for all modes except specified mode.

e EXAMPLE: Suppose we want only mode m = 5 to be unstable. Using our algorithm,
we get

R (e R (N (= ) S

Particle stmulation [Linearized solution

25



Constant-density swarms

e Biological swarms have sharp boundaries, relatively constant internal population.
e Question: What interaction force leads to such swarms?

e More generally, can we deduce an interaction force from the swarm density?

2R/



Bounded states of constant density

Claim. Suppose that

1
F(r)= — 1, where n = dimension
/r»n_l ?

Then the aggregation model
L —Y
ot Vo) =0 e = [ Pl =) =)

admits a steady state of the form
(z) = L, || <R o(z) = 0, |z|<1
PAYI=3 0, |z >R | —az, |z|>1"

where R = 1forn = 1,2 and a = 2 in one dimension and a = 27 in two dimensions.

N=800, t=5000
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Proof for two dimensions

Define )
T
G(x) —bel-%; M= [ ply)dy
Rn
Then we have: -
VG:F(\:EDH and AG(z) = 216(z) — 2.
so that
o) = [ V.Gl y)oludy
Thus we get:

Vv [ (ersle - y) - 2pludy

= 2mp(x) — 2M
B 0, |z|] <R
| —2M, |x| > R

The steady state satisfies V - v = () inside some ball of radius R with p = 0 outside such
a ball but then p = M/ inside this ball and M = [, p(y)dy = MR* — R =1.

2Q



Dynamics in 1D with  F(r)=1—-7+

[orms = [

v(as)—/oo (o — ) ==Y o)y

_ /OO (1 = |z —y|)sign(z — y)p(y)

(0. ¢]

—2 [ sty - MGa+1)

—0o0

Assume WLOG that

Then

and continuity equations become

Pt T VPy = —Uzp
= (M —2p)p

Define the characteristic curves X (t, x) by

d
@X(t;xo) =v;  X(0,20) = z0

20



Then along the characteristics, we have p = p( X, t);

d
—p=p(M —?2
7P =1l p)

Solving we get:

M

p(X(t, x0)7 t) - 2+ e—Mt(M/po - 2)7

p(X(t, xy),t) = M/2 ast — oo

A0



Solving for characteristic curves

w = /1 py)dy

v=22w—-Mx+1); v,=2p—M
and integrating p; + (pv)x = (0 we get:

Let

then

wy +ovw, =0

Thus w is constant along the characteristics X of p, so that characteristics %X = v
become
d

X = 2uwg — M(X +1); X(0;20) = o

A1



Summary for F@r)=1-r1in 1D:

2w B 2w
X = ?\(40)—1+e Mt(x0+1— ?\(40))

wnan) = [tz M= [ s
M

p(X, 1) =

2+ e="M(M/po(xo) — 2)
Example: py(z) = exp ( /f M=1:

rho for t=0..5
0.4
0.3
] 0.2
| 4
0.1
| ]
H o

AD



Global stability

In limit £ — oo we get:

2 M
X:%—l; wy=0...M; p(X,oo):7
We have shown that as ¢ — 00, the steady state is
M/2, |x| <1
p(z,00) = { O/ \x‘\ ‘> ) (18)

e This proves the global stability of (  18)!

e Characteristics intersect at £ = oo; solution forms a shock at x = £1 at¢ = oc.

AR



Dynamics in 2D, F(r)=41—

T

e Similar to 1D,
Vv =2mp(x) — 4 M,

pr+v-Vp=—pV - v
= —p(p—2M)2m

e Along the characterisitics:

d

—X(tzo) =v;  X(0,20) = 2o

dt

we still get
d
—p =2mp(2M — p);
P = 2mp p):;
2M
p(X (t;39),1) = (19)
1+ ([)2(—% — 1) exp (—4mMt)

e Continuity equations yield:
p(X(t;20),t) det V,, X (t; x0) = polxo)

AA



e Using (19) we get

det V,, X (t; x0) =

po(xo) (1 ~ pol)

i i ) exp (—4mMt) .

e If pis radially symmetric , characteristics are also radially symmetric, i.e.
X(t; xo) = A (‘xo‘ , t) Lo

then
det Vo, X (t; o) = A& 7) (At r) + No(E 7)), 7 = |0

so that

N4 N Ar = /)02(1\3;)) + (1 — pog(]\?)> exp (—4mw Mt)

1 r T
N2 = M/o spo(s)ds + 2€Xp(—47th)/O S (1 — 25\?) ds

So characteristics are fully solvable !

e This proves global stability in the space of radial initial conditions
po(|z]).

e More general global stability is still open.

AR
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The force F(r)=1—r4—1 in 2D

e If ¢ = 2, we have explicit ode and solution for characteristics.

e For other ¢, no explicit solution is available but we have differential inequalities:

Define
Pmax ‘= sup p(z,t); R(t) := radius of support of p(z,t)
Then
d max —
pdta S (aRq o bpmax)pmax

d
—R < ey/Pmax — AR

where a, b, ¢, d are some [known] positive constants.

e It follows that if R(0) is sufficiently big, then R(t), pmax(t) remain bounded for all ¢.
[using bounding box argument]

e Theorem: For g > 2, there exists a bounded steady state [uniqueness??]

AR



Inverse problem: Custom-designer
kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

bo + box® + byt + ... + by x®", |x| < R
plx) = { 0, |z|> Rn (20)
Define the following quantities,
R
Moy = / p(r)r*idr. (21)
0
Then p(r) is the steady state corresponding to the kernel
az 5 Q4 5 A2n on+1
Firy=1—-ayr——r"——r"—...— ——r 22
(r) M 5 on + 1 )
where the constants ag, as, . . . , as,, are computed from the constants by, b, . .., by, by
solving the following linear problem:
n
27
bgk:Zagj (2k)m2(jk)7 k=0...n. (23)
j=k

A7



Example: custom kernels 1D

Example1: p=1—2% R=1,then F(r)=1—9/5r +1/2r5.
Example 2: p =2 R=1,then F(r)=1+9/5r — .

Example 3: p=1/2+ 2% — 2% R=1;then F(r)=1+

p()= 1-x°

0.8
0.6
0.4
0.2

p(X)= X

Ex.2

AQ

-1 ) () j 1

2094257,__ 4150753_+ f%r5.

336091

2527

p(X)= 4/3 (0.5+x°~x*




Inverse problem: Custom-designer
kernels: 2D

Theorem. In two dimensions , conisder a radially symmetric density p(x) = p(|z|) of
the form

b0+b2T2—|—b4T4—|—...—|—b2nT2n, r<R
o) = { R 20
Define the following quantities,
R
Moy = / p(r)r*idr. (25)
0
Then p(r) is the steady state corresponding to the kernel
L ay  ap A2n
Flry=-——r— =y — . — —2 pontl 26
(r) r 2 4 2n + 2 (26)
where the constants ag, as, . . . , as,, are computed from the constants by, b, ..., by, by
solving the following linear problem:
n . 2
bgk = Z a2 ( L]ZZ ) mg(j_k)_H; E=0...n. (27)
j=k

This system always has a unique solution for provided that mg # 0.
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Numerical simulations, 1D

e First, use standard ODE solver to integrate the corresponding discrete particle model,

dz; 1 Ti— T .
dt N Z (o = ] |z, — xp|’ /
e How to compute p(z) from x;7 [Topaz-Bernoff, 2010]
- Use ; to approximate the cumulitive distribution, w(z) = [*_ p(z)dz.

- Next take derivative to get p(z) = w'(x)

[Figure taken from Topaz+Bernoff, 2010 preprint]
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Numerical simulations, 2D

e Solve for x; using ODE particle model as before [2/V variables]
e Use x; to compute Voronoi diagram ;

e Estimate p(x;) = 1/a; where a; is the area of the voronoi cell around ;.

Use Delanay triangulation to generate smooth mesh.

e Example: Take
(r) = 1+ r<1
PPT=Y 0, r>0

Then by Custom-designed kernel in 2D is:

Running the particle method yeids...
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Numerical solutions for radial steady
states for F(r)=1— a1

T

R
e Radial steady states of radius R satisfy p(r) = 2¢ / (' p(r") I (ryr")dr’
0
where ¢(q) is some constantand I(r, ') = ["(r? + r'? — 2rr’sin 6)4/2~1df.

e To find p and R, we adjust R until the operator p — ¢(q) fOR(r’p(r’)K(r, r)dr' has
eigenvalue 1; then p is the corresponding eigenfunction.

20

15+

@ 10+
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Swarming on random networks

e Particles are nodes in a graph; two nodes communicate iff they are connected by an
edge:

dx; T — T
Z:E (| — x; ¥, ' =1...N:

S 1, if vertices 7, 7 are connected by an edge
“ ] 0, otherwise

e Consider the case of Erd 6s—R ényi random graph:

S 1, with probability p
“7 1 0, with probability 1 — p
e Question : How does the connectivity affect the cohesion of the swarm??
- Erd6s—Rényi (~1960): a p-random graph is connected with high probability if
p > 1 4 o(1); disconnected if p < 22 — £,

n n

. . . Inn c

- The swarm will lose cohesion if p < == — =.
- This bound is too lax for most swarms!
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e Simplest (non-trivial) case: a 1D swarm consisting of two equal clusters:

F(r) =min(ar,1 —7r), a > 0;

331$n/2:o, ﬂfn/2_|_1...$n:1

e Linearized problem: n = N/2;

{ )\sz = Z?:1 CLCZ']'

(Qj)j - Qj)z) + Z?:1 Ci,j+n (¢j - Qj)Z)
A = 320y ACin,jn () — i) + 305 Civnyj (05 —

28

Vi) (20)

e If p = 1 (full connectivity), then A = 0, —n(1 — a) [multiplicity 2n — 2] and —2n,
eigenvalues of

[ 20 —3 —a —a 1 1 1
—a 20a—3 —a 1 1 1
—a —a 2a—3 1 1 1
Lyun = 1 1 1 20 — 3 —a —a N =06
1 1 1 —a 20a—3 —a
i 1 1 1 —a —a 2a—3 |

—> two clusters are stable if 0 < a < 1 whenp = 1.
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e Main result: Consider the two-cluster solution for F'(r) = min(ar,1 — 1), 0 <a <
1. Let S(p) be the probability that such solution is stable. Suppose that

In N
p = pOT
and define
—4 a’+1
Then
4 )
S(p) ~exp — [ X N Poc
)~ o] - (2 |
\ J
a=0.5
1 o o
% > 4
0.8} j 5
06 N=200 x,r 8
= ; N=100
? 04 f
% 4
|
0.2} .
x’f
0 .
0 0.2 0.4 0.6 0.8 1
p
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Corrollary: The transition of a two-cluster swarm from instability to stability occurs
when

B _4 a’ +1 InN
p - pC - (1 _ a)2 N '
Itis unstable (resp. stable) if p < p. (resp. p > p.) with very high probability.
a=0.5
0.6— ' ' ' | |

10
74
204 £X
8 RN
Eg o2l .::.:h :‘...;:hln':. e —
g YT :------.-.-_‘_.__.;._...._._

200 400 600 800 1000 1200 1400 1600 1800 2000
N
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e Ingredients in proof:

- Estimate Bernoulli by Normal distribution (C.L.T.): ¢; j ~ p + /p(l— p)N;

- Decompose linear problem as L = Ly, + +/p(1 — p)NA + /p(1 —p)ND
where Ly, is a deterministic matrix corresponding to p = 1; A is full random
matrix; D is a diagonal random matrix

- Use elementary probability to bound spectrum of D

- Use random matrix theory (Wigner’s circle law) to bound spectrum of A. It turns
out the A term can be thrown out!

e Consensus model on graph is a well-studied model in IEEE literature; corresponds
to F'(r)=r:

n

A=Y cij (&) — &)

J=1

e Aggregation is the nonlinear generalization of consensus model; multiple consensus
possible!
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Discussions/open problems

e Spots+annuli form basic building blocks from which it is possible to construct more
complex solutions...

e Stability?? Multiple rings???
e Conjecture:
e Swarms on networks: more complex swarms; small-world networks?
e Connection to Thompson problem and ball-packing problems:
- Equilibrium is a hexagonal lattice with “defects”. Can we study these??

e Constant density states with F(r) — 717" — r. What is the biological mechanism
to minimizes overcrowding?

e Forces with sharp transition can produce exotic patterns for example:
- Flower: F(x) = max(min(1.6,(1-x)*4),-0.1)
- Exotic fish: F(x) = max(min(1.6,(1-x)*6),-0.3)
- Fuzzball: F(x) = max(min(1.6,(1-x)*10),-0.05)

e This talk and related papers are downloadable from my website
http://www.mathstat.dal.ca/"tkolokol/papers

Thank you!
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