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Introduction

Collective animal behavior

m Motivation: Understand the dynamics of emerging
patterns in animal groups, such as swarms of
birds, schools of fish, herds of sheep and many
other.

m Similarity: Macroscopic structures arise from
seemingly local interactions of individuals and in
absence of leaders or global information.

m Our model type: Newtonian particles, pairwise
interaction, short-range repulsion vs. long-range
attraction. Able to reproduce aligned flocks and
rotating mills.

m In this talk: Introduce Quasi-Morse interaction
potentials, whose stationary states are explicitly
computable up to linear coefficients
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The self-propelled interacting particle model

Self-propelled second-order interacting particle model

dX,' _

dt — "

dV,'

gt :av,-—ﬂvi|vi|2—VX;ZW(XI—XJ)-

i
ie{l,...,N}, a: propulsion force, 3: friction force
W (r) = U(|r|) interaction potential (with a local minimum)

m Standard choice: Morse potential U(r) =

,CAe*f/’A 4 CRe*f//R

Ca, Cr attractive / repulsive strengths, /4, I resp. length scales

m Aligned flocks and rotating mills are obtained
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The self-propelled interacting particle model

Kinetic equations

m Letting N — oo, with the weak-coupling scaling, the associated
mean-field equation reads

Vlasov-like kinetic equation

O:f + v - Vif + Flp] - V. f +div ((a = ﬁ\v|2) vf) =0,
f(t,x,v): R x R" x R" — R: (one-particle) probability distribution function
p(t,x) := [ f(t,x, v)dv.: macroscopic density
Flp] = —V.W x p: interaction force

m Monokinetic ansatz: f(t,x,v) = p(t,x)d(v — u(t, x)), leads to

Hydrodynamic equations

ap .
— +divk(pu) =0
ot (pu) =0,
ou _ 2
pap TP Viu=pla—pluYu—p(VWxp).
Stephan Martin, with: José A. Carrillo, Vlad Panferov BIRS Workshop " Emergent behavior in multi-particle systems”

Explicitly computable flock and mill states of self-propelled particles systems January 24, 2012



The self-propelled interacting particle model
[ele] J

The self-propelled interacting particle model

Characteristic equations

m Relevant radially symmetric stationary states of the system are written as

Flock: fr(t,x,v) = pr(x — tug) 6(v — wo), |uo| = /%

Mill: fi(t, x, v) = pm(x)d (" - i\/?% )

m Inserting into kinetic equations, we get the characteristic equations
Flock: W xpr = C in B(0, Rr) = supp(pr)

Mill: W py = D + % log |x|  in B(Rm, Ri) = supp(pm)
where the support is a-priori unknown.

B Bertozzi, A.L. et. al.: State transitions and the continuum limit for a 2D interacting,
self-propelled particle system.
Carrillo, J.A. et. al. : Double milling in self-propelled swarms from kinetic theory.
Levine, H. et. al. : Self-organization in systems of self-propelled particles.

D’Orsogna et. al. Self-propelled particles with soft-core interactions.
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Quasi-Morse potentials

Quasi-Morse potentials

Definition

Let C,/, A\, k € R be positive parameters, then the Quasi-Morse potential is

U(r) == A (V(r) —cv (;)) :

where V is chosen dependent of the space dimension as

2k
V(r) = — 5= Ko(kr)
n= V(r)= —4; e:k'

Ko is the modified Bessel function of second kind. V are chosen as the radially
symmetric, monotone fundamental solution of the screened Poisson equation

,

that vanish at infinity. For n = 1, we re-obtain the Morse potential.
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Quasi-Morse potentials

An exemplary configuration

We illustrate the Quasi-Morse potential in comparison to Morse potential for

n=2:
0.1
0.08 0.1
0.06 0.08
0.04 0.08
0.04
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g T 002
5 0 g
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70‘0 0.5 1 15 2 25 3 35 4 45 5 o1 05 1 15 2 25 3 35 4 45 5
(a) Quasi-Morse potential, (b) Morse potential,
C=%1=075,k=31=4 C=Y1=075,k=1,1=2

= Attraction-repulsion setting in both potentials. Different singularity at zero.
= From modeling point-of-view, there is no reason to prefer one over the other.
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Quasi-Morse potentials

Properties

m The Quasi-Morse potential is H-stable for C/" > 1 and catastrophic for
an < 1.

m Biologically relevant shapes, i.e. a unique minimum of the potential, are
obtained for the following range of parameters:

n=1: I<lI<C
n=2: I<1,C>1
n=3: I<1,C>1
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Quasi-Morse potentials

Emerging patterns (2D)

Quasi-Morse potentials have the ability to produce coherent patterns just as
the standard Morse potential:

Example 1: Flock, N = 400 Example 2: Mill, N = 400

’ Movies will be available on my website \

C=% k=1 =3
a=1 B=5 X=1000

‘ N = number of particles ‘
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Quasi-Morse potentials

Emerging patterns (3D)

We observe the emergence of aligned flocks for the three-dimensional
Quasi-Morse potential:

Example 1: Flock, N = 200 Example 2: Flock, N = 1000

’ Movies will be available on my website ‘

C=1265 k=02 /=08
a=1 B=5 X=1000

‘ N = number of particles ‘
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Explicit solvability

Computation

Define the operators £1 := A — k?, Ly := A — ’;—22/ and consider the
characteristic equation (W % p)(r) = s(r) on supp(p) with some radial s(r).
Then

LaL1(W % p) = (L2LaW) 5 p = A (—cclczv (;) + £2L1V(r)) *p

2
=\ (7 CI"2AS + CKAI"26 + AS — %5) *p

2
=A\1-C"Ap+ A (Ckzl”’z — %) p=LoLss.

Hence, p should satisfy the following equation in its support

11
Aptap==

N1 mzths

K - ar—1
. 2 _ 2 2
must hold with a® = |A| and A = e k 2

This is the Helmholtz equation for A > 0, the screened Poisson equation for
A < 0 and the Poisson equation for A = 0.
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Explicit solvability

Computations (1)

Right-hand side:
m Flock in any dimension: s(r) = D = +
= inhomogeneous solution : p(r) = % =D for A%0
= Millin 2D: s(r) = D + 5 log(r)
= ﬁﬁzﬁl [D + % Iog(r)] = m 2 log(r) + D

. . 4
= inhomogeneous solution: pinhom,4(r) = 52

sara—q) § log(r) + 7 for A 0.
Homogeneous & fundamental solutions:

n=1: sin(ar), cos(ar)

m Helmbholtz equation: n=2: J(ar), Yo(ar)
n=3: sin(ar)  cos(ar)

n=1: exp(ar), exp(—ar)
m Screened Poisson equation: < n=2: [fy(ar), Ko(ar)

__ o . sinh(ar) cosh(ar)
n=3: s

m Poisson equation: (in)-homogeneous solution explicitly known
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Explicit solvability

Explicit solution space

Explicit solvability
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Given that flock/mill densities are radially symmetric and flock solutions do not
posses a singularity at zero, we get that if stationary solutionsto W p=s

exist, they have to be of the following form:

Theorem: Quasi-Morse potential solution space

n=2:| flock | A>0 pr = p1Jdo(ar) + p2

A=0 pF = par’ + o

A<O pF:;J,llo(ar)-i-,U,z

mill | A>0 PM = Pinhom + p1 Jo(ar) + pi2 Yo(ar) + pi3

A=0 | pu =3 mra—r(log(r) = 1) + pur’ + iz log(r) + s

A<O PM = Pinhom + 1 lo(—ar) + po - Ko(ar) + s
n=3:| flock | A>0 pr = pu sin(ar) L + 1o

A=0 pF = par’ + o

A<O pr = pusinh(ar) L + 1

Ref: A. Bernoff and C. Topaz:
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Numerical method and results

Numerical challenge

[ ’Task: Find supp p and coefficients p;, such that [pdx =1, p > 0. ‘

m Remark: Multi-d convolution of radially symmetric functions are a linear
operator of radial functions: (W % p)(r) = [5. V(r,s)p(s)ds, where W
has to be computed.

[ ’ Strategy: support optimization ‘
Vary support = "inverse” best fit approximation for p = positivity and
unit mass hard constraints for feasability = penalize (W x p)(r) — s(r)
select support with minimal penalty

m Discretization refinement:

BIRS Workshop " Emergent behavior in multi-particle systems”
January 24, 2012
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Numerical method and results

Search algorithm (for mills)

Input : fixed support B(R,, Ru), discretization size Ar

(0): Define radial grid 7 = {ro, ... ,rv} st. o =r,ry = Ry, i1 — ri = Ar Vi
Denote p the approximation of p on 7 (likewise for other functions).
Compute a matrix Hs.t. Wxp = Hp

(1): Evaluate pinhom,a on supp p and convolve Sinhom = Hpinhom,A-
Define Siem := 5 — Sinhom-

(2): Evaluate Jo(ar), Yo(ar), 1 on supp p and convolve
gt = Hl,g? = HY,, g° := HI.

(3): Fix three points r1, rj, ry (j = [N/2]) and interpolate Siem with g1, 82,83 = .

& & & Frem 1
Solve firem = & & & Seem,j | with j:= [N/2].
&v  8n  8n Srem, N
(4) : Likewise, interpolate the constant D = 1 temp. choice . =
& & & 1
Solve ficonst 1= gj1 gf gj3 1
& & &n 1 a }
(5) : Set prem = firem,1Jo + firem,2 Y0 4 kirem,3 and feonst ‘= Hconst,1J0 + fhconst,2 Y0 4 Hconst,3-
_ _ _ _ . 1—m(Brem) —m(Pinhom, A) .
(6): Set p:= Pinhom, A + Prem + 7Y Pconst with v := m’:(Tp)mm (umt mass)'
. i . e 1 P 1 = a7l g7
(7) : Measure deviation from 5 : e; := R —Fm I [Hp -5~ Ry=Fm [(Hp —53) dr] dr.
(8) : Penalize convexity of 5 by e := [ xz1/ 50 3 dF
Output : e =e + &,p,5if p >0
Stephan Martin, with: José A. Carrillo, Vlad Panferov BIRS Workshop " Emergent behavior in multi-particle systems”
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Numerical method and results

Results: 2D flock

=]
ozl

05

Flock, N=400

=0 k=1 T1=2
a=1 B=5 X=100
‘ N = number of particles ‘
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Numerical method and results

Results: 2D flock

Stationary flock solution: pr = p1 Jo(ar) + pe
with u; ~ 0.2356, ,u2~0018 A=15Rr~131
c=§ k=1 71
1 p=5

ropelled particles

Stephan Martin, with: José A. Carrillo, Vlad Panferov
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Numerical method and results

Results: 2D flock

Ar error e | computation time
0.1 3.54e-05 0.76s
- 0.05 | 1.36e-05 2.85s
0.01 3.99¢-06 69.1s
omo e o 0.0025 | 9.97e-07 1125s

Continuous solution pf for varying Ar Computation times & error convergence
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Numerical method and results

Results: 2D mill

Mill, N=400

===
. ==

=0 k=1 T1=2
a=1 B=5 X=100
‘ N = number of particles ‘
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Numerical method and results

Results: 2D mill

— = ~N=16000 particles
02k ntinuous solution
'
015 !
I
I
I
i
- '
& i
ot i
b
I \
| \
I |
I !
i |
005 | '
i |
I
i '
i '
i v
(] 02 04 06 08 1 12 14 16 18 2

Stationary mill solution: py = WAPC)% log(r) + p1 Jo(ar) + p2 Yo(ar) + ps
=A

ju1 ~ 0.1708, 112 = 0.0468, yi3 = 0.0320, 8> = A = 1.5, supp,,,, ~ B(0.47,1.57)
C=T k=1 1=3
a=1 B=5 A=100
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Numerical method and results

Result: 2D mill parameter dependence A, a, 8

(1) 12500

(2)5000 o\ R,
(32500

(4) 1250 e

(6)350

Density shapes Support sizes

Mill solutions with identical shape parameters C,/, k and varying ratio S\/a.
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Numerical method and results

Results: 3D flock

5000 particles
ontinuous solution

Stationary flock solution: pr = i1 - sin(ar): + pz - 1
with u1 & 0.3574, u» ~ 0.0052, Rr ~ 0.725, A = 5.585.
C=1255 k=02 [=08

a=1 =5 XA=100
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Numerical method and results

Result: Parameter dependencies for Quasi-Morse

Quasi-Morse potential has no minimum

Region II: A <0,
No continuous compactly supported
flocks, no mill solutions

08 Separatrix:
cf=1,A=0,
as region Il

Region I: A>0,
Compactly supported flocks and mill solutions

2D parameter phase diagram

Region Il: A <0,
No compactly supported flocks

Region I: A>0,
Compactly supported flocks

Separatrix:
c
as region Il

Quasi-Morse potential has no minimum

3D parameter phase diagram

Region I: A > 0: compactly supported flocks (and mills in 2D) are found
Region Il: A < 0: no compactly supported solutions are found
Separatrix: A = 0: no compactly supported solutions are found
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Numerical method and results

Conclusions

m Introduced and defined Quasi-Morse potentials.

m All relevant coherent patterns of motions have been observed (micro).

m Flock and mill solutions have been explicitly derived.

m Numerical algorithm to determine linear coefficients has been introduced.
m Coherent match between our result and microscopics.

m Catastrophic potentials A > 0: compactly supported solutions are found,
H-stable A < 0: no solutions are found (in accordance to microscopics).

[ Z: Quasi-Morse potentials allow computationally cheap explicit
computation of stationary flock and mill solutions without simulating any
time evolution, offering essentially the same modeling.
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Numerical method and results

Thank you for your attention!
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