## Models of flocking with asymmetric interactions



#### Sébastien Motsch

CSCAMM, University of Maryland



joint work with

Eitan Tadmor (CSCAMM, University of Maryland)

Emergent behavior in multi-particle systems Banff, 25th of January 2012

#### Outline

- 1 A model with asymmetric interactions
  - The Cucker-Smale model
  - Drawbacks of the C-S model
  - A model with asymmetric interactions
- Plocking for the new model
  - $\ell^{\infty}$  approach
  - Condition for flocking
  - Extension

## What is flocking?

Nature gives many examples of flocking behavior.





There are two characteristics in a flock:

- the distance between individuals remains bounded (bounded distance),
- they all move in the same direction (alignment).

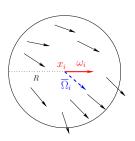
### Outline

- 1 A model with asymmetric interactions
  - The Cucker-Smale model
  - Drawbacks of the C-S model
  - A model with asymmetric interactions
- Plocking for the new model
  - $\ell^{\infty}$  approach
  - Condition for flocking
  - Extension

#### The Vicsek model

### Discrete Vicsek model ('95)

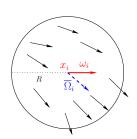
$$\begin{aligned} x_i^{n+1} &= x_i^n + \Delta t \, \omega_i^n \\ \omega_i^{n+1} &= \overline{\Omega}_i^n + \epsilon \end{aligned}$$
 with  $\overline{\Omega}_i^n = \frac{\sum_{|\mathbf{x}_j - \mathbf{x}_i| < R} \, \omega_i^n}{\left|\sum_{|\mathbf{x}_i - \mathbf{x}_i| < R} \, \omega_i^n\right|}$ ,  $\epsilon$  noise.



#### The Vicsek model

### Discrete Vicsek model ('95)

$$\begin{array}{rcl} x_i^{n+1} & = & x_i^n + \Delta t \, \omega_i^n \\ \\ \omega_i^{n+1} & = & \overline{\Omega}_i^n + \epsilon \\ \\ \text{with } \overline{\Omega}_i^n & = \frac{\sum_{|x_j - x_i| < R} \, \omega_i^n}{\left|\sum_{|x_i - x_i| < R} \, \omega_i^n\right|}, \, \epsilon \text{ noise.} \end{array}$$



#### Continuous Vicsek model ('08 Degond, M.)

$$\begin{array}{rcl} \frac{dx_i}{dt} & = & \omega_i \\ d\omega_i & = & (\operatorname{Id} - \omega_i \otimes \omega_i)(\nu \, \overline{\Omega}_i \, dt + \sqrt{2D} \, dB_t) \end{array}$$



#### The Cucker-Smale model

Cucker and Smale proposed a simple model:

- no noise  $(\epsilon = 0)$ ,
- no constraint on the velocity  $(|\omega_i| \neq 1)$ ,
- the mean velocity  $(\overline{\Omega}_i)$  is simply a sum.

#### The Cucker-Smale model

Cucker and Smale proposed a simple model:

- no noise  $(\epsilon = 0)$ ,
- no constraint on the velocity  $(|\omega_i| \neq 1)$ ,
- the mean velocity  $(\overline{\Omega}_i)$  is simply a sum.

#### Cucker-Smale model '07

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \qquad \frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{N} \sum_{j=1}^{N} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i), \tag{1}$$

where  $\alpha > 0$  and  $\phi_{ij}$  is the *influence* of agent j on agent i:

$$\phi_{ij} := \phi(|\mathbf{x}_i - \mathbf{x}_i|).$$

with  $\phi(\cdot)$  a positive decreasing function (ex:  $\phi(r) = \frac{1}{1+r}$ ).



$$d_X(t) = \max_{i,j} |\mathbf{x}_j(t) - \mathbf{x}_i(t)|$$

$$d_X(t) = \max_{i,j} |\mathbf{x}_i(t) - \mathbf{x}_i(t)| \leq C$$
 bounded distance

$$d_X(t) = \max_{i,j} |\mathbf{x}_j(t) - \mathbf{x}_i(t)| \le C$$
 bounded distance  $d_V(t) = \max_{i,j} |\mathbf{v}_i(t) - \mathbf{v}_i(t)|$ 

$$d_X(t) = \max_{i,j} |\mathbf{x}_j(t) - \mathbf{x}_i(t)| \le C$$
 bounded distance  $d_V(t) = \max_{i,j} |\mathbf{v}_j(t) - \mathbf{v}_i(t)| \stackrel{t \to \infty}{\longrightarrow} 0$  alignment

**Def.**  $\{x_i(t), v_i(t)\}_{1 \le i \le N}$  converges to a flock if we have:

$$d_X(t) = \max_{i,j} |\mathbf{x}_j(t) - \mathbf{x}_i(t)| \le C$$
 bounded distance  $d_V(t) = \max_{i,j} |\mathbf{v}_j(t) - \mathbf{v}_i(t)| \stackrel{t \to \infty}{\longrightarrow} 0$  alignment

#### Flocking for the C-S model

**Thm.** If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi(r)\,dr = +\infty,$$

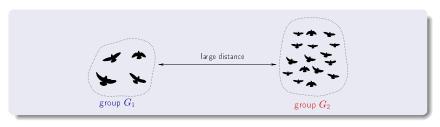
then the C-S model converges to a flock.

**Ref.** Cucker-Smale ('07), Ha-Tadmor ('08), Carrillo-Fornasier-Rosado-Toscani ('09), Ha-Liu ('09).



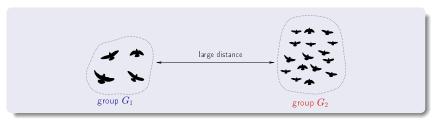
In the "small" group  $G_1$  alone:

$$\frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{N_1} \sum_{i=1}^{N_1} \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$



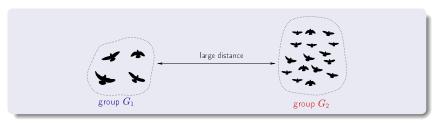
In the "small" group  $G_1$  with the "large" group  $G_2$ :

$$rac{d\mathbf{v}_i}{dt} = rac{lpha}{ extsf{N}_1 + extsf{N}_2} \sum_{j=1}^{ extsf{N}_1 + extsf{N}_2} \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$



In the "small" group  $G_1$  with the "large" group  $G_2$ :

$$\frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1 + N_2} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i) \approx \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i)$$



In the "small" group  $G_1$  with the "large" group  $G_2$ :

$$\frac{d\mathbf{v}_i}{dt} = \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1 + N_2} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i) \approx \frac{\alpha}{N_1 + N_2} \sum_{j=1}^{N_1} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i) \approx 0!$$

We propose the following dynamical system:

$$\frac{d\mathbf{x}_{i}}{dt} = \mathbf{v}_{i}, \qquad \frac{d\mathbf{v}_{i}}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{i=1}^{N} \phi_{ij} \left( \mathbf{v}_{j} - \mathbf{v}_{i} \right), \tag{2}$$

with  $\phi_{ij} = \phi(|\mathbf{x}_j - \mathbf{x}_i|)$  and  $\alpha > 0$ .

The influence of the agent j on agent i is weighted by **the total influence**,  $\sum_{k=1}^{N} \phi_{ik}$ , exerted on agent i.

We propose the following dynamical system:

$$\frac{d\mathbf{x}_{i}}{dt} = \mathbf{v}_{i}, \qquad \frac{d\mathbf{v}_{i}}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{i=1}^{N} \phi_{ij} \left( \mathbf{v}_{j} - \mathbf{v}_{i} \right), \tag{2}$$

with  $\phi_{ij} = \phi(|\mathbf{x}_j - \mathbf{x}_i|)$  and  $\alpha > 0$ .

The influence of the agent j on agent i is weighted by **the total influence**,  $\sum_{k=1}^{N} \phi_{ik}$ , exerted on agent i.

**Remark.** If  $\phi_{ij} \approx \phi_0 \Rightarrow$  the C-S dynamics.

We propose the following dynamical system:

$$\frac{d\mathbf{x}_{i}}{dt} = \mathbf{v}_{i}, \qquad \frac{d\mathbf{v}_{i}}{dt} = \frac{\alpha}{\sum_{k=1}^{N} \phi_{ik}} \sum_{j=1}^{N} \phi_{ij} \left( \mathbf{v}_{j} - \mathbf{v}_{i} \right), \tag{2}$$

with  $\phi_{ij} = \phi(|\mathbf{x}_j - \mathbf{x}_i|)$  and  $\alpha > 0$ .

The influence of the agent j on agent i is weighted by **the total influence**,  $\sum_{k=1}^{N} \phi_{ik}$ , exerted on agent i.

**Remark.** If  $\phi_{ij} \approx \phi_0 \Rightarrow$  the C-S dynamics. Otherwise the model better captures strongly "non-homogeneous" scenario.

The model can be written as:

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \qquad \frac{d\mathbf{v}_i}{dt} = \alpha \sum_{i=1}^{N} \mathbf{a}_{ij} (\mathbf{v}_j - \mathbf{v}_i).$$

The model can be written as:

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \qquad \frac{d\mathbf{v}_i}{dt} = \alpha \sum_{j=1}^{N} \mathbf{a}_{ij} (\mathbf{v}_j - \mathbf{v}_i),$$

with:

The model can be written as:

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \qquad \frac{d\mathbf{v}_i}{dt} = \alpha \sum_{i=1}^{N} \mathbf{a}_{ij} (\mathbf{v}_j - \mathbf{v}_i),$$

with:

$$\mathbf{a}_{ij} := \frac{\phi(|\mathbf{x}_j - \mathbf{x}_i|)}{\sum_{k=1}^N \phi(|\mathbf{x}_k - \mathbf{x}_i|)} \ge 0$$
 ,  $\sum_i \mathbf{a}_{ij} = 1$ .

The model lacks the **symmetry property**:

#### Non-symmetric interaction

$$a_{ij} \neq a_{ji}$$

The model can be written as:

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \qquad \frac{d\mathbf{v}_i}{dt} = \alpha \sum_{i=1}^{N} \mathbf{a}_{ij} (\mathbf{v}_j - \mathbf{v}_i),$$

with:

$$\mathbf{a}_{ij} := \frac{\phi(|\mathbf{x}_j - \mathbf{x}_i|)}{\sum_{k=1}^N \phi(|\mathbf{x}_k - \mathbf{x}_i|)} \ge 0$$
 ,  $\sum_i \mathbf{a}_{ij} = 1$ .

The model lacks the **symmetry property**:

#### Non-symmetric interaction

$$a_{ij} \neq a_{ji}$$

The total momentum  $(\overline{\mathbf{v}} = \frac{1}{N} \sum_{i} \mathbf{v}_{i})$  is **not preserved** in the model!

### Outline

- A model with asymmetric interactions
  - The Cucker-Smale model
  - Drawbacks of the C-S model
  - A model with asymmetric interactions
- Plocking for the new model
  - $\ell^{\infty}$  approach
  - Condition for flocking
  - Extension



**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha \sum_j a_{ij} (\mathbf{v}_j - \mathbf{v}_i)$$

Flocking for the new model

•0000

## $^\circ$ approach

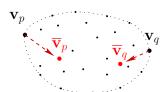
**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha ( \mathbf{v}_i - \mathbf{v}_i )$$
 with  $\mathbf{v}_i = \sum_i a_{ij} \mathbf{v}_j$ 

# approach

**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha(\quad \overline{\mathbf{v}}_i \quad - \mathbf{v}_i) \quad \text{with } \overline{\mathbf{v}}_i = \sum_j a_{ij} \mathbf{v}_j$$

Take p, q such that:

$$d_V = |\mathbf{v}_p - \mathbf{v}_q|$$



Flocking for the new model

•0000

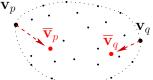
## ${\mathbb Z}^\infty$ approach

**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha(\quad \overline{\mathbf{v}}_i \quad - \mathbf{v}_i) \quad \text{with } \overline{\mathbf{v}}_i = \sum_j a_{ij} \mathbf{v}_j$$

Take p, q such that:

$$d_V = |\mathbf{v}_p - \mathbf{v}_q|$$





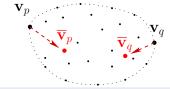


### $\ell^\infty$ approach

Trick: 
$$\dot{\mathbf{v}}_i = \alpha(\quad \overline{\mathbf{v}}_i \quad - \mathbf{v}_i)$$
 with  $\overline{\mathbf{v}}_i = \sum_j a_{ij} \mathbf{v}_j$ 

Take p, q such that:

$$d_V = |\mathbf{v}_p - \mathbf{v}_q|$$



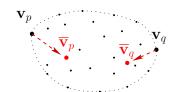
$$\begin{split} \frac{d}{dt}|\mathbf{v}_p - \mathbf{v}_q|^2 &= 2\langle \dot{\mathbf{v}}_p - \dot{\mathbf{v}}_q, \, \mathbf{v}_p - \mathbf{v}_q \rangle \\ &\leq 2\alpha|\mathbf{v}_p - \mathbf{v}_q| \big( |\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q| \big) \leq \mathbf{0}. \end{split}$$

### ${\mathbb C}^\infty$ approach

**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha(\quad \overline{\mathbf{v}}_i \quad - \mathbf{v}_i) \quad \text{with } \overline{\mathbf{v}}_i = \sum_j a_{ij} \mathbf{v}_j$$

Take p, q such that:

$$d_V = |\mathbf{v}_p - \mathbf{v}_q|$$



$$\begin{split} \frac{d}{dt}|\mathbf{v}_p - \mathbf{v}_q|^2 &= 2\langle \dot{\mathbf{v}}_p - \dot{\mathbf{v}}_q, \, \mathbf{v}_p - \mathbf{v}_q \rangle \\ &\leq 2\alpha|\mathbf{v}_p - \mathbf{v}_q| \left( |\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q| \right) \leq \mathbf{0}. \end{split}$$

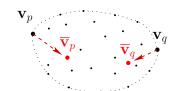
$$\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q = \sum_i a_{pj} \mathbf{v}_j - \overline{\mathbf{v}}_q = \sum_i a_{pj} (\mathbf{v}_j - \overline{\mathbf{v}}_q)$$

### $^\circ$ approach

**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha(\quad \overline{\mathbf{v}}_i \quad -\mathbf{v}_i) \quad \text{with } \overline{\mathbf{v}}_i = \sum_j a_{ij} \mathbf{v}_j$$

Take p, q such that:

$$d_V = |\mathbf{v}_p - \mathbf{v}_q|$$



$$\begin{split} \frac{d}{dt}|\mathbf{v}_p - \mathbf{v}_q|^2 &= 2\langle \dot{\mathbf{v}}_p - \dot{\mathbf{v}}_q, \, \mathbf{v}_p - \mathbf{v}_q \rangle \\ &\leq 2\alpha|\mathbf{v}_p - \mathbf{v}_q| \big( |\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q| \big) \leq \mathbf{0}. \end{split}$$

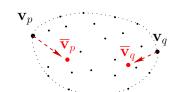
$$egin{array}{lll} \overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q & = & \displaystyle\sum_j a_{pj} \mathbf{v}_j - \overline{\mathbf{v}}_q = \displaystyle\sum_j a_{pj} ig( \mathbf{v}_j - \overline{\mathbf{v}}_q ig) \ & = & \displaystyle\sum_j a_{pj} a_{qi} ig( \mathbf{v}_j - \mathbf{v}_i ig) \end{array}$$

### approach

**Trick:** 
$$\dot{\mathbf{v}}_i = \alpha ( \mathbf{v}_i - \mathbf{v}_i )$$
 with  $\mathbf{v}_i = \sum_i a_{ij} \mathbf{v}_j$ 

Take p, q such that:

$$d_V = |\mathbf{v}_p - \mathbf{v}_q|$$



$$\begin{split} \frac{d}{dt}|\mathbf{v}_p - \mathbf{v}_q|^2 &= 2\langle \dot{\mathbf{v}}_p - \dot{\mathbf{v}}_q, \, \mathbf{v}_p - \mathbf{v}_q \rangle \\ &\leq 2\alpha|\mathbf{v}_p - \mathbf{v}_q| \big( |\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q| \big) \leq \mathbf{0}. \end{split}$$

$$\overline{\mathbf{v}}_{p} - \overline{\mathbf{v}}_{q} = \sum_{j} a_{pj} \mathbf{v}_{j} - \overline{\mathbf{v}}_{q} = \sum_{j} a_{pj} (\mathbf{v}_{j} - \overline{\mathbf{v}}_{q})$$

$$= \sum_{i,j} a_{pj} a_{qi} (\mathbf{v}_{j} - \mathbf{v}_{i}) = \sum_{i,j} u_{i} w_{j} S_{ij}.$$

**Lemma.** Let S be an antisymmetric matrix bounded by M, u, wbe two positive vectors  $(u_i, w_i \ge 0)$  satisfying  $\sum_i u_i = \sum_i w_j = 1$ . Then,

$$|\sum_{i,j} S_{ij} u_i w_j| \le M$$

**Lemma.** Let S be an antisymmetric matrix bounded by M, u, w be two positive vectors  $(u_i, w_i \ge 0)$  satisfying  $\sum_i u_i = \sum_j w_j = 1$ . Then, for every  $\theta > 0$ ,

$$|\sum_{i,j} S_{ij}u_iw_j| \leq M (1 - \lambda^2(\theta) \theta^2),$$

where  $\lambda(\theta)$  denotes the number of "active entries"

$$\lambda(\theta) := \# \{j \mid u_i \geq \theta \text{ and } w_i \geq \theta \}.$$

**Lemma.** Let S be an antisymmetric matrix bounded by M, u, w be two positive vectors  $(u_i, w_i \ge 0)$  satisfying  $\sum_i u_i = \sum_j w_j = 1$ . Then, for every  $\theta > 0$ ,

$$|\sum_{i,j} S_{ij} u_i w_j| \leq M (1 - \lambda^2(\theta) \theta^2),$$

where  $\lambda(\theta)$  denotes the number of "active entries"

$$\lambda(\theta) := \# \{j \mid u_j \geq \theta \text{ and } w_j \geq \theta \}.$$

Illustration.



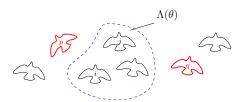
**Lemma.** Let S be an antisymmetric matrix bounded by M, u, w be two positive vectors  $(u_i, w_i \ge 0)$  satisfying  $\sum_i u_i = \sum_j w_j = 1$ . Then, for every  $\theta > 0$ ,

$$|\sum_{i,j} S_{ij} u_i w_j| \leq M (1 - \lambda^2(\theta) \theta^2),$$

where  $\lambda(\theta)$  denotes the number of "active entries"

$$\lambda(\theta) := \# \{j \mid u_j \geq \theta \text{ and } w_j \geq \theta \}.$$

#### Illustration.



Fix  $\theta > 0$ . Then the diameters  $d_X(t)$  and  $d_V(t)$  satisfy,

$$\frac{d}{dt}d_X(t) \leq d_V(t) \quad , \quad \frac{d}{dt}d_V(t) \leq -\alpha \,\lambda^2(\theta)\,\theta^2\,d_V(t).$$

where  $\lambda(\theta) = \# \{j \mid a_{pj} \ge \theta \text{ for any } p\}.$ 

Fix  $\theta > 0$ . Then the diameters  $d_X(t)$  and  $d_V(t)$  satisfy,

$$\frac{d}{dt}d_X(t) \leq d_V(t) \quad , \quad \frac{d}{dt}d_V(t) \leq -\alpha \,\lambda^2(\theta)\,\theta^2\,d_V(t).$$

where  $\lambda(\theta) = \# \{j \mid a_{pj} \ge \theta \text{ for any } p\}.$ 

**Proof.** Applying the lemma with  $|S_{ij}| \leq |\mathbf{v}_p - \mathbf{v}_q|$  yields:

$$|\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| \leq |\mathbf{v}_p - \mathbf{v}_q|(1 - \lambda^2(\theta)\theta^2),$$

Fix  $\theta > 0$ . Then the diameters  $d_X(t)$  and  $d_V(t)$  satisfy,

$$\frac{d}{dt}d_X(t) \leq d_V(t) \quad , \quad \frac{d}{dt}d_V(t) \leq -\alpha \, \lambda^2(\theta) \, \theta^2 \, d_V(t).$$

where  $\lambda(\theta) = \# \{j \mid a_{pj} \ge \theta \text{ for any } p\}.$ 

**Proof.** Applying the lemma with  $|S_{ij}| \leq |\mathbf{v}_p - \mathbf{v}_q|$  yields:

$$|\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| \leq |\mathbf{v}_p - \mathbf{v}_q|(1 - \lambda^2(\theta)\theta^2),$$

Therefore,

$$\frac{d}{dt}|\mathbf{v}_{p} - \mathbf{v}_{q}|^{2} \leq 2\alpha|\mathbf{v}_{p} - \mathbf{v}_{q}|(|\overline{\mathbf{v}}_{p} - \overline{\mathbf{v}}_{q}| - |\mathbf{v}_{p} - \mathbf{v}_{q}|)$$

$$\leq -2\alpha|\mathbf{v}_{p} - \mathbf{v}_{q}|\lambda^{2}(\theta)\theta^{2}|\mathbf{v}_{p} - \mathbf{v}_{q}|.$$

٦

Fix  $\theta > 0$ . Then the diameters  $d_X(t)$  and  $d_V(t)$  satisfy,

$$\frac{d}{dt}d_X(t) \leq d_V(t) \quad , \quad \frac{d}{dt}d_V(t) \leq -\alpha \,\lambda^2(\theta)\,\theta^2\,d_V(t).$$

where  $\lambda(\theta) = \# \{j \mid a_{pj} \ge \theta \text{ for any } p\}.$ 

**Proof.** Applying the lemma with  $|S_{ij}| \leq |\mathbf{v}_p - \mathbf{v}_q|$  yields:

$$|\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| \leq |\mathbf{v}_p - \mathbf{v}_q|(1 - \lambda^2(\theta)\theta^2),$$

Therefore,

$$\frac{d}{dt} |\mathbf{v}_p - \mathbf{v}_q|^2 \leq 2\alpha |\mathbf{v}_p - \mathbf{v}_q| (|\overline{\mathbf{v}}_p - \overline{\mathbf{v}}_q| - |\mathbf{v}_p - \mathbf{v}_q|)$$

$$\leq -2\alpha |\mathbf{v}_p - \mathbf{v}_q| \lambda^2(\theta) \theta^2 |\mathbf{v}_p - \mathbf{v}_q|.$$

To conclude we need to find an appropriate  $\theta$  for which we can count the number of "active entries"  $\lambda(\theta)$ .

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take 
$$\theta = \frac{\phi(d_X)}{N}$$
. We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ .

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take  $\theta = \frac{\phi(d_X)}{N}$ . We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ . Thus,  $\lambda(\theta) = N$ .

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take  $\theta = \frac{\phi(d_X)}{N}$ . We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_{k} \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ .

Thus,  $\lambda(\theta) = N$ . Applying the proposition gives:

$$\dot{d}_X(t) \le d_V(t)$$
 ,  $\dot{d}_V(t) \le -\alpha \phi^2(d_X(t)) d_V(t)$ .

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take  $\theta = \frac{\phi(d_X)}{N}$ . We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_{k} \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ .

Thus,  $\lambda(\theta) = N$ . Applying the proposition gives:

$$\dot{d}_X(t) \leq d_V(t)$$
 ,  $\dot{d}_V(t) \leq -\alpha \phi^2(d_X(t)) d_V(t)$ .

2) Using 
$$\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_0^{d_X(t)} \phi^2(s) ds$$
 [Ha-Liu]:

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take  $\theta = \frac{\phi(d_X)}{N}$ . We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ .

Thus,  $\lambda(\theta) = N$ . Applying the proposition gives:

$$\dot{d_X}(t) \leq d_V(t)$$
 ,  $\dot{d_V}(t) \leq -\alpha \phi^2(d_X(t)) d_V(t)$ .

2) Using 
$$\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_0^{d_X(t)} \phi^2(s) \, ds$$
 [Ha-Liu]:

 ${\mathcal E}$  decreasing in time

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take  $\theta = \frac{\phi(d_X)}{N}$ . We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ .

Thus,  $\lambda(\theta) = N$ . Applying the proposition gives:

$$\dot{d}_X(t) \leq d_V(t)$$
 ,  $\dot{d}_V(t) \leq -\alpha \phi^2(d_X(t)) d_V(t)$ .

2) Using 
$$\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_0^{d_X(t)} \phi^2(s) \, ds$$
 [Ha-Liu]:

 $\mathcal{E}$  decreasing in time  $\Rightarrow$   $d_X(t)$  bounded

If the influence function  $\phi$  decays slowly enough:

$$\int_0^\infty \phi^2(r)\,dr = +\infty,$$

then the dynamics converges to a flock.

**Proof.** 1) Take  $\theta = \frac{\phi(d_X)}{N}$ . We have:  $a_{ij} = \frac{\phi_{ij}}{\sum_k \phi_{ik}} \ge \frac{\phi(d_X)}{N} = \theta$ .

Thus,  $\lambda(\theta) = N$ . Applying the proposition gives:

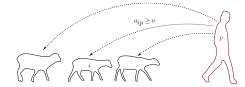
$$\dot{d}_X(t) \leq d_V(t)$$
 ,  $\dot{d}_V(t) \leq -\alpha \phi^2(d_X(t)) d_V(t)$ .

2) Using 
$$\mathcal{E}(d_X, d_V)(t) := d_V(t) + \alpha \int_0^{d_X(t)} \phi^2(s) ds$$
 [Ha-Liu]:

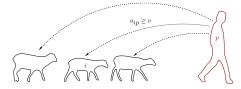
$${\cal E}$$
 decreasing in time  $\Rightarrow$   $d_X(t)$  bounded  $\Rightarrow$   $d_V(t) o 0$  expo. fast.

Applications to other models

- Applications to other models
  - models with leader(s)

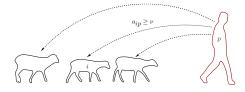


- Applications to other models
  - models with leader(s)



- Cucker-Smale model
- Consensus model...

- Applications to other models
  - models with leader(s)



- Cucker-Smale model
- Consensus model...
- Kinetic and macroscopic equations
  - Kinetic equation:  $\partial_t f + v \cdot \nabla_x f + \nabla_v (Ff) = 0$ .
  - Fluid equation:

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0$$
  
$$\partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = \mathbf{S}(\mathbf{u}).$$

# Conclusion & Perspectives

### **Summary**

- Introduction of a asymmetric model of flocking
  - ⇒ lack of conservation and "emergence" of a flock
- Use of a  $\ell^{\infty}$  approach to study its asymptotic behavior
  - $\Rightarrow$  Explicit condition on  $\phi$  for the emergence of flocking

# Conclusion & Perspectives

### **Summary**

- Introduction of a asymmetric model of flocking
  - ⇒ lack of conservation and "emergence" of a flock
- Use of a  $\ell^{\infty}$  approach to study its asymptotic behavior
  - $\Rightarrow$  Explicit condition on  $\phi$  for the emergence of flocking

### Perspectives

- Existence and uniqueness for the kinetic equation joint work with E. Boissard
- Study the dynamics when  $\phi$  has only a compact support joint work with E. Tadmor