Lagrangian approach to weakly and strongly nonlinear
stability analyses of fluid models

M. Hirotal

in collaboration with
Y. Fukumoto?, P. J. Morrison?, S. Tokudal, Y. Ishiit, M. Yagi!, N. Aiba'

lJapan Atomic Energy Agency, 2Kyushu University, *University of Texas at Austin

BIRS Workshop “Spectral Analysis, Stability and Bifurcation in Modern Nonlinear Physical Systems”
4-9 November 2012 @ Banff, Canada



1. Introduction

Fluid models (PDESs) D|r_ect manipulations Sl | inear & Nonlinear
straightforward, but cumbersome ... stability analvsis
Geophysical fluids M Y Y
Astrophysical plasmas

Gravitational many-body systems @Noncanonical) Hamiltonian system )
etc. Velocity VU, Density 0, Pressure D etc.

Powerful techniques
-variational principle

_ 7/ -normal forms
redulction ’7 2=

((Canonical) Lagrangian system )
Flowmap oy : R" — R"

3

Lagrangian approach is advantageous to analyze complicated fluid models.

Many (conserved) variables, 3D & non-Euclidean space, free boundary etc.

Example 1. Continuity equation
Op+V-(pv) =0 = f(pd3z) = pod3zo solved! (in terms of ;)



Example 2. Vortex tube dynamics (w: vorticity)

Ow =V x (v X w)

Isovortical perturbation w =V x (£ x wy)

[Arnold (1966)]

Only the deformation of the tube can be discussed.

w,= 0

[Next talk by Fukumoto]

Example 3. Ideal magnetohydrodynamic stability [Bernstein et al. (1958), Newcomb (1962)]

Dwv
p— = —-Vp+ (VX B)XB

Dt

OB

— =V X (v x B)

ot

Op

AT v A =
5 TV (pv)
0% . Vs =0
- v - S —
ot

(v: velocity, B: magnetic field, p: density,
s: specific entropy, p(p, s): pressure)

—> Linearization

0+& +vg - V& — & - Vg,
V X (€ X Byp),

=V - (po§),

—& - Vso,

|

Frieman-Rotenberg equation(1960)

VIt m (o4}
I I

%€ o0&
98 1o v _
PO 572 + 2povo - 5t '3

Gyroscopic system (pgvg - V: anti-Hermitian, F: Hermitian)
=- Hamiltonian Hopf bifurcation occurs only in the presense of

basic flow vg.



Outline of this talk

1. Introduction

2. Action-angle representation of linear perturbation (- - - Linear regime)

Krein signature for eigenmode and continuum mode

3. Formulation of weakly nonlinear mode coupling
(- - - Weakly nonlinear regime)
Reduction to normal forms using Lagrangian

4. Lagrangian approach to explosive instability
(- - - Strongly nonlinear regime)
Boudary layer problem



2. Action-angle representation of linear perturbation



Action-angle variables for eigenmodes

In linearized Hamiltonian system, each periodic eigenmode (x e~*?) satisfies
[Modal energy (E)] = [Frequency (w)] X [action (,LL)]

sgn(u): Krein signature

e (noncanonical) Hamiltonian formulation

~
~ o~

Linearized system: O,u = JHu for w=(v,B,p,35)

(7 : anti-Hermitian, H: Hermitian)
Dynamically accesible perturbation: v = Ju', u' = (&,n,«,B)
Foru = te™™*, E = (u, Hu) = iw(a',a) = Action = (a',iga’) (%)

e (canonical) Lagrangian formulation
F-R eq. = Canonical variables (q,p) = (&, po0:& + povo - VE)

For g — ée_i‘*’t, Action w = j{p . dq = /g : po(w + g - V)éd?’x (**)

Both expressions are equivalent. But, (**) is more reduced and informative than (*).



Action-angle “variables” for continuous spectrum

[Morrison (2000), Balmforth & Morrison (2002)]
Slab equibliria 1 < x < 25

= further reduction § = (£5,&,,&2) — &

= Sturm-Liouville Eigenvalue Problem 4T
(Goedbloed 1971, Appert et al. 1974) z = o
______ z k_:_ (_k,_l;,_ky,())
0 6‘53: 2 ] {t —Y
a.. P(W,ZL‘) _Q(wax)gfc 207
833 (9:13 r = I

ga:‘a::azl — €$|£U:$2 — 07

Continuous spectrum {w € R| dx, € [x1,x2] s.t. P(w,xs) = 0}
1} Regular singular points

Continuum mode; “continuum of singular eigenfunctions” (Frobenius solutions)

Eample. Parallel shear flow v(x)
= Rayleigh equation: P(w,z) = (w — k- v)?, Q(w,z) = k*(w — k - v)?

Balmforth & Morrison (2002) succeeded in transforming the continuum
mode into action-angle variables via a generalized Hilbert transform.

What is more general strateqgy for various fluid systems?



Action-angle representation using the Laplace transform

[Hirota & Fukumoto, J. Math. Phys. 49, 083101 (2008)]
Let &, (x,t) — E(x,Q),Q € C be the Laplace transform. Define

D(Q) = /w =) {(% [P(Q,x)g—i(ﬂ)l _ Q(Q,x)E(Q)} da

Action variables for eigenmode and continuum mode are given by

. 1 :
e Eigenvalues {wn|n=1,2,...}, pun = 57 D(Q)dS), (residue)
IM'wp)

e Continuous spectrum w € o. C R,  p(w) = i [D(w + i0) — D(w —i0)]. (jump)

+Im Q)

$Im )
(o)

Deformation ® .
Re Q) — URRCACES S

@ Re ()

=
=
)




Example. Alfvén continuous spectrum in Ideal MHD
= P(w,7) = (w—k-v)? — k- B?

Alfvén continuous spectrum: o7 = {k - v(x) £ wa(z)|z € [21, 2]}
wa(x) = |k - B(xz)|: Alfvén frequency

Singular eigenfunction: (Frobenius series solution)

. B

§(x,w) :ﬁ X €y

Ca(w) 1 ot
- p'v'w—k-v$wA+CA(w)5(w kE-vFwa)|l+...,

Action variable: [Hirota & Fukumoto, PoP 15, 122101 (2008)]

p(w) = [[Ca) + |Ch ()] / WAl — kv — wa)—0(w — k- v+ wa)lde,

Krein signature, sgn(u(w)), is evident from this expression!

Alfvén continuum mode has negative energy wu(w) < 0 ifand only if |k-v| > |k- B|
somewhere on [z, x2].



Resonance between eigenmode and continuum mode

[ same sign | Resonant absorption
Irp w IT W (or Landau damping)
U(w)>0  pe>0 o
|rp W [Opposite sign} Irp W Resonant instability
o
t — s Re) > S ——— *Re w
H(W)<0 k>0 *

By using the averaged Lagrangian method (assuming Re w > 0), adiabatic in-
variance of the total wave action po + [ u(w)dw holds. [Hirota & Tokuda, PoP 17, 082109
(2010)]



3. Formulation of weakly nonlinear mode coupling



Difficulty of analysis under nonuniformity (or nonlocality)

_ Magnetosonic wave
Weakly nonlinear phenomena

. K
e Three-wave resonance =- Parametric decay wi, k1 o
/\/\,
(Sagdeev & Galeev 1969) Alfven wave
. k
e Landau equation (1944) (four-wave resonance) 3
Alfven wave

e Modulational instability (secondary instability)

W1 = W2 + W3

°o ... [k1:k2+k3}

These require higer-order perturbation analysis and renormalization technique.
= Nalive expasion of fluid models often falls into tedious algebra.
=- Most analyses are limited to resonaces among plane waves or wave packets.

Whitham (1967) proposed the following approach to water waves.
1. Small-amplitude expansion of Lagrangian
2. Averaging
3. Variational principle = Normal forms

= [t would be beneficial to apply Whitham’s method to various fluid models.



Newcomb’s Lagrangian theory

The ideal MHD equations

DY Up+(VxB)x B
Py =—Vp

OB

— =V X (v X B)

Bt

dp

LT iv. —0
e + (pv)

95 | 4. Vs=0
_ U. 8:

ot

B, p, s are frozen into the flow map ¢; : (0) — x(t)
Lagrangian [Newcomb (1962)]

L{pt] :/ [g|v|2 — %|B|2 — pU(p,s)| d°x, Ul(p, s) : internal energy

Nonlinear displacement: x(t) — x(t) + E(x(t), t)
Small-amplitude expansion: L = LY + LO(E) + L& (8,E) + LO(E, E,E) +. ..

e Formulation of L3 IS established. [Frieman-Rotenberg (1960), Dewar (1970)]

e L3 is derived by Pfirsch & Sudan (1993). But, no basic flow and an important
symmetry is missing.



Variational principle for nonlinear displacement field

[Hirota, J. Plasma Phys. 77, 589 (2011)]

Difficulty: Nonlinear displacement = is not a vector field, but a mapping!

/aze =x + E(x, 1) )

—et Vi

3] £(=(1),1)

Tangent vector

1 1
_ =$+€+§€'V€+gﬁ'v(g'vfﬂ‘---/

The corresponding variation of the Eulerian variables u is
= | Lie series: u. = u + fgu + %fgﬁgu + %fgﬁgﬁgu + ...

v\ <« vector €&+ (v-V)E—(E-V)v
| B | « 2-form . N B V x (& x B)
u=1 |« 3-form = Lie derivative: Zzu = V- (p€)
s | + O-form —& - Vs



Rearrangement of Lie series

Theorem: Interms of = = & + 3£ - VE+ 2£€-V(E-VE) +

et =14 % + ggzg + zgggzg

1
:14‘35‘1‘5 ==+ O%EE:—I—

where

def

9%25 =7 gg c%'n-V£7

def

2 2
Line SLeLne — Lévne — Lacve
n def
0%517&27 E?’L _ggl ..... Z ..... &1'V£J .,£n7

are symmetric with respect to any permutation of subscript vector fields.
(Proof) Use the Jacobi identity; £¢.%,, — £n%Le = ZLevn—n-ve forall £ and n.

Example. If % = £ - V in Cartesian coordinates,

0s 1_
83% 2 —r 8:1:18333

z Lounn |
e s =s5+5;

I e
H\—J\—l



Perturbation expansion of the Lagrangian around an equilibrium state « results in

Lagrangian for nonlinear displacement (Hirota, J. Plasma Phys. 2011)
L[Z] / p|DE]” » WOEE WOEEE WWEEEE)
= = — | — x€r — — —
2| Dt 2 3! 4!
where D/Dt = 0; +v - V.

nth-order potential energy: W((E,... B) = — [E. F=D(E,... B)d®z

Equation of motion

= D2E
P D2

Nonlinear extension of the Frieman-Rotenberg equation!



Case 1. Nonlinear three-mode coupling

Resonant three eigenmodes: = = Z Aj(et)€je it 4 ce.,  (we = wp + we)

j=a,b,c
Amplitude equations
dA, , dAj , « dA; : «
Ha dt — _ZW(E?b),CAbAQ lubd—tb :ZWCE?ZB,CAGAQ He dt :ZWCE?b),cAaAb

e Wave action: N; = p;|A;|* where u; =2 [ [g; - plwj + v - V)éj} d*x

e Coupling coefficient: Wf&c = W) (€&, &.) - strength of coupling

Remark:
The energy conservation, w, N, + wy Ny + w.N. = const., holds due to the cubic symmetry
of W),



Case 2. Nonlinear hydrodynamic stability

Landau’s idea (1944)
“Nonlinear self-interaction of the dominant mode generates second harmonics and
distorts the mean fields.”

e Seek the solution in the form of

P—
L]
I

[

W 112 with [E® = Aet) (€re7™" +c.c.)

(p% ~PE® = F@EO 2®) = |BO® = 2|A|2£é2) 4 A2(EP et 4 o)

e By substituting this = into the Lagrangian,

dA
dt

2 4 2
_ 2y, 1A A _ o Wa e
WQ’A| Wy 1 = 72 = WQA 5 A|A|

LIE] =1

where I = [ p|&:|?d®z and Wy = WP (&1, €}),

e,
= ¥
e,
— %
N—"

Wy =W (€, €5 7))+ ReW® (€1, 61, € + W (€, &



4. Lagrangian approach to explosive instability



Strong nonlinearity of explosive instability

Fates of linear instabilities
e Saturation at small amplitude

= [Weakly nonlinear problem]; perturbation analysis is applicable.

e Explosive growth (abrupt collapse)
= [Strongly nonlinear problem]; perturbation expansion fails to converge.
which is often the case with boundary layer problem (singular perturbation)

Example. Collisionless magnetic reconnection

Magnetic confinement of plasma Solar flare
(from Yokoyama & Shibata ApJ 2001)

N Sawtooth oscillation
Internal [Goeler et al. 1974]
kink-tearing . ,"/v:]\l - ~ SHOTg4067
instability 2.48m " (center) | Ly

2.62 //__.,/-" ﬂm__,/"’/ ,L/'N/ ”]

o [ e S S
375 380 (seq)

(fast collapses)

Explosive
outflow

q: Boundary layer
- Boundary layer width (d) < System size (L)

- Linearly unstable eigenfunction has a steep gradient within the thin layer; 0/0x ~ 1/d
- Perturbation expantion will not converge when amplitude (¢) — layer width (d)




A model of collisionless magnetic reconnection

For v =Vo(z,y,t) x e, and B = Vi(z,y,t) X e, + Boe.,
V2 2 2

292
il §V¢°—m¢—£vwhﬂx

where [f,g] = §£ 32 — 325L, d.(< L): electron skin depth

Vorticity equation:

(Collisionless) Ohm’s law:

The frozen-in flux is not ¢, but v, = ¥ — dZV.

By introducing the flow map (z, y)(t) = vt(x0, yo),

: 1
Lagrangian: L{p:] = o / (IVo|* — |Vy|* — 2| VY d*xr = K — W

This play the role of potential energy

0
where %(wo,yO) = Vo(pt(w0,%0),t) X €. and e (pi(zo, yo),t) = Ve (0, Yo, 0)

= If the potential energy decreases (6WW < 0) for some displacement map,
then such a displacement tends to grow with the release of free energy.




1D slab equilibrium
On a doubly-periodic box D = [ — £z £2] x [ — LT, %]

» =0 (no flow), (z) = 1o cos

e Assume sufficiently small wavenumber k& = 27 /L, in
the y-direction such that

L2/8L; < de < Ly.

e Define € as maximum displacement in x direction (~
half width of magnetic island).




Energy principle for linear stability (¢ < d,)

[E|genvalue probe'mj & =720 =6 WJ

(4th order ODE

where ol :/dg;— (|§,|2 + k? |§’ ) Stable Unstable
SW = / dx v (W) + ey €[
1 —d2v2 T °

Energy principle (or Rayleigh-Ritz method)

The most unstable eigenvalue ~ > 0 is found by minimizing 55—‘;/ with respect to €.

By substituting the following test function ¢,

A~ 0.5 | 2 5W 1 + 27e 2

A2 = ~ = —0.776 /78
£ olde \od a 7T 672 /76

a) | where 7, ' = dekB,

e 5% b2 = Linear growth rate: v = +/0.776 /79 = 0.881 /719




Nonlinear stability analysis (e > d,)

We devise a displacement map ¢,

: (zo,y0) — (x,y) that tends to decrease the potential
energy W as much as possible.

L .
ge(x0), 0<yo < = -4, (i)
L L L .
v=qz0+ % (yo— F) oo —ge(@o)], HF -t <wo<E+L, (i
L L
2x9 — ge(xO)a Ty + % < Yo < Tya (“I)
and © ‘28’_6 0 <o <de,
ge(0) =S doe de " d. < xo < de + €,
To — €, de + € < xg.
Ly 'gf+?"2€
7 ;LJ; -
Yy o
Contours of v, are
- -+ | deformed into a
L, Y-shape”.
2 L,




Acceleration of collisionless reconnection

o | (dE) . € = €/de,
L[Qpe(t)] gLyByOdeI d_f _ U(E) £: t/’T()

e In linear phase (¢ < 1),

U(é) ~ —0.776¢* = Exponential growth
é o< exp(v/0.7761)

e In nonlinear phase (¢ > 1),

U(é) ~ —0.439¢> = Explosive growth
E > o00iNAt=2~3

= Nonlinear force F(¢) = —U’(é) ~ & obtained here is
different from F(é) ~ é* in Ottaviani & Porcelli [PRL 71,
3802 (1993)].

i Direct numerical simulation shows an agreement with
our scaling (right figure).

10000

1000 ¢
100 +

0.01
0.001

Simulation with
de — .01, 2% = 4nx

Change of potential U

Linear ~ Nonlinear

0.1

A

€
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[Hirota, Morrison, Ishii, Yagi and Aiba, arXiv:1210.0630]



