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Introduction Part 1: semi-classical looping probabilities for
elastic polymers

Explain how the computation of the looping probability for an
elastic polymer, such as DNA, can be cast in terms of a ratio of
path integrals to give a probability density function (or pdf) on the
special Euclidean group SE (3).

This quotient can then be approximated with a leading order term
that involves an isoperimetric variational principle from the 1D
calculus of variations, along with the first, or semi-classical,
correction which involves the determinant of certain solutions to
the associated Jacobi equations.

This part is joint work with L. Cotta-Ramusino and R.S. Manning,
both published C-R & jhm, Phys. Rev E, 2010, and ongoing.
Supported by Swiss National Science Foundation.



Introduction Part 2: Jacobi systems and exchange of
stability in parameter-dependent variational principles

As time permits I will then describe connexions between Part 1,
and results concerning exchange of stability and distinguished
bifurcation diagrams in parameter dependent variational principles,
including isoperimetric variational principles where the parameters
are Lagrange multipliers.



DNA loop formation is important in Biology

One biologically important class of examples involve DNA looping.
For example the LAC-repressor loop of length 75 bp (image from
Villa, Balaeff and Schulten, PNAS 2005)

The probability of the first end of the loop binding depends only on
concentration, but then for the second end to bind the DNA must
deform, and that free energy will have a large effect.
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The probability of minicircle formation is a particular and
experimentally important case of looping

DNA minicircle cyclization rates or J-factors, i.e. probability of the
formation of closed loops of DNA with or without a bound protein,
are exquisitely dependent upon sequence, particularly intrinsic
curvatures, at scales of 50 – 250 bp. Such in vitro cyclization
experiments measuring J-factors à la Shore-Baldwin, Crothers
group, Kahn, Widom, Vologodskii, Orozco, etc, are a longstanding
and still currently active experimental area.



The J-factor as an experimental probe of the physical
properties of DNA

“DNA cyclization is potentially the most powerful approach for
systematic quantitation of sequence-dependent DNA bending and
flexibility.”
First sentence of abstract in Zhang & Crothers, Biophysical J. 84
(2003)

More recently the importance of methylation patterns and
epigenetics has become apparent. Does methylation affect the
physical properties of DNA in a significant way?

Need more experimental data, and better models to interpret the
experimental data. Note however that there is no single “correct”
level of coarse-graining DNA.



A Comparatively Simple Coarse Grain Model of DNA

Today talk about the analysis of an extensible, shearable (or
Cosserat) rod model, and its inextensible, unshearable (Kirchhoff)
limit. In these models the configuration is determined by the
strains w(s) ∈ se(3). The geometry of the reconstruction is
nonlinear.

Depending on how SE (3) is treated the strains w will involve both
the parametrization q(s) of SE (3) and its space derivative q′(s).



The Assumed Functional Form of Energy

The (free or potential) energy (or Hamiltonian in stat mech
language) is assumed to be a shifted quadratic function of the
strain variables

U
(
w ≈ (q, q′)

)
=

1

2

∫ L

0
(w − ŵ)TP(w − ŵ) ds

The input parameters are the coefficients P(s) > 0, a 6× 6
symmetric matrix of stiffnesses, and the ŵ(s) which determine the
intrinsic shape of an absolute minimum energy configuration.



Estimation of the Model Input Parameters

Both P(s) > 0 and ŵ(s) encode the sequence-dependence of a
particular DNA fragment or oligomer. They are both possibly
rapidly varying functions of s, which opens the way to effective
constant coefficient models determined by averaging, e.g. standard
worm like chain models of polymer physics, which are typically
constant coefficient and inextensible and unshearable.

One way to estimate these input coefficients as a function of the
DNA sequence is from a training set of finer-grain molecular
dynamics simulations, but that is another long story: for example
jhm et al Phys. Chem. Chem. Phys. 11 (2009), and Gonzalez,
Petkevicuite, jhm, J. Chem Phys. submitted (2012)



Todays Point of Departure

We make the assumption that the DNA interacts with a solvent
heat bath in such a way that the configurations of a given oligomer
are governed by an equilibrium, or stationary, pdf of the form:

1

Z
exp[−βU]

for a specific choice of configuration variable q parametrizing
SE (3), and associated known sequence-dependent potential U(q)
of the functional form already introduced, partition function Z ,
and heat bath temperature scale β.

In the current continuum context with U(q) being a functional on
paths in SE (3) the precise sense of Z is delicate.



Looping Probability Density as a Marginal of the
Configuration Probability Density

A special feature of polymers such as DNA is that they are
one-dimensional objects in which the probability of interest is
frequently not on the entire configuration q(s) itself, but is instead
a marginal probability on q(L) or q-final or qF at one end of the
chain conditioned on the value q(0) or q-initial or qI at the other
end of the chain.

For example one can have qF = (rF ,RF ) ∈ SE (3) an origin and
orientation of a rigid base pair, or frame, and you want to know
the pdf p(qF |qI ) on SE (3) for the final frame being at a given
place and orientation, given the origin and orientation qI at the
other end of the chain (which information typically just factors out
a Euclidean symmetry of the potential).



The J-factor for cyclization

For example to model the ‘looping’ problem of DNA minicircle
cyclization rates, you want to approximate the probability density
function p(qF |qI ) in the particular case qF = R(α)qI , i.e. the two
end points and end tangents of the DNA fragment coincide and
the terminal frames are rotated through an angle α.
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(Technicality: The additional parameter α allows the ribbon to
differ from the two DNA backbones.)



The Path Integral Expression for looping J-factors.

In the context of such looping problems the desired marginal
probability density function (on the six dimensional group SE (3))
involves a ‘summation’ over all intervening paths satisfying both
initial and final end conditions:

p(qF |qI ) =
1

Z

∫ qF

qI

exp[−βU(q)] D[q]

while the partition function is the sum over all paths satisfying only
the initial boundary condition:

Z =

∫
qI

exp[−βU(q)] D[q]

In our continuum context the integration measure D[q] is over all
paths satisfying the prescribed boundary condition(s): at both ends
in numerator, at only one end in denominator.



“semi-classical” approximation of real path integrals

If:

• there is a unique energy minimizing configuration q̄ with
initial and final configurations qI and qF

• and β is large in an appropriate sense,

then can write q = q̄ + h and make the ‘semi-classical’
approximation in terms of the second variation δ2U(q̄; h) of the
potential U at the minimum q̄

p(qF |qI ) ≈ exp[−βU(q̄)]

∫ hF=0
hI=0 exp[−βδ2U(q̄; h)] D[h]

Z

The second term is now the ratio of two quadratic path integrals:
numerator in h with two boundary conditions, denominator in
strains w with no boundary condition. This ratio is a well-behaved
object.



Explicit form of the second variation

δ2U(q̄;h) =
1

2

∫ L

0

[
h′

T
P(s)h′ + hTQ(s)h + 2h′

T
C(s)h

]
ds

where P(s) is the already given stiffness matrix, while the
anti-symmetric matrix C(q̄) and symmetric matrix Q(q̄) in general
depend upon the minimum energy configuration being considered
due to the nonlinear geometry of rods.

The anti-symmetric coefficient matrix C of the cross-terms does
not vanish in any case of rods that I know of. In some sense C
represents ‘gyroscopic’ terms.

And C 6= 0 causes conniptions in all the standard path integral
solution formula that I know.



Explicit form of the associated Jacobi system

The associated Jacobi equations have the linear Hamiltonian form(
V
W

)′
=

[
0 1
−1 0

]
S

(
V
W

)
,

[
V
W

]
(0) =

[
0
1

]
where

S =

[
CTP−1C−Q −CTP−1

−P−1C P−1

]
and the 6× 6 solution blocks V(s) and W(s) of the Hamiltonian
Jacobi system for the particular initial conditions shown will be
important and will reappear.

It is also true that V(s) and W(s) behave smoothly in the
inextensible, unshearable limit in which certain entries of the
stiffness coefficient matrix P become infinite, and P−1 smoothly
approaches a non-invertible matrix.



Evaluation of the semi-classical approximation

‘Time slice’ (in s) in the ratio of quadratic path integrals take limit
and arrive at

p(qF |qI ) ≈
exp[−βU(q̄)]√

det 2π
β V(L)

where the matrix V(s) is the solution block of the Hamiltonian
form of the Jacobi system at the local minimizer q̄(s).

Computing the minimum energy shape q̄(s) is a nonlinear problem,
but unavoidable, and efficient ways of doing that already known for
quite some time, for example Manning, Maddocks, Kahn, J. Chem
Phys, (1996).
Evaluating the semi-classical Jacobi field correction is then a single
IVP solve for a linear system of matrix ODE, usually nonconstant
coefficient.



First question for the expert(s) in the audience

The functional form of our formula, namely a pre-factor involving
energy of a minimal path and a correction in terms of a
determinant evaluated on a Jacobi field, is quite familiar in the
large literature on various ways of evaluating quadratic path
integrals, mostly couched in terms of the case of imaginary
integrands that arises in the semi-classical treatment of quantum
mechanics. Notable authors include Morette, and Gelfan’d-Yaglom.
However for C 6= 0 the only applicable evaluation formula we could
find is due to G.J. Papadopoulos (Phys Rev D, 1975). It involves a
nonlinear set of ODE related to, but different from, the linear
Jacobi equations.
We then introduce a nonlinear change of variables, of Riccati type,
to rewrite the Papadopoulos solution formula in terms of solutions
to the linear Jacobi system. Any related citations known?



Second question for the expert(s) in the audience

The solution formula blows up when detV(L) = 0, i.e. at
conjugate points. In the inextensible, unshearable case this
conclusion requires the Hamiltonian form of the Bolza (1904)
theory of the degenerate ‘Jacobi’ equations (actually DAE)
appropriate for determining conjugate points and positive
definiteness of the constrained second variation in the isoperimetric
calculus of variations problems (see Manning, Rogers, and JHM,
Proc Roy Soc A, 1998).

Is there a literature on semi-classical formula close to conjugate
points for real quadratic path integrals?



How good is the semi-classical approximation?

Can gain some insight from a toy example where all computations
explicit: α = 0, untwisted loop closure for intrinsically straight
untwisted strip, with diagonal, constant stiffness matrix
P = diag(K1,K2,K3,A1,A2,A3).
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Equilibrium configuration is an untwisted circle (a simple case of a
helical, or relative, equilibrium for which the Jacobi equations can
be made constant coefficient).



Explicit formula (don’t sweat the detail)

Our semi-classical approximation to the probability density function for
cyclization can be calculated analytically (here for the case K1 < K2 and
K1 < K3):

p(L) = e−2
βπ2K1

L
4π β3

L6 A

[√
K 5
1 (K3 − K1)

B (1− cosλ)

]

= e−2
βπ2K1

L

[
2

(
β

2π

)3/2
√

(2π)4K 3
1

L7A2

]
p

[(
β

2π

)3/2
√

(2π)4K 2
1 (K3 − K1)

L5B(1− cosλ)

]
op

where

A =

[
1 +

(
1

A2
+

1

A3

)(
2π

L

)2

K1

]
B =

[
1 +

(
2π

L

)2
(K3 − K1)

A1

]

and

λ = 2π

√
(K3 − K1)(K2 − K1)

K2K3
.

In inextensible unshearable limit A→ 1, B → 1.



Comparison with Monte Carlo for one particular set of
stiffness parameters as a function of non-dimensional

length of the loop

Experiments usually done at less than 2Lp where events are so rare
that it is hard to get good Monte Carlo sampling.



Part II: Jacobi fields in parameter-dependent variational
principles

Long realized that families of critical points, i.e. solutions of
first-order necessary conditions, e.g. Euler-Lagrange equations,
contain information about second-order necessary conditions at
each extremal.

Describe various older results surrounding the idea of distinguished
bifurcation diagrams, including the construction of a Lyapunov
function which implies a stability result for the N-soliton of KdV
(Maddocks and Sachs, 1993, 1995).

Then first attempt at a distinguished bifurcation diagram for
semi-classical looping problems.



Classic exchange of stability result—Poincaré or earlier

If a branch of solutions to a set of equations

f (u, λ) = 0

with a scalar parameter λ has a (simple) fold, then one branch being
‘stable’ with respect to some spectral problem

fu(u, λ)ξ = µξ

implies that the other branch is ‘unstable’, e.g. B stable implies both A

and C unstable



Exchange of stability in distinguished diagram for
variational problems (jhm ARMA 99,1987)

A branch of solutions to a set of first-order necessary equations

Fu(u, λ) = 0

are not (local) minima if it is an upper branch in a fold opening to the

left, or a lower branch in a fold opening to the right, in the distinguished

bifurcation diagram (λ,−Fλ). Thus B are not minima, and C are not

minima in part a). No assumption on A and no assumption of simplicity.



Exchange of stability in distinguished diagram for
isoperimetric variational problems

When λ enters the first-order necessary equations linearly it may or may
not be a Lagrange multiplier:

Gu(u)− λHu(u) = 0

The distinguished diagram is now (λ,H), unconstrained index changes at

vertical folds as before, and constrained index changes at horizontal folds.



Exchange of stability in multiply constrained isoperimetric
variational problems

To extend to multi-parameter problems, reinterpret distinguished
diagram results in terms of plots of the Energy against the
parameters. Then folds become cusps. In case of functionals with
linear parameter dependence F (u, λ) := G (u)− λ ·H(u) have two
natural and conjugate distinguished diagrams (λ,F ) and (H,G )

Bifurcation diagrams shown are for the Axes of Staude (the steady
spins of an asymmetric, nonintegrable, heavy rigid body about a
fixed point).



Signs of principal curvatures and connexions between
constrained and unconstrained indices

For isoperimetric problems a single critical point has two indices, one as
an unconstrained critical point where the λ are prescribed, and one as a
constrained critical point where the H are prescribed. The difference
between these two indices is given by the number of positive principal
curvatures in (either of) the two distinguished diagrams.

For example in the Lax-Novikov-Kruskal variational characterization of

the KdV N-soliton profiles as critical points of integrals of the motion,

the unconstrained index can be shown to be Int[(N + 1)/2] ,i.e.

1, 1, 2, 2, 3, 3, 4, 4, ... , and the distinguished diagram can easily be shown

to have the same number of positive curvatures. Thus the N-soliton

profiles are all constrained minimizers, a Lyapunov function for the

dynamics can then be constructed, and orbital stability concluded.

(Benjamin, 1972, used the Bolza theory of conjugate points to prove the

N = 1 case.)



Is there a useful distinguished bifurcation diagram for
semi-classical looping problems?

As yet unclear. For the moment just remark that in the spirit of
Hamilton-Jacobi theory one can write the action, which in the
looping problem context is just the elastic energy U, as a function
of the final state qF . Then expand qF = q̄F + δqF to obtain

U(q̄F +δqF ) = p̄F ·δqF +
1

2
δqF ·W(L)V−1(L)δqF +H.O.T .(P2C2E )

Here the matrices W(s) and V(s) are our old friends defined as
solutions of the Hamiltonian version of the Jacobi equation which
implies that W(L)V−1(L) is a symmetric matrix and V(s) is
invertible up to the first conjugate point, and a distinguished
diagram should encode detV−1(L).



Thank you for your attention.


