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The problem of interest:

> Free Boundary Problem Everything mentioned 1n this talk
can be extended to a 2D surface.
> Flat bottom

> Inviscid, (irrotational)
> Periodic boundary conditions



7 SEATTLE

OVERVIEW J UNIVERSITY
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Gu(T,2,t) = Pu(x + L, 2,1), n(x,t) =n(x+ L,t). i=Vo
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To consider the spectral stability of periodic solutions, we need to:

1. Determine stationary solutions (traveling coordinate frame).

2. Perturb the stationary solutions and linearize the equations of motion.

3. Solve the resulting eigenvalue problem.

But hasn’t this already been done? Yes!
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> Lighthill (1965), Whitham (1967), Benjamin (1967), Bridges & Mielke (1995)

— As khincreased to greater than 1.363 waves become unstable to long-wave
perturbations. Benjamin-Feir or Modulational instability.

> Longuet-Higgins (1978)
— The stability of periodic traveling waves in deep water changes as the
dimensionless wave height, ak increases.

> McLean (1981), McLean et. al (1984), Francius & Kharif (2006), and others.
— Transverse instability investigations.

> MacKay and Saffman (1984)

— Collisions of opposite signature eigenvalues on the imaginary axis are necessary
for instability.

> Nicholls (2008)
— Exploits the analytic dependence of the spectra on the amplitude.
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To understand the stability of traveling wave solutions for small
amplitude solutions to Euler’s equations through a new formulation.
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Why bother with an alternative formulation?

Results from others:

— Obtained a single equation for 1D traveling waves [Nekrasov, Bobenko, Toland,
etc.].

— Hamiltonian formulation [Zakharov, Bridges & Laine-Pearson].

— Obtained results regarding the monotonicity of traveling waves [Strauss &
Constantin].

— Results regarding existence/uniqueness of traveling wave solutions via the
Dirichlet — Neuman operator [Nicholls, Craig].

— Many MANY more!
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Why bother with an alternative formulation?

Our Results (with the Ablowitz-Fokas-Musslimani [AFM] formulation):

— Obtained a single equation for traveling waves (1D surface, 2D problem).
[Deconinck, O].

— Successfully investigated the spectral stability of 1D periodic travelling wave
solutions w.r.t. all bounded 1D and 2D (transverse) perturbations. [Deconinck,
O].

— Used pressure data to reconstruct the surface elevation of a wave [O, Vasan,
Deconinck, Henderson].

— Created a single equation for the traveling waves (2D surface, 3D problem) [O,
Vasan].

— The inverse problem: Bathymetry Detection [Vasan, Deconinck]
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Going back the the original equations of motion and transitioning to a
traveling coordinate frame where x — x — ct, we have

¢xm+¢zz :Oa (ZIZ,Z) ED)
¢, =0, z=—h

Nt + Nx (¢a: _C) — ¢za

1 1
¢t—0¢x+§¢i+§¢g+977:07

Oo(T,2,1) = oz + L, 2,1),  n(z,t) =n(z+ L, 1),

The goal 1s to consolidate this system of equations.

Ablowitz, Fokas & Musslimani, JFM 2005
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Introduce a new surface variable q(x,t) = ¢(x,n(x,t),t)

z =n(x,t)
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The boundary conditions at the surface can be written in terms of surface
variables as

1 2
Qt+§(q$_c) +gn— =
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Going back the the original equations of motion and transitioning to a
traveling coordinate frame where x — x — ct, we have

gba:a; + qbzz — 07

The goal 1s to consolidate the system of equations.
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Consider two function that satisfy both Laplace’s equation and the boundary
condition at the bottom.

¢ww + wzz — 07 ¢z — 07 ¢w:c + ¢zz — 07 ¢z — 07

It’s easy to see that the following integral must also be zero
[ (@v)s- @o)v)av —o
D

Using one of Green’s identities, we can show:

/(‘BD(gb(vw.ﬁ)_w(vqb'ﬁ))dS:Q
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Let @) = Z e, (t) cosh (k(z + h))
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z =n(x,t)
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/OL o ik (n; cosh (k(n+h)) +i(qy — c)sinh (k(n+ h)))dz =0, Vke A
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Thus, the equations of motion are given in terms of surface variables by the
following two equations:

> Local Equation

1 2 1(77t+(QQ3_C)7733)2 . 1 2
Qt+2(qgc c)” +gn 5 L+ =5¢ —9n

> Nonlocal Equation

/OL o ika (n;cosh (k(n+ h)) +i(qy — ¢)sinh (k(n+h)))dz =0, Vke A
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Looking for traveling wave solutions,

> Local Equation

1 2 10 + (qz — ¢) ne)” 1,
><—|— (gz —¢)” +gn 2T 112 =5¢ —9n

> Nonlocm\

/ Look for stationary solutions

L

e oot T)) + i 4, — ) sinh (ko + ) dz = 0
0
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One-dimensional surface

: N 2= a1
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This single equation describes the surface for traveling wave solutions, and does
not require knowledge of the velocity potential. [Deconinck, O]
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Nontrivial solutions

>

——
C
/ Trivial solutions
Bifurcation Point L =27
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Initial small amplitude
guess

Nonlinear Solver

Interpolate to predict larger
amplitude 1nitial guess

Obtain Solution
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Initial small amplitude
guess

Nonlinear Solver

Interpolate to predict larger
amplitude 1nitial guess

Obtain Solution
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Normalized solutions for 2 = 0.5, and L =2n
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We consider perturbations of the form

n(x,t) = no(x) + em(x)e e + ...
g(z,t) = qo(x)+eq(z)e e + ...

Time 1s only through the exponential term.

Spectrally unstable if there is any value of A which has a positive real part.

Substituting the perturbed solution into the AFM formulation...

£,X =\ M,X

Range of the Floquet Parameter
We only need to consider the range 0 < 1 < 0.5 instead of the full range. This allows
us to reduce the size of the computational domain.
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We would like to be efficient with our choice of Floquet parameter values /.
We know the following:

1. A necessary condition for the loss of stability is the collision of two
eigenvalues with opposite signatures (MacKay and Saffman)

2. The spectrum analytically depends on the amplitude of the traveling wave
(Nicholls)

3. We can determine the spectrum analytically (in terms of ) for the trivial
solution with the appropriate wave speed corresponding to the location of the
bifurcation of TWS. (Pen and Paper!)

IDEA: predict the location of instabilities for small amplitude waves and then track
the location as we increase the amplitude of the TWS.
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Consider the trivial solution at the base of a bifurcation branch. For finite depth, the
eigenvalues corresponding to the linear problem are given by

m

AE = (—ckm + \/gkm tanh(hkm)) ok =mAp

An 1instability can arise if two eigenvalues with opposite signature collide:

AP =)X" m#n

We consider class I and class II instabilities such that

Dense grid in these
Class I: Class II: neighborhoods.

n=-m-—1

These are the same techniques used by McLean (1981), loulalaen, et. al (1999), Francius and Kharif
(2006), and many others when investigating the stability with respect transverse perturbations.
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Eigenvalues A in the complex plane
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038 02 -0.01 017 0.35
Nonlinear Schrodinger Equation
Known to exhibit long-wave instability
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Spectra Associated with Linearization about the Solution with h = 1.5 a = .1
0.03 T T

Im(A)
o

-0.01

-0.02 -

Eh > 1.363
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Real Part of Dominant Eigenvalues as a function of increasing depth
x107°
25

We numerically recapture the Benjamin-Feir
Instability using our method when we
consider long-wave perturbations.

—_
(6]
T

Re(A) — Growth Rate
T

0 | i |
0.5 1 1.5 2
h - Nondimensional Depth

See Bridges & Mielke for detailed/complete proof
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Spectra Associated with Linearization about the Solution with h = 1.5 a = .1
0.03 T T T T T T
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Spectra Assoclated with Linearization about the Solution with h = 1.5 a = .1
3 T T T I T T T

BF INSTABILITY
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Spectra Associated with Linearization about the Solution with h
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Maximal Growth Rate as a Function of Floquet Parameter
-4

x 10

If we didn’t predict the critical Floquet
parameters for flat water, we would have
missed these instabilities.

max

Maximal Growth Rate - Re(A)

15 0.2 0.25 0.35 0.4 0.45 0.5
Floquet Parameter
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Real Part of Dominant Eigenvalues as a function of increasing depth

x 107
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Spectra Associated with Linearization about the Solution with h = .5 a = .01
0.8

04 .

Im(A)
o
!

~ 6% of the limiting wave height
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Spectra Associated with Linearization about the Solution with h = .5 a = .01
T T T T T | T T T T T
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Maximal Growth Rate as a Function of Floquet Parameter
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Real Part of Dominant Eigenvalues as a function of Floquet Parameter
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x107™* Maximum Growth Rate for h = 1/2
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Maximum Growth Rate — Re(\)
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Deviation in the Floquet Parameter for Max Instability for h = 1/2
T T T T T T T | |
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x 107 Width of Instability in Floquet Parameter for h = 1/2

T T T T T T |
—Classl:m=1
41 — Classll:m=1

3.5

25 _

Floquet Parameter u

0.5

-0.51c ! ! ! ! ! ! =
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amplitude of traveling wave solution x 107
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We consider perturbations of the form

n(z,t) = no(x) + em(x)eP ePVer 4+ .
q(z,t) = qolx)+ eqi(z)eHCePVert 4

Since the only explicit dependence on time is through the exponential term, we will
conclude that the wave is spectrally unstable if there is any value of A which has a
positive real part.

Substituting the perturbed solution into the AFM formulation will generate an
eigenvalue problem for the stability of our traveling wave solutions.

L, X=AM,,X

Range of the Floquet Parameter
We only need to consider the range 0 < # < 0.5 instead of the full range
This allows us to reduce the size of the computational domain.
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Solving for the flat-water case, we have:

AE = (—c(,u +m) £ /g~ tanh(ﬁ;h)) o k= (n+m)2+ p2

Again, we have similar necessary conditions as before for instability.

CaseI:
n=—m
Case 2:
! [
n=—-—-m—1 _2
...andsoon...

We track the location of instabilities as a function of the ‘
amplitude.
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Cauchy Error of Maximal Eigenvalue for a = .1
10_2 T T T T T T T T T
10" b .
10° | .
B [
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107 -
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SRS K S R B
=T e - R a N7 ’
- LI o - [ ¢
10—16 ! ! ! e ! ! ! !
4 6 8 10 12 14 16 18 20 22 24

N - Truncation Size



TRANSVERSE STABILITY (=) SEATTLE

UNIVERSITY

1.4
1.2

Q

I

s 1.0

o)

-H

Fu}

©

Q

“

=5

£ 0.8

[}

[N}

>

W

° 0.6

o

[0)

Q

£

3

=4

Y 0.4

]

=

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Floquet Parameter - p




TRANSVERSE STABILITY (=) SEATTLE

Maximum Real Part of the Spectrum as a Function of

u and o for h = .5 and a = .1 < 10°°
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n(x,t) = no(x) + e (x)eePvet 4 ..
. . ;
q(z,t) = qo(z) + eqi(x)eH Ve + .
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Maximum Real Part of the Spectrum as a Function of

u and p for h = .5 and a = .1 x 10_3
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Maximum Real Part of the Spectrum as a Function of

p and p for h = .5 and a = .1 % 10

w *-..l...-h .q...l..-u -...l..-l~ -4.......-‘ 0

N -9
. Comparable growth rates

5o0.8 .0

“Z 0.6 .5

? 0.4 -0

.5

1.5 2.0 2.5 3.0 3.5

Floquet Parameter - pu

Maximal Instability at ¢ =.5



UNSTABLE EIGENFUNCTION @ SEATTLE

UNIVERSITY

Eigenfunction Correspondlng to the Most Unstable
Eigenvalue when h = .5 and a = .
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t = 2000, a =

" e 1 R
p:e X
L3127 t = 2250, a » .6285
' ZH/p" -" '
a A -‘. 1
210/u 0

2n/

Shallow Water (h=0.5)

X
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Spectrum Associated with the Linearization about the
Solution when h = 1.5 and a = .1
2.0 T T | T
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Eigenfunction Corresponding to the Most Unstable
Eigenvalue when h = 1.5 and a = .

2H/p' I ' I ' ' ' ‘

200/u
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a ~ .8232

2000, a = t = 2250, a =
t =
"' MY | 'l'
‘ll " ‘l' |' . ‘l % ‘l' " 'I' |' " . ‘

0
a0 s Y P 1

0 2M/p 0 21/u
x X

Deep Water (h = 1.5)
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Maximum Real Part of the Spectrum as a Function of
pn and p for h = .5 and a = .160 < 10°°
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3

Frequency of y Perturbation

Anstability Increase

1

Floquet Parameter - n

Maximal Instability at # =.5
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Using the AFM formulation, we developed a new single equation for traveling
wave solutions to Euler’s Equations.

We are able to capture the Benjamin-Feir Instability at precisely the depth
predicted by the theory (See Bridges & Mielke 1995).

We see that waves in shallow water (4 < 1.363) are unstable with respect to
narrow bands of perturbations.

— We find these instabilities for very small amplitudes which are not oblique.

— These 1nstabilities are not captured by many commonly used shallow water
equations with the exception of Serre Equations (Carter & Cienfuegos).

Even for small amplitude solutions in deep water, the Benjamin-Feir instability
might not be dominant.

For transverse perturbations, our results are in good general agreement with
previously known results.
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Thank you for your attention.
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The full water-wave for traveling waves with constant vorticity can be reduced
to solving the following single equation for the free-surface variable n(x).

/02” o ikz (k\/(@ — 2gn)(1 4+ n2) sinh(k(n + h)) — v cosh(k(n + h))) de = 0.

To solve the above equation, we use a numerical continuation scheme where
we choose 7, and solve for n)(x), and (), by controlling some appropriate
orthogonally condition or norm on the solution.



PLOTS OF SOLUTIONS (@ SEATTLE

The Bifurcation Curve withy=3, h =2
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The Bifurcation Curve withy=3, h =1

0.5 i

0.45 _

0.4 i

Various solutions withy =3, h =1
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The Bifurcation Curve withy=3, h =2

T T T T T T T
0451 n
04 -
0.35r _
Various solutions withy =3, h=2
03 B 0.02} T T 7]
0.01 1
_8 025 -
& = *
=
- -0.01 T
0.2
-0.021 ! ! ! ! ! L]
0 2 4 6 8 10 12
015 x
0.1
0.2 1
0.05r =z or 7
=
-0.2r- *
| | | | |
3.18 3.19 3.2 3.21 3.22 —0.4} ‘ ‘ ‘ ‘ ‘ T

Q - Bernoulli Constant 0 > 4 6 5 10 12




PLOTS OF SOLUTIONS @ SLAILLE

The Bifurcation Curve withy=3,h=1 The Bifurcation Curve withy =3, h=2
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REMARKS / CONCLUSIONS @F e

There’s a lot going on here.

Using the AFM formulation, traveling wave solutions to Euler’s Equations can
be found by solving a single equation for the single unknown free surface.

Even for small amplitude solutions, the bifurcation curves are “WONKY”.

We see that Benjamin-Feir cutoff (4 < 1.363) 1s changed as constant vorticity is
added to the equation.

These numerical computations give up a starting point for theoretical results.



