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MCMC

We want to study the distribution of X ∼ π(·), X ∈ S.
If we could simulate i.i.d. values Xi ∼ π(·), i = 1, . . . ,n,
then we could approximate quantities like E(f (X )) by
(1/n)

∑n
i=1 f (Xi).

We don’t know how to simulate from π(·) directly, but we do
know how to sample from a Markov chain Xt , whose
steady-state distribution is π(·).

My interest is in S = Rn for n of reasonable size, with π(·) being
a posterior. The examples have n = 65 and 26.
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Coupling from the past (CFTP)

Problem: The distribution of the Xt values converges to
π(·), and averages converge to expectation w.r.t. π(·), but
how quickly?
Idea (Propp and Wilson, 1996): Compute the result of an
infinitely long run from the past by coupling all possible
tails of shorter runs. If they all give the same answer, it
must be in steady-state!
Write our Markov chain as Xt+1 = φ(Xt ,Ut+1), where Ut is
an i.i.d. sequence from some distribution, and φ(·, ·) is a
fixed function.
Think of φ(·, ·) as the computer program used to write a
simulation of the Markov chain. Ut is the output of the
computer’s pseudo-random number generator used to
update the state.
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Example: Random walk on 1, . . . ,5

Xt+1 = φ(Xt ,Ut+1)

φ(x ,u) = min[max(x + u,1),5]
Ut = ±1 (with equal probability)
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Coupling

Using φ(·, ·) lets us imagine paths that were not sampled. Fix
Ut and apply φ(x ,Ut+1) to all of S.
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Coupling continued. . .

Paths may coalesce: regardless of the initial state, the value of
Xt is the same for large enough t . The past is forgotten; no
initialization bias remains.
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Coupling from the past (CFTP)

To avoid a coalescence time bias, fix the observation time
before testing for coalescence: compute the result of an
infinitely long run from the past by coupling all possible tails of
shorter runs. WLOG, observe at time t = 0.
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What is involved in doing CFTP?

Either π(·) or the Markov chain is given.
Whether or not the Markov chain is given, we have some
flexibility in its specification.
The coupling is up to us.
Detecting coalescence is up to us.
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Choosing a coupling

Need to write Xt+1 = φ(Xt ,Ut+1), with Ut i.i.d.
Want coalescence. This can be tricky when the state
space S is large (e.g. Rn).
Want easy coalescence detection.
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Random walk Metropolis

Random walk Metropolis is a very simple MCMC sampler;
it should be easy to find a coupling.
A naive choice is to use common random inputs: Given
Xt = x we calculate a proposal Y = x + Z , where Z is a
draw from a symmetric distribution (e.g. N(0,1)). We also
draw U ∼ Unif(0,1). Then

Xt+1 =

{
Y if U < π(Y )/π(x)
x otherwise
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The naive coupling fails!

If S contains an interval, then this sampler won’t coalesce, and
CFTP will fail every time:

If states x1 and x2 6= x1 both accept the proposal, their
difference remains.
If both reject, their difference remains.
The only ways to coalesce are for Z = x2 − x1 and state x1
accepts while x2 rejects: probability zero events when S is
continuous.
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Wilson’s Multishift Coupler

Wilson (2000a) invented a very clever coupler for location
families which we can use for the proposals in Metropolis. For
example, with Xt = x we want Y (x) ∼ N(x ,1), and we want
coalescence for different values of x .
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Coupled Metropolis Sampler
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Not quite monotone in x .
Works for bounded sets, but not unbounded ones.
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Mixing with an “independence sampler”

In an independence sampler Y is drawn from a fixed
distribution p(·), independent of Xt .
We accept Y when

U <
π(Y )/p(Y )

π(Xt)/p(Xt)

If we choose p(·) with heavier tails than π(·), the ratio is large
when Xt is sufficiently far out in the tails: the set of possible Xt
values is reduced to a compact set.
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Coupled Independence Sampler
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Independence samplers are usually not very good for MCMC,
but can be used in combination with a better sampler.
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Why doesn’t everybody use CFTP?

Unless the problem has a very nice structure, proving that all
paths coalesce is hard.

If updates maintain ordering of points, we can track just
minimal and maximal points—but this is uncommon.
Doing the bookkeeping to track coalescence is hard
without that.
In high dimensions, things are worse: tracking is very
difficult, and coalescence is very slow.
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Implementation

CFTP is tricky because of the backwards search.
Wilson (2000b) described “read-once CFTP”.
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This is related to Fill’s rejection sampler (Fill et al., 2000).
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Fill’s Rejection Sampler

Run the π-reversal of the chain backwards from time T to 0,

then run coupled chains forward. If they coalesce, output the
time 0 value of the first chain.
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Fill is difficult to implement

In most situations, it is difficult to couple the forward chain
to the reversed path.
With both Metropolis and independence samplers these
are easy to do.
Coalescence detection is still hard...
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Implementing Fill for the independence sampler

1 Set XT to an arbitrary value with π(XT ) > 0.
2 The sampler is reversible, so use it to generate

XT−1, . . . ,X0.
3 To couple the forward paths: if Xt+1 = Xt , generate Y and

U values until we get a rejection. If Xt+1 6= Xt , set
Y = Xt+1, generate U on the range that indicates
acceptance. Use the same (Y ,U) for all other states.

Metropolis is very similar even if we are using Wilson’s
multishift coupler for the proposals.
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Motivation for Nearly Perfect Sampling

Perfect sampling is too hard to use in practice, but maybe we
don’t need to be perfect.

Is it good enough to choose a finite set of starting points,
and check for coalescence of those?
Johnson (1996) suggested this as a convergence
diagnostic, but he was working before CFTP.
What couplers can we use for this?
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My First Guesses

It is easy to couple Metropolis and independence
samplers, and they are all we need.
We’ll want to put them in a particular order: independence
first to force bounded support, then Metropolis to get
coalescence in the centre.
Fill’s sampler may be usable: both Metropolis and
independence are reversible, and it is easy to find the
compatible forward coupler.
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A Real Example

WinBUGS includes an example of a normal growth curve
model with 65 parameters: separate intercept and slope for
each of 30 rats, plus 5 common parameters: mean and
variance of the intercepts and slopes, variance of the
observations.
It is not hard to write R code to evaluate the log posterior
(leaving out the normalizing constant) for the full model;
that’s all we need for Metropolis and Independence
sampling.
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Rats: a normal hierarchical model

This example is taken from  section 6 of Gelfand et al (1990), and concerns 30 young rats whose weights were 
measured weekly for five weeks. Part of the data is shown below, where Yij is the weight of the ith rat measured 

at age xj.   

Weights Yij of rat i on day xj
 xj = 8 15 22 29 36 

__________________________________
Rat 1 151 199 246 283 320
Rat 2 145 199 249 293 354
.......
Rat 30 153 200 244 286 324 

A plot of the 30 growth curves suggests some evidence of downward curvature.

The model is essentially a random effects linear growth curve

Yij ~  Normal(αi + βi(xj - xbar), τc)

αi  ~  Normal(αc, τα)

βi  ~  Normal(βc, τβ)

where xbar = 22.
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Preliminaries

First, try a single path.
Choose X0 by separate linear regressions.
Choose the scale for the jumps of Metropolis by a simple
Metropolis run.
Also choose the proposal for the independence sampler.
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Run coupled paths

Choose multiple starting values around X0.
Run Fill’s algorithm with independence and Metropolis
samplers.
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Run coupled paths
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Did it work?
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Did it work?

There are reasons to doubt that it actually worked.
There are often (as in the first simulation) points which
reject all independence proposals, because it is very hard
to get close enough to the target density.
The Metropolis updates rarely coalesce in high
dimensions. To get coalescence of all components of two
paths, we need 65 independent events to occur: this is
rare unless the probabilities are very high.

Gibbs sampler updates converge better than either
independence or Metropolis updates, but those are harder
to do automatically (though BUGS does).
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Gibbs updates

Two component Gibbs: in the posterior, regression
parameters (αi , βi) are independent bivariate normal given
the others. Couple updates in the naive way.
In a two component Gibbs sampler, only one component
needs to coalesce to make the whole chain coalesce.
Use Metropolis for the hyperparameters, but start with
some independence samples to handle the tails.
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It works!
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Using the GIbbs sampler effectively reduces the dimension
from 65 to 5.

This problem is too easy...
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Seeds: Random effect logistic regression

This example is taken from Table 3 of Crowder (1978), and concerns the proportion of seeds that germinated on
each of 21 plates arranged according to a 2 by 2 factorial layout by seed and type of root extract. The data
are shown below, where ri and ni are the number of germinated and the total number of seeds on the i th plate, i
=1,...,N. These data are also analysed by, for example, Breslow: and Clayton (1993).

seed O. aegyptiaco 75 seed O. aegyptiaco 73
Bean Cucumber Bean Cucumber

r n r/n r n r/n r n r/n r n r/n
_________________________________________________________________
10 39 0.26 5 6 0.83 8 16 0.50 3 12 0.25
23 62 0.37 53 74 0.72 10 30 0.33 22 41 0.54
23 81 0.28 55 72 0.76 8 28 0.29 15 30 0.50
26 51 0.51 32 51 0.63 23 45 0.51 32 51 0.63
17 39 0.44 46 79 0.58 0 4 0.00 3 7 0.43

10 13 0.77

The model is essentially a random effects logistic, allowing for over-dispersion. If pi is the probability of
germination on the i th plate, we assume

ri ~ Binomial(pi, ni)

logit(pi) = 0 + 1x1i + 2x2i + 12x1ix2i + bi

bi ~ Normal(0, )

where x1i , x2i are the seed type and root extract of the i th plate, and an interaction term 12x1ix2i is
included. 0 , 1 , 2 , 12 are given independent "noninformative" priors; two alternative "noninformative"
priors are considered for the random effects variance: prior 1 is a uniform prior on the standard deviation, and
prior 2 is a gamma(0.001, 0.001) prior on the precision.

Graphical model for seeds example (assuming prior 1)
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Random Effects Logistic Regression

A hierarchical model with 26 parameters
No conjugate prior structure, so Gibbs sampling is harder.
Using Metropolis within Gibbs works, but fails to coalesce.

A Metropolis-Hastings sampler that uses

Yt+1|Xt ∼ N(ρXt + (1− ρ)X̂ , σ2)

works well, i.e. a Normal proposal centred on the line
between Xt and the posterior mode.
Doing updates one component at a time seems to be
fastest.
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Seed example continued...
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Questions

How far is finite coalescence from complete coalescence?
Can we tell this in practice?

Are there better couplers for Metropolis-Hastings, or for
other Markov chains?
Can we learn something about tuning single path MCMC
by tuning couplers?
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The coupling package

I wrote a package in R to implement these algorithms, to
explore the “nearly perfect” idea.
The package is not ready for release yet, but it includes:
Sampling algorithms CFTP, ROCFTP and Fill’s algorithms,

using finite sets of starting points.
Distributions Various proposal distributions for

independence and Metropolis samplers.
Utilities Utility functions for plotting, detecting

coalescence, etc.
Examples Full code for worked examples: Rat example,

Seed example.
This talk was written using code from the coupling
package.
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