The Infinite Message Limit of Interactive Source Coding

Prakash Ishwar
Joint work with Nan Ma

Electrical and Computer Engineering

BOSTON UNIVERSITY

Research supported by

Motivation

- Degrees of freedom "resources" in distributed source coding and computation:
- Blocklength (delay)
- Rate (speed)
- Quantizer step-size (quality)
- Network size
- Alphabet size ...
- Number of messages (Multiround interaction)

- Main goal: Characterize the ultimate benefit of interaction

Example: compute AND at terminal B

- Sources: $X \Perp Y, X \sim \operatorname{Ber}(p), Y \sim \operatorname{Ber}(q)$, Compute: $X \wedge Y$ at B
- One message: min rate = ?

- $1-\mathrm{msg}$ rate $=h(p)$
[Yamamoto, IT'82]
- 3-msgs.? 4-msgs.? ...
- What about $\infty-m s g s . ?$

General 2-terminal interactive function computation

- n samples $\left(X_{i}, Y_{i}\right) \sim \operatorname{iid} p_{X Y}$
- Samplewise function computation at A and B
- t alternating messages
- $\left(R_{1}, \ldots, R_{t}\right)$ is admissible if there exists a sequence of codes: as $n \rightarrow \infty, \quad(\#$ bits msg $j) / n \rightarrow R_{j}$ and $\operatorname{Pr}[$ comp. error $] \rightarrow 0$ (lossless, can extend to lossy)
- Minimum sum-rate:

$R_{s u m, t}^{A}=\min \sum_{i=1}^{t} R_{t}$

$$
\operatorname{need}\left(f_{A}\left(X_{1}, Y_{1}\right), \ldots, f_{A}\left(X_{n}, Y_{n}\right)\right), \quad\left(f_{B}\left(X_{1}, Y_{1}\right), \ldots, f_{B}\left(X_{n}, Y_{n}\right)\right)
$$

Goal:

$$
\begin{aligned}
& \text { Characterize and compute } \\
& \qquad R_{s u m, \infty}:=\lim _{t \rightarrow \infty} R_{\text {sum }, t}^{A}
\end{aligned}
$$

- Understand ultimate benefit of cooperative interaction
- "Unexplored" dimension for asymptotic analysis:
- (possibly) infinite messages with infinitesimal rate
- "Untapped" resource: Multi-round interaction

Related work

- Communication complexity (Yao, Ahlswede, Cai, Orlitsky, Kushilevitz, Nisan, ..., Braverman, A. Rao, ...)
- Usual focus on worst-case and comp. error =0
- Usually about bits not rate
- Two-way source coding [Kaspi IT'86]
- Source reproduction
- Coding for computing [Orlitsky \& Roche IT'00]
- Two messages

$R_{\text {sum }, t}$ for finite t : Solved

Single-letter characterization [Ma, Ishwar: ISIT'08, IT'11]

$$
R_{s u m, t}^{A}=\min _{U^{t}}\left[I\left(X ; U^{t} \mid Y\right)+I\left(Y ; U^{t} \mid X\right)\right]
$$

Achievability: (sequence of Wyner-Ziv codes)

- $1^{\text {st }} \mathrm{msg}$: Quantizes \mathbf{X} to \mathbf{U}_{1} with side info \mathbf{Y}

$$
R_{1}=I\left(X ; U_{1} \mid Y\right), \quad U_{1}-X-Y
$$

- $2^{\text {nd }} \mathrm{msg}$: Quantizes $\left(\mathbf{Y}, \mathbf{U}_{1}\right)$ to \mathbf{U}_{2} with side info $\left(\mathbf{X}, \mathbf{U}_{1}\right)$

$$
R_{2}=l\left(Y ; U_{2} \mid X, U_{1}\right), \quad U_{2}-\left(Y, U_{1}\right)-X
$$

- Recover \boldsymbol{f}_{A} based on $\left(\mathbf{X}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{t}\right): H\left(f_{A} \mid X, U_{1}, \ldots, U_{t}\right)=0$
- Recover \boldsymbol{f}_{B} based on $\left(\mathbf{Y}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{t}\right): H\left(f_{B} \mid Y, U_{1}, \ldots, U_{t}\right)=0$

Example: compute AND at terminal B

- Sources: $X \Perp Y, X \sim \operatorname{Ber}(p), Y \sim \operatorname{Ber}(q)$, Compute: $X \wedge Y$ at B
- One message: min rate = ?

- $1-\mathrm{msg}$ rate $=h(p)$

Two messages: min rate = ?

2-msg sum-rate $\leq h(q)+q$

- 3-msgs.? 4-msgs.? ...
- What about ∞-msgs.?

∞-msg interaction

- Auxiliary random variables
- Hidden variables: $\left(V_{x}, V_{y}\right) \sim$ Uniform(unitsq.)
- X, Y as functions of $\left(V_{x}, V_{y}\right)$.
- $U_{1}=0$ in Reg.1; = 1 otherwise

∞-msg interaction

- Auxiliary random variables
- Hidden variables: $\left(V_{x}, V_{y}\right) \sim$ Uniform(unitsq.)
- X, Y as functions of $\left(V_{x}, V_{y}\right)$.
- $U_{1}=0$ in Reg. $1 ;=1$ otherwise
- $U_{2}=0$ in Reg. 1 U 2; $=1$ otherwise

∞-msg interaction

- Auxiliary random variables
- Hidden variables: $\left(V_{x}, V_{y}\right) \sim$ Uniform(unitsq.)
- X, Y as functions of $\left(V_{x}, V_{y}\right)$.
- $U_{1}=0$ in Reg. $1 ;=1$ otherwise
- $U_{2}=0$ in Reg. 1 U 2; $=1$ otherwise
- $U_{3}=0$ in Reg. $1 \cup 2 \cup 3$; $=1$ otherwise

∞-msg interaction

- Auxiliary random variables
- Hidden variables: $\left(V_{x}, V_{y}\right) \sim$ Uniform(unitsq.)
- X, Y as functions of $\left(V_{x}, V_{y}\right)$.
- $U_{1}=0$ in Reg.1; $=1$ otherwise
$-U_{2}=0$ in Reg. $1 \cup 2$; = 1 otherwise
- $U_{3}=0$ in Reg. $1 \cup 2 \cup 3 ;=1$ otherwise
- $U_{4}=0$ in Reg. $1 \cup 2 \cup 3 \cup 4$;
$=1$ otherwise $\left(X^{\wedge} Y=U_{4}{ }^{\wedge} Y\right)$

∞-msg interaction

- Auxiliary random variables
- Hidden variables: $\left(V_{x}, V_{y}\right) \sim$ Uniform(unitsq.)
- X, Y as functions of $\left(V_{x}, V_{y}\right)$.
- $U_{1}=0$ in Reg.1; = 1 otherwise
$-U_{2}=0$ in Reg. $1 \cup 2$; = 1 otherwise
$-U_{3}=0$ in Reg. $1 \cup 2 \cup 3 ;=1$ otherwise
$-U_{4}=0$ in Reg. $1 \cup 2 \cup 3 \cup 4$;
$=1$ otherwise $\left(X^{\wedge} Y=U_{4}{ }^{\wedge} Y\right)$
- Satisfy constraints

$$
\begin{aligned}
& U_{i}-\left(X, U^{i-1}\right)-Y, i \text { odd } \\
& U_{i}-\left(Y, U^{i-1}\right)-X, i \text { even } \\
& H\left(f_{A}(X, Y) \mid X, U^{t}\right)=0 \\
& H\left(f_{B}(X, Y) \mid Y, U^{t}\right)=0
\end{aligned}
$$

∞-msg interaction

- Admissible rates

$$
w_{x}\left(v_{x}, p\right)=\log \frac{1-x}{1-p-x}
$$

- $1^{\text {st }} \mathrm{msg}$:

$$
I\left(X ; U_{1} \mid Y\right)=\int_{\operatorname{Reg} .1} w_{x}\left(v_{x}, p\right) d v_{x} d v_{y}
$$

∞-msg interaction

- Admissible rates

$$
\begin{aligned}
& w_{x}\left(v_{x}, p\right)=\log \frac{1-x}{1-p-x} \\
& w_{y}\left(v_{y}, q\right)=\log \frac{1-y}{1-q-y}
\end{aligned}
$$

- $1^{\text {st }} \mathrm{msg}$:

$$
\begin{aligned}
& 1^{\text {st }} \mathrm{msg}: \\
& I\left(X ; U_{1} \mid Y\right)=\int_{\operatorname{Reg} .1} w_{x}\left(v_{x}, p\right) d v_{x} d v_{y} \quad w_{y}\left(v_{y}, q\right)=\log \frac{1-y}{1-q-y}
\end{aligned}
$$

- $2^{\text {nd }} \mathrm{msg}$:

$$
I\left(Y ; U_{2} \mid X U_{1}\right)=\int_{\operatorname{Reg} .2} w_{y}\left(v_{y}, q\right) d v_{x} d v_{y}
$$

∞-msg interaction

- Admissible rates

$$
\begin{aligned}
& w_{x}\left(v_{x}, p\right)=\log \frac{1-x}{1-p-x} \\
& w_{y}\left(v_{y}, q\right)=\log \frac{1-y}{1-q-y}
\end{aligned}
$$

- $1^{\text {st }} \mathrm{msg}$:

$$
\begin{aligned}
& 1^{\text {st }} \mathrm{msg}: \\
& I\left(X ; U_{1} \mid Y\right)=\int_{\text {Reg. } 1} w_{x}\left(v_{x}, p\right) d v_{x} d v_{y} \quad w_{y}\left(v_{y}, q\right)=\log \frac{1-y}{1-q-y}
\end{aligned}
$$

- $2^{\text {nd }} m s g$:

$$
I\left(Y ; U_{2} \mid X U_{1}\right)=\int_{\operatorname{Reg} .2} w_{y}\left(v_{y}, q\right) d v_{x} d v_{y}
$$

..........

- Sum-rate:

$$
\begin{aligned}
& \int_{\text {vertical bars }} w_{x}\left(v_{x}, p\right) d v_{x} d v_{y} \\
& +\int_{\text {horizontal bars }} w_{y}\left(v_{y}, q\right) d v_{x} d v_{y}
\end{aligned}
$$

∞-msg interaction

- Admissible sum-rate:
$\int_{\text {vertical bars }} w_{x}\left(v_{x}, p\right) d v_{x} d v_{y}+\int_{\text {horizontal bars }} w_{y}\left(v_{y}, q\right) d v_{x} d v_{y}$
- $t \rightarrow \infty$: $\int_{\text {upper region }} w_{x}\left(v_{x}, p\right) d v_{x} d v_{y}+\int_{\text {lower region }} w_{y}\left(v_{y}, q\right) d v_{x} d v_{y}$
- Rate-allocation curve: design parameter

∞-msg interaction

- Optimize the rate-allocation curve:
- Cannot be achieved by finite msgs using this family of aux.r.v.'s (for general p, q)

- Admissible sum-rate in closed form:

$$
R^{*}(p, q)=\left\{\begin{array}{lr}
h_{2}(p)+p h_{2}(q)+p \log _{2} q+p(1-2 q) \log _{2} e, & \text { if } 0 \leq p \leq q \leq 1 / 2 \\
R^{*}(q, p), & \text { if } 0 \leq q \leq p \leq 1 / 2 \\
R^{*}(1-p, q), & \text { if } 0 \leq q \leq 1 / 2 \leq p \leq 1 \\
h_{2}(p), & \text { if } 1 / 2 \leq q \leq 1
\end{array}\right.
$$

$R_{\text {sum }, t}$ for finite t : Solved

Single-letter characterization [Ma, Ishwar: ISIT'08, IT'11]

$$
R_{s u m, t}^{A}=\min _{U^{t}}\left[I\left(X ; U^{t} \mid Y\right)+I\left(Y ; U^{t} \mid X\right)\right]
$$

- Achievability: sequence of Wyner-Ziv-like codes
- Finite dimensional optimization problem

How to compute $R_{\text {sum, }, \infty}$?

- Idea 1:
- Pick a large t, compute $R_{\text {sum,t }}^{A}$, pray this is a good approximation
© Finite-dimensional optimization problem
© How large t ?
© Dimension explodes exponentially with t
- Idea 2 :
- Compute $R_{s u m, t}^{A}$ for $t=1,2, \ldots$ till change is "negligible"
(-) Finite-dimensional optimization problem (for each t)
© Multiple problems, solve from scratch
© Dimension explodes exponentially with t
- All this effort only for one $p_{X Y}$
- Any hope?

A new approach

- View $R_{\text {sum, } \infty}\left(p_{X Y}\right)$ as a functional of $p_{X Y}$
- New convex-geometric "limit-free" characterization of $R_{\text {sum, }}$
- For entire functional $R_{\text {sum, }}(\cdot)$ (not for only one fixed $p_{X Y}$)
- Provides optimality test for admissible sum-rate functionals
- Family of lower bounds for $R_{\text {sum, }, \infty}(\cdot)$
- Alternating "concavification" algorithm for $R_{\text {sum }, \infty}$
- Each iteration uses "same amount" of computation
- Reuses results from previous steps
- Works with the entire $R_{\text {sum, }}\left(p_{X Y}\right)$ "surface"

A new approach

Rest of this talk:

- Illustrate new approach through one simple example for 2-terminal lossless function computation
- Extension to general lossy two-terminal problem (brief)
- Extension to multi-terminal problems (very brief)

Example: compute AND at terminal B

- Sources: $X \Perp Y, X \sim \operatorname{Ber}(p), Y \sim \operatorname{Ber}(q)$
- Only B computes: $f_{A}(X, Y)=0, \quad f_{B}(X, Y)=X \wedge Y$ (AND)
- Goal: Characterize $R_{\text {sum, } \infty}(p, q)$ as a function of (p, q)
- Rate reduction functional:

$$
\rho_{t}^{A}:=H(X \mid Y)+H(Y \mid X)-R_{\text {sum }, t}^{A}=h(p)+h(q)-R_{\text {sum }, t}^{A}
$$

- Find $R_{s u m, \infty} \Longleftrightarrow$ find $\rho_{\infty}:=H(X \mid Y)+H(Y \mid X)-R_{s u m, \infty}$

Example: compute AND at terminal B

- Consider $t=0$:
- Feasible for special boundary distributions
- If infeasible, define rate $:=\infty$
$R_{\text {sum }, 0}(p, q)=\left\{\begin{array}{cc}0, & \text { if } p=0 \text { or } q=0 \quad(X \wedge Y=0) \\ \infty, & \text { or } p=1 \quad(X \wedge Y=Y) \\ \text { otherwise } \quad(X \wedge Y \text { not determined })\end{array}\right.$

Example: compute AND at terminal B

- Consider $t=0$:
- Feasible for special boundary distributions
- If infeasible, define rate $:=\infty$
$R_{\text {sum }, 0}(p, q)=\left\{\begin{array}{cc}0, & \text { if } p=0 \text { or } q=0 \quad(X \wedge Y=0) \\ \text { or } p=1 \quad(X \wedge Y=Y) \\ \infty, & \text { otherwise }(X \wedge Y \text { not determined })\end{array}\right.$

$\rho_{0}(p, q)=\left\{\begin{array}{cc}h(p)+h(q), & \text { if } p=0 \text { or } q=0 \\ \text { or } p=1 \\ -\infty, & \text { otherwise }\end{array}\right.$

New characterization of ρ_{∞}

"Limit-free" characterization of ρ_{∞} [Ma, Ishwar: Allerton 09]

ρ_{∞} is the least element of \mathcal{F}, where

$$
\mathcal{F}:=\left\{\begin{array}{l|l}
\rho(p, q) & \begin{array}{ll}
\text { 1. } & \text { For all }(p, q), \rho(p, q) \geq \rho_{0}(p, q) \\
\text { 2. } & \text { For all } q, \rho(p, q) \text { is concave w.r.t. } p \\
\text { 3. } & \text { For all } p, \rho(p, q) \text { is concave w.r.t. } q
\end{array}
\end{array}\right\}
$$

Key insight: the subproblem viewpoint

Connection between ρ_{t}^{A} and ρ_{t-1}^{B} ?

Subproblem viewpoint (continued)

$$
\begin{aligned}
R_{\text {sum }, t}^{A} & =\min _{U^{t}}\left[I\left(X ; U^{t} \mid Y\right)+I\left(Y ; U^{t} \mid X\right)\right] \\
\Rightarrow \rho_{t}^{A} & =\max _{U^{t}}\left[H\left(X \mid Y, U_{2}^{t}, U_{1}\right)+H\left(Y \mid X, U_{2}^{t}, U_{1}\right)\right] \\
& =\max _{U_{1}}\left[\sum_{u_{1}} p_{U_{1}}\left(u_{1}\right) \rho_{t-1}^{B}\left(p_{u_{1}}, q\right)\right]
\end{aligned}
$$

- $\rho_{t}^{A}(p, q)=\max \left[\right.$ convex combination of $\left.\rho_{t-1}^{B}\left(p_{1}, q\right), \rho_{t-1}^{B}\left(p_{2}, q\right), \ldots\right]$

"Concavify"

- $\rho_{t}^{A}=$ the smallest concave function above ρ_{t-1}^{B}
- $\operatorname{hypo}\left(\rho_{t}^{A}\right)=\operatorname{convex}$ hull of $\operatorname{hypo}\left(\rho_{t-1}^{B}\right)$

Concavity properties

- ρ_{t}^{A} concave in p, ρ_{t}^{B} concave in q
- ρ_{t-1}^{B} not concave in $p \Leftrightarrow \rho_{t}^{A}>\rho_{t-1}^{B}$
\Leftrightarrow beneficial to add a message $A \rightarrow B$
- $\quad \rho_{\infty}$: not beneficial to add any message

\Leftrightarrow concave in p and q, respectively

Optimality Test

- $\rho_{t}^{B}=\rho_{\infty} \Leftrightarrow$
- ρ_{t}^{B} is concave in p (for all q) \Leftrightarrow
- $\rho_{t}^{B}=\rho_{t+1}^{A} \quad$ (for all p and q)
- Similar results by interchanging (A, p) and (B, q)
- Optimality Test: If ρ is an achievable rate-reduction function and:

1. For all $(p, q), \rho(p, q) \geq \rho_{0}(p, q)$
2. For all $q, \rho(p, q)$ is concave w.r.t. p
3. For all $p, \rho(p, q)$ is concave w.r.t. q then $\rho=\rho_{\infty}$

Closed form expression of ρ_{∞}

- Optimality Test: If ρ is an achievable rate-reduction function and:

1. For all $(p, q), \rho(p, q) \geq \rho_{0}(p, q)$
2. For all $q, \rho(p, q)$ is concave w.r.t. p
3. For all $p, \rho(p, q)$ is concave w.r.t. q
then $\rho=\rho_{\infty}$

- Admissible sum-rate R^{*} (from beginning of talk):

$$
R^{*}(p, q)=\left\{\begin{array}{lr}
h_{2}(p)+p h_{2}(q)+p \log _{2} q+p(1-2 q) \log _{2} e, & \text { if } 0 \leq p \leq q \leq 1 / 2 \\
R^{*}(q, p), & \text { if } 0 \leq q \leq p \leq 1 / 2 \\
R^{*}(1-p, q) & \text { if } 0 \leq q \leq 1 / 2 \leq p \leq 1 \\
h_{2}(p) & \text { if } 1 / 2 \leq q \leq 1
\end{array}\right.
$$

- Passes the optimality test!
- Therefore $R^{*}=R_{s u m, \infty}$

Alternating concavification algorithm

- Recall

$$
\rho_{t-1}^{B}(p, q) \xrightarrow[\text { Fix } q]{\text { Concavify wrt } p} \rho_{t}^{A}(p, q)
$$

- Iterative algorithm

$$
\rho_{0}(p, q) \xrightarrow[\operatorname{Fix} q]{\text { Concavify wrt } p} \rho_{1}^{A}(p, q) \xrightarrow[\operatorname{Fix} p]{\text { Concavify wrt } q} \rho_{2}^{B}(p, q) \longrightarrow \cdots
$$

- Each iteration: "same amount" of computation
- Obtain the whole surface $\rho_{t}(p, q)$ for all (p, q)

Alternating concavification algorithm

$$
t=0
$$

$t=1$

$$
t=3
$$

$t=4$
$t=\infty$ (from closed form)

How the surfaces evolve

How the surfaces evolve

Brightness: $\left|\rho_{t}(p, q)-\rho_{\infty}(p, q)\right|$, black: $<10^{-4}$

$t=2$

$t=6$
$t=7$

$$
t=8
$$

Discretization and convergence speed

- Numerical computation: discretize $[0,1]^{2} \rightarrow N \times N$ grid

- Function "concavification" \rightarrow convex hull of N points

Discretization and convergence speed

- Maximum error v.s. t v.s. N

Discretization and convergence speed

- Error floor level v.s. computation time
- Experimentally, as N doubled, error floor halved, comp. time x4

General $p_{X Y}$ and f_{A}, f_{B} with distortions D_{A}, D_{B}

"Limit-free" characterization of $\rho_{\infty}\left(p_{X Y}, D_{A}, D_{B}\right)$ [arXiv Oct'09]

ρ_{∞} is the least element of \mathcal{F}, where

$$
\mathcal{F}:=\left\{\rho\left(p_{X Y}, D_{A}, D_{B}\right)\right.
$$

$$
\text { 1. } \rho \geq \rho_{0}
$$

2. For all $p_{Y \mid X}, \rho\left(p_{X} p_{Y \mid X}, D_{A}, D_{B}\right)$ is concave w.r.t. $\left(p_{X}, D_{A}, D_{B}\right)$
3. For all $p_{X \mid Y}, \rho\left(p_{Y} p_{X \mid Y}, D_{A}, D_{B}\right)$ is concave w.r.t. $\left(p_{Y}, D_{A}, D_{B}\right)$

- 2 messages can strictly improve the Wyner-Ziv R-D function [ISIT'10] + next talk by Nan Ma
- Resolves a question in Kaspi's 1985 two-way source coding paper

Collocated (broadcast) networks

- General independent sources, general function:
- Single-letter characterization for $R_{\text {sum,t }}$ [ISIT'09]
- "Limit-free" convex-geometric characterization for $R_{\text {sum }, \infty}$ [ISIT'10]

Interaction changes the scaling law in star networks

iid
 Ber(1/2)

$$
R_{s u m}(m)=m
$$

iid
$\operatorname{Ber}(1 / 2)$

$$
1 \leq R_{\text {sum }}(m)<6
$$

Concluding remarks

- Characterizing the ultimate limits of interaction:
- New type of functional single-letter characterization of $R_{\text {sum,o }}$
- Alternating "concavification" algorithm for computing $R_{\text {sum }, \infty}$
- A new way to construct an infinite sequence of auxiliary random variables that is also optimal
- Infinite messages with infinitesimal rate => "Calculus" for source coding?

Open Problems

- Determine the computational complexity as a function of grid (discretization) size
- Characterize the rate of convergence
- Provide a simple procedure to directly determine for each given joint pmf, the smallest number of messages needed to reach the infinite-message limit
- Develop the functional characterization from first principles without using the single-letter characterization (functional equations and inequalities may be useful here)
- Find channel coding counterparts

