Imprimitive irreducible modules for finite quasisimple groups

Gerhard Hiss

Lehrstuhl D für Mathematik
RWTH Aachen University

Workshop Permutation Groups
BIRS, July 24, 2013
CONTENTS

1 The project and its motivation
2 Some results
3 Reductions
4 Harish-Chandra induction
This is a joint project with William J. Husen and Kay Magaard.
This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs \((G, G \to \text{SL}(V))\) such that

1. \(G\) is a finite quasisimple group,
2. \(V\) a finite dimensional vector space over some field \(K\),
3. \(G \to \text{SL}(V)\) is absolutely irreducible and imprimitive.
This is a joint project with William J. Husen and Kay Magaard.

PROJECT

Classify the pairs \((G, \rho)\) *such that*

1. \(G\) is a finite *quasisimple* group,
2. \(V\) a finite dimensional vector space over some field \(K\),
3. \(G \to \text{SL}(V)\) is absolutely irreducible and *imprimitive*.

EXPLANATIONS

1. *G is quasisimple, if* \(G = G'\) *and* \(G/Z(G)\) *is simple.*
THE PROJECT

This is a joint project with William J. Husen and Kay Magaard.

PROJECT

Classify the pairs \((G, G \to \text{SL}(V))\) such that

1. \(G\) is a finite \textit{quasisimple} group,
2. \(V\) a finite dimensional vector space over some field \(K\),
3. \(G \to \text{SL}(V)\) is absolutely irreducible and \textit{imprimitive}.

EXPLANATIONS

1. \(G\) is quasisimple, if \(G = G'\) and \(G/Z(G)\) is simple.
2. \(G \to \text{SL}(V)\) is imprimitive, if \(V = V_1 \oplus \cdots \oplus V_m, m > 1,\) and the action of \(G\) permutes the \(V_i\) transitively.
This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs $(G, G \to \text{SL}(V))$ *such that*

1. G is a finite **quasisimple** group,
2. V a finite dimensional vector space over some field K,
3. $G \to \text{SL}(V)$ is absolutely irreducible and **imprimitive**.

Explanations

1. G is quasisimple, if $G = G'$ and $G/Z(G)$ is simple.
2. $G \to \text{SL}(V)$ is imprimitive, if $V = V_1 \oplus \cdots \oplus V_m$, $m > 1$, and the action of G permutes the V_i transitively.

 *We call $H := \text{Stab}_G(V_1)$ a **block stabilizer**.*
This is a joint project with William J. Husen and Kay Magaard.

Project

Classify the pairs \((G, G \to \text{SL}(V))\) such that

1. \(G\) is a finite **quasisimple** group,
2. \(V\) a finite dimensional vector space over some field \(K\),
3. \(G \to \text{SL}(V)\) is absolutely irreducible and **imprimitive**.

Explanations

1. **\(G\) is quasisimple**, if \(G = G'\) and \(G/Z(G)\) is simple.
2. **\(G \to \text{SL}(V)\) is imprimitive**, if \(V = V_1 \oplus \cdots \oplus V_m, m > 1\), and the action of \(G\) permutes the \(V_i\) transitively.

We call \(H := \text{Stab}_G(V_1)\) a **block stabilizer**.

We have \(V \cong \text{Ind}_H^G(V_1) := KG \otimes_{KH} V_1\) as \(KG\)-modules.
Motivation I: Maximal Subgroups

Let \(K \) be a finite field and \(V \) a f.d. \(K \)-vector space.
Let \(X \leq \text{SL}(V) \) be a classical group, e.g., \(X = \text{Sp}(V), \text{SO}(V) \).
Let K be a finite field and V a f.d. K-vector space. Let $X \leq \text{SL}(V)$ be a classical group, e.g., $X = \text{Sp}(V), \text{SO}(V)$. Let $G \leq X$ be finite, quasisimple, such that

1. $\varphi : G \rightarrow X \leq \text{SL}(V)$ is absolutely irreducible, and
Let K be a finite field and V a f.d. K-vector space. Let $X \leq \text{SL}(V)$ be a classical group, e.g., $X = \text{Sp}(V), \text{SO}(V)$. Let $G \leq X$ be finite, quasisimple, such that

1. $\varphi : G \rightarrow X \leq \text{SL}(V)$ is absolutely irreducible, and
2. not realizable over a smaller field.
Motivation I: Maximal subgroups

Let K be a finite field and V a f.d. K-vector space. Let $X \leq \text{SL}(V)$ be a classical group, e.g., $X = \text{Sp}(V), \text{SO}(V)$. Let $G \leq X$ be finite, quasisimple, such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible, and
2. not realizable over a smaller field.

$[\varphi : G \to \text{SL}(V)$ is realizable over a smaller field, if φ factors as

\[
\begin{array}{ccc}
G & \xrightarrow{\varphi} & \text{SL}(V) \\
\downarrow{\varphi_0} & & \uparrow{\nu} \\
\text{SL}(V_0) & & \\
\end{array}
\]
Let K be a finite field and V a f.d. K-vector space. Let $X \leq \text{SL}(V)$ be a classical group, e.g., $X = \text{Sp}(V), \text{SO}(V)$. Let $G \leq X$ be finite, quasisimple, such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible, and
2. not realizable over a smaller field.

$[\varphi : G \to \text{SL}(V)$ is realizable over a smaller field, if φ factors as

\[
\begin{array}{ccc}
G & \xrightarrow{\varphi} & \text{SL}(V) \\
& \searrow ^{\varphi_0} & \downarrow ^{\nu} \\
& & \text{SL}(V_0)
\end{array}
\]

for some proper subfield $K_0 \leq K$, a K_0-vector space V_0 with $V = K \otimes_{K_0} V_0$, and a representation $\varphi_0 : G \to \text{SL}(V_0).$]
Motivation I: Maximal subgroups

Let K be a finite field and V a f.d. K-vector space.
Let $X \leq \text{SL}(V)$ be a classical group, e.g., $X = \text{Sp}(V), \text{SO}(V)$.
Let $G \leq X$ be finite, quasisimple, such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible, and
2. not realizable over a smaller field.

[$\varphi : G \to \text{SL}(V)$ is realizable over a smaller field, if φ factors as

$$
\begin{array}{ccc}
G & \xrightarrow{\varphi} & \text{SL}(V) \\
\downarrow{\varphi_0} & & \downarrow{\nu} \\
\text{SL}(V_0) & & \\
\end{array}
$$

for some proper subfield $K_0 \leq K$, a K_0-vector space V_0 with $V = K \otimes_{K_0} V_0$, and a representation $\varphi_0 : G \to \text{SL}(V_0)$.

Is $N_X(G)$ a maximal subgroup of X?
The following obstructions (for the maximality of \(N_X(G) \)), and many more, arise from Aschbacher’s subgroup classification (1984).
The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher’s subgroup classification (1984).

C_2-obstruction: $\varphi : N_X(G) \to X \leq SL(V)$ is **imprimitive.**
Some obstructions

The following obstructions (for the maximality of \(N_X(G) \)), and many more, arise from Aschbacher’s subgroup classification (1984).

\(C_2 \)-obstruction: \(\varphi : N_X(G) \to X \leq \mathrm{SL}(V) \) is imprimitive.
Then \(N_X(G) \not\leq \mathrm{Stab}_X(\{V_1, \ldots, V_m\}) \not\leq X \).
Some obstructions

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher’s subgroup classification (1984).

C_2-obstruction: $\varphi : N_X(G) \to X \leq \SL(V)$ is imprimitive.
Then $N_X(G) \not\leq \Stab_X(\{V_1, \ldots, V_m\}) \leq X$.

C_4-obstruction: $\varphi : N_X(G) \to X \leq \SL(V)$ is tensor decomposable,
Some obstructions

The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher’s subgroup classification (1984).

C_2-obstruction: $\varphi : N_X(G) \to X \leq \text{SL}(V)$ is **imprimitive**.
Then $N_X(G) \not\leq \text{Stab}_X(\{V_1, \ldots, V_m\}) \not\leq X$.

C_4-obstruction: $\varphi : N_X(G) \to X \leq \text{SL}(V)$ is **tensor decomposable**, i.e., $V = U \otimes_K W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$.
The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher’s subgroup classification (1984).

C_2-obstruction: $\phi: N_X(G) \to X \leq \text{SL}(V)$ is **imprimitive**.
Then $N_X(G) \not\leq \text{Stab}_X(\{V_1, \ldots, V_m\}) \not\leq X$.

C_4-obstruction: $\phi: N_X(G) \to X \leq \text{SL}(V)$ is **tensor decomposable**,
i.e., $V = U \otimes_K W$ and ϕ is equivalent to $\phi_U \otimes \phi_W$.
Then $N_X(G) \not\leq X \cap (\text{SL}(U) \otimes_K \text{SL}(W)) \not\leq X$.
The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher’s subgroup classification (1984).

C_2-obstruction: $\varphi : N_X(G) \rightarrow X \leq \text{SL}(V)$ is **imprimitive**. Then $N_X(G) \not\leq \text{Stab}_X(\{V_1,\ldots,V_m\}) \not\leq X$.

C_4-obstruction: $\varphi : N_X(G) \rightarrow X \leq \text{SL}(V)$ is **tensor decomposable**, i.e., $V = U \otimes_K W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$. Then $N_X(G) \not\leq X \cap (\text{SL}(U) \otimes_K \text{SL}(W)) \not\leq X$.

S-obstruction: There is a quasisimple group H such that $N_X(G) \not\leq H \not\leq X$.
The following obstructions (for the maximality of $N_X(G)$), and many more, arise from Aschbacher’s subgroup classification (1984).

C_2-obstruction: $\varphi : N_X(G) \rightarrow X \leq SL(V)$ is *imprimitive*. Then $N_X(G) \nsubseteq \text{Stab}_X(\{V_1, \ldots, V_m\}) \nsubseteq X$.

C_4-obstruction: $\varphi : N_X(G) \rightarrow X \leq SL(V)$ is *tensor decomposable*, i.e., $V = U \otimes_K W$ and φ is equivalent to $\varphi_U \otimes \varphi_W$. Then $N_X(G) \nsubseteq X \cap (SL(U) \otimes_K SL(W)) \nsubseteq X$.

S-obstruction: There is a quasisimple group H such that $N_X(G) \nsubseteq H \nsubseteq X$. (Thus $\text{Res}^H_G(V)$ is absolutely irreducible.)
Let X be a finite classical group.
Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field.
An example: The Mathieu group M_{11}

Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Let X be a finite classical group.

Let $\varphi : M_{11} \rightarrow X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)

Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Let X be a finite classical group. Let $\varphi : M_{11} \rightarrow X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)

Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.

Is $Z(X) \times G$ maximal in X?
An example: The Mathieu group M_{11}

Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Is $Z(X) \times G$ maximal in X?

No, except for $\varphi : M_{11} \to \text{SL}_5(3)$.
Let X be a finite classical group.
Let $\varphi : M_{11} \rightarrow X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Is $Z(X) \times G$ maximal in X?
\textbf{NO}, except for $\varphi : M_{11} \rightarrow \text{SL}_5(3)$.

\textbf{Examples}

(1) $M_{11} \rightarrow A_{11} \rightarrow \text{SO}^+_10(3)' \quad (S\text{-obstruction}).$
An example: The Mathieu group M_{11}

Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Is $Z(X) \times G$ maximal in X?
NO, except for $\varphi : M_{11} \to \text{SL}_5(3)$.

Examples

(1) $M_{11} \to A_{11} \to \text{SO}^+_10(3)'$ (S-obstruction).
(2) $M_{11} \to \text{SO}_{55}(\ell)$ is imprimitive, $\ell \geq 5$ (C₂-obstruction).
Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Is $Z(X) \times G$ maximal in X?
NO, except for $\varphi : M_{11} \to \text{SL}_5(3)$.

Examples

(1) $M_{11} \to A_{11} \to \text{SO}_{10}^+(3)' \quad (S\text{-obstruction}).$
(2) $M_{11} \to \text{SO}_{55}(\ell)$ is imprimitive, $\ell \geq 5 \quad (C_2\text{-obstruction}).$
(3) Also: $M_{11} \to M_{12} \to A_{12} \to \text{SO}_{11}(\ell) \to \text{SO}_{55}(\ell), \ell \geq 5.$
Let X be a finite classical group. Let $\varphi : M_{11} \rightarrow X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.) Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.

Is $Z(X) \times G$ maximal in X?

NO, except for $\varphi : M_{11} \rightarrow \text{SL}_5(3)$.

Examples

1. $M_{11} \rightarrow A_{11} \rightarrow \text{SO}^+_5(3)$' ($S$-obstruction).
2. $M_{11} \rightarrow \text{SO}_{55}(\ell)$ is imprimitive, $\ell \geq 5$ (C_2-obstruction).
3. Also: $M_{11} \rightarrow M_{12} \rightarrow A_{12} \rightarrow \text{SO}_{11}(\ell) \rightarrow \text{SO}_{55}(\ell)$, $\ell \geq 5$.
4. $M_{11} \rightarrow 2.M_{12} \rightarrow \text{SL}_{10}(3)$ (S-obstruction).
Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Is $Z(X) \times G$ maximal in X?
NO, except for $\varphi : M_{11} \to \text{SL}_5(3)$.

Examples

1. $M_{11} \to A_{11} \to \text{SO}^+_10(3)'$ (S-obstruction).
2. $M_{11} \to \text{SO}_{55}(\ell)$ is imprimitive, $\ell \geq 5$ (C$_2$-obstruction).
3. Also: $M_{11} \to M_{12} \to A_{12} \to \text{SO}_{11}(\ell) \to \text{SO}_{55}(\ell)$, $\ell \geq 5$.
4. $M_{11} \to 2.M_{12} \to \text{SL}_{10}(3)$ (S-obstruction).
5. $M_{11} \to \text{SL}_5(3) \to \text{SO}^-_{24}(3)'$ (S-obstruction).
Let X be a finite classical group.
Let $\varphi : M_{11} \to X$ be absolutely irreducible, faithful, and not realizable over a smaller field. (All such (φ, X) are known.)
Put $G := \varphi(M_{11})$. Then $N_X(G) = Z(X) \times G$.
Is $Z(X) \times G$ maximal in X?
NO, except for $\varphi : M_{11} \to \text{SL}_5(3)$.

Examples

(1) $M_{11} \to A_{11} \to \text{SO}_{10}^+(3)$' \quad (S-obstruction).
(2) $M_{11} \to \text{SO}_{55}(\ell)$ is imprimitive, $\ell \geq 5$ \quad (C_2-obstruction).
(3) Also: $M_{11} \to M_{12} \to A_{12} \to \text{SO}_{11}(\ell) \to \text{SO}_{55}(\ell)$, $\ell \geq 5$.
(4) $M_{11} \to 2.M_{12} \to \text{SL}_{10}(3)$ \quad (S-obstruction).
(5) $M_{11} \to \text{SL}_5(3) \to \text{SO}_{24}^-(3)'$ \quad (S-obstruction).

What about $\varphi : M \to \text{SO}_{196882}^-(2)$? \quad ($M$: Monster)
The following algorithmic problem arises in the "matrix groups computation" project.
The following algorithmic problem arises in the "matrix groups computation" project.

Let K be a finite field, $x_1, \ldots, x_r \in \text{GL}_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.
The following algorithmic problem arises in the "matrix groups computation" project.

Let K be a finite field, $x_1, \ldots, x_r \in \text{GL}_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

1. G acts absolutely irreducibly on $V = K^n$,

The following algorithmic problem arises in the "matrix groups computation" project.

Let K be a finite field, $x_1, \ldots, x_r \in \text{GL}_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

1. G acts absolutely irreducibly on $V = K^n$,
2. G is "nearly" simple,
The following algorithmic problem arises in the "matrix groups computation" project.

Let K be a finite field, $x_1, \ldots, x_r \in \text{GL}_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

1. G acts absolutely irreducibly on $V = K^n$,
2. G is "nearly" simple,
3. the isomorphism type of the non-abelian simple composition factor of G.
The following algorithmic problem arises in the "matrix groups computation" project.

Let K be a finite field, $x_1, \ldots, x_r \in \text{GL}_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

1. G acts absolutely irreducibly on $V = K^n$,
2. G is "nearly" simple,
3. the isomorphism type of the non-abelian simple composition factor of G.

Decide whether G acts primitively on V.
The following algorithmic problem arises in the "matrix groups computation" project.

Let K be a finite field, $x_1, \ldots, x_r \in \text{GL}_n(K)$, $G := \langle x_1, \ldots, x_r \rangle$.

Through preliminary computations one knows

1. G acts absolutely irreducibly on $V = K^n$,
2. G is "nearly" simple,
3. the isomorphism type of the non-abelian simple composition factor of G.

Decide whether G acts primitively on V.

A table look-up in our lists might help to answer this question.
Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

1. $\text{char}(K) = 0$ and $G = 2.A_n$ (Djoković-Malzan, Nett-Noeske).
Let \(K \) be algebraically closed. All irreducible, imprimitive \(KG \)-modules are known for

1. \(\text{char}(K) = 0 \) and \(G = 2.A_n \)
 (Djoković-Malzan, Nett-Noeske).

2. \(\text{char}(K) \) arbitrary and
 - \(G \) sporadic;
Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

1. $\text{char}(K) = 0$ and $G = 2.A_n$
 (Djoković-Malzan, Nett-Noeske).

2. $\text{char}(K)$ arbitrary and
 - G sporadic;
 - G a finite reductive group if G has an exceptional Schur multiplier or if G has two distinct defining characteristics (finitely many groups);
A sample of results

Let K be algebraically closed. All irreducible, imprimitive KG-modules are known for

1. $\text{char}(K) = 0$ and $G = 2.A_n$ (Djoković-Malzan, Nett-Noeske).

2. $\text{char}(K)$ arbitrary and
 - G sporadic;
 - G a finite reductive group if G has an exceptional Schur multiplier or if G has two distinct defining characteristics (finitely many groups);
 - G a Suzuki or Ree group, $G = G_2(q)$, or G a Steinberg triality group (Seitz, H.-Husen-Magaard).
We replace modules by characters, \(\text{Irr}(G) \) denotes the set of irreducible \(\mathbb{C} \)-characters of \(G \).
THE ALTERNATING GROUPS; $K = \mathbb{C}$

We replace modules by characters, $\text{Irr}(G)$ denotes the set of irreducible \mathbb{C}-characters of G.

Theorem (Dragomir Djoković, Jerry Malzan, 1976)

Suppose that $G = A_n$, $n \geq 10$, and let $\chi \in \text{Irr}(G)$ be imprimitive. Then one of the following holds.
We replace modules by characters, \(\text{Irr}(G) \) denotes the set of irreducible \(\mathbb{C} \)-characters of \(G \).

Theorem (Dragomir Djoković, Jerry Malzán, 1976)

Suppose that \(G = A_n, n \geq 10 \), and let \(\chi \in \text{Irr}(G) \) be imprimitive. Then one of the following holds.

1. \(n = m^2 + 1 \) and \(\chi = \text{Res}_G^{S_n}(\zeta^\lambda) \) with \(\lambda = (m + 1, m^{m-1}) \).
We replace modules by characters, \(\text{Irr}(G) \) denotes the set of irreducible \(\mathbb{C} \)-characters of \(G \).

Theorem (Dragomir Djoković, Jerry Malznan, 1976)

Suppose that \(G = A_n, \ n \geq 10, \) and let \(\chi \in \text{Irr}(G) \) be imprimitive. Then one of the following holds.

1. \(n = m^2 + 1 \) and \(\chi = \text{Res}_{S_n}^G(\zeta^\lambda) \) with \(\lambda = (m + 1, m^{m-1}) \).

Also, \(\chi = \text{Ind}_{A_{n-1}}^G(\chi_1) \) with \(\chi_1 \) a constituent of \(\text{Res}_{A_{n-1}}^S(\zeta^\mu) \) with \(\mu = (m^m) \).
We replace modules by characters, \(\text{Irr}(G) \) denotes the set of irreducible \(\mathbb{C} \)-characters of \(G \).

The Alternating Groups; \(K = \mathbb{C} \)

Theorem (Dragomir Djoković, Jerry Malzān, 1976)

Suppose that \(G = A_n, n \geq 10 \), and let \(\chi \in \text{Irr}(G) \) be imprimitive. Then one of the following holds.

1. \(n = m^2 + 1 \) and \(\chi = \text{Res}^{S_n}_G(\zeta^\lambda) \) with \(\lambda = (m + 1, m^{m-1}) \).

 Also, \(\chi = \text{Ind}^G_{A_{n-1}}(\chi_1) \) with \(\chi_1 \) a constituent of \(\text{Res}^{S_{n-1}}_{A_{n-1}}(\zeta^\mu) \) with \(\mu = (m^m) \).

2. \(n = 2m \) and \(\chi = \text{Res}^{S_n}_G(\zeta^\lambda) \) with \(\lambda = (m + 1, 1^{m-1}) \).
The alternating groups; \(K = \mathbb{C} \)

We replace modules by characters, \(\text{Irr}(G) \) denotes the set of irreducible \(\mathbb{C} \)-characters of \(G \).

Theorem (Dragomir Djoković, Jerry Malznan, 1976)

Suppose that \(G = A_n, n \geq 10 \), and let \(\chi \in \text{Irr}(G) \) be imprimitive. Then one of the following holds.

1. \(n = m^2 + 1 \) and \(\chi = \text{Res}_{G}^{S_n}(\zeta^\lambda) \) with \(\lambda = (m + 1, m^{m-1}) \).

 Also, \(\chi = \text{Ind}_{A_n-1}^{G}(\chi_1) \) with \(\chi_1 \) a constituent of \(\text{Res}_{A_n-1}^{S_{n-1}}(\zeta^\mu) \) with \(\mu = (m^m) \).

2. \(n = 2m \) and \(\chi = \text{Res}_{G}^{S_n}(\zeta^\lambda) \) with \(\lambda = (m + 1, 1^{m-1}) \).

 Also, \(\chi = \text{Ind}_{NG(s_m \times s_m)}^{G}(\chi_1) \) with \(\chi_1(1) = 1 \).
Again we take $K = \mathbb{C}$.

Theorem (Daniel Nett, Felix Noeske, 2009)

Suppose that $G = 2.A_n$, $n \geq 10$, is the covering group of A_n, and let $\psi \in \text{Irr}(G)$ be imprimitive.
Again we take $K = \mathbb{C}$.

Theorem (Daniel Nett, Felix Noeske, 2009)

Suppose that $G = 2.A_n$, $n \geq 10$, is the covering group of A_n, and let $\psi \in \text{Irr}(G)$ be imprimitive.

Then $n = 1 + m(m + 1)/2$, and $\psi = \text{Res}_{2.S_n}^G(\sigma^\lambda)$ with $\lambda = (m + 1, m - 1, m - 2, \ldots, 1)$.
Again we take $K = \mathbb{C}$.

Theorem (Daniel Nett, Felix Noeske, 2009)

Suppose that $G = 2.A_n$, $n \geq 10$, is the covering group of A_n, and let $\psi \in \text{Irr}(G)$ be imprimitive. Then $n = 1 + m(m + 1)/2$, and $\psi = \text{Res}^{2.S_n}_{G}(\sigma^\lambda)$ with $\lambda = (m + 1, m - 1, m - 2, \ldots, 1)$.

*Also, $\psi = \text{Ind}^{G}_{2.A_{n-1}}(\psi_1)$ with ψ_1 a constituent of $\text{Res}^{2.S_{n-1}}_{2.A_{n-1}}(\sigma^\mu)$ with $\mu = (m, m - 1, \ldots, 1)$.***
Let G denote a reductive algebraic group over F, an algebraically closed field, $\text{char}(F) = p > 0$.
Finite reductive groups

Let G denote a reductive algebraic group over F, an algebraically closed field, $\text{char}(F) = p > 0$.

Let F denote a Frobenius morphism of G with respect to some F_q-structure of G.
Let G denote a reductive algebraic group over F, an algebraically closed field, $\text{char}(F) = p > 0$.

Let F denote a Frobenius morphism of G with respect to some F_q-structure of G.

Then $G := G^F$ is a finite reductive group of characteristic p.
Let G denote a reductive algebraic group over F, an algebraically closed field, $\text{char}(F) = p > 0$.

Let F denote a Frobenius morphism of G with respect to some F_q-structure of G.

Then $G := G^F$ is a finite reductive group of characteristic p.

An F-stable Levi subgroup L of G is **split**, if L is a Levi complement in an F-stable parabolic subgroup P of G.
Finite reductive groups

Let G denote a reductive algebraic group over F, an algebraically closed field, $\text{char}(F) = p > 0$.

Let F denote a Frobenius morphism of G with respect to some \mathbb{F}_q-structure of G.

Then $G := G^F$ is a finite reductive group of characteristic p.

An F-stable Levi subgroup L of G is split, if L is a Levi complement in an F-stable parabolic subgroup P of G.

Such a pair (L, P) gives rise to a parabolic subgroup $P = P^F$ of G with Levi complement $L = L^F$.
THEOREM (Gary Seitz, 1988)

Let G be a finite reductive, quasisimple group of characteristic p. Suppose that V is an irreducible, imprimitive FG-module. Then G is one of $\text{SL}_2(5)$, $\text{SL}_2(7)$, $\text{SL}_3(2)$, $\text{Sp}_4(3)$, and V is the Steinberg module. Thus it remains to study finite reductive groups in non-defining characteristic.
The following result of Seitz contains the classification in defining characteristic.

Theorem (Gary Seitz, 1988)

Let G be a finite reductive, quasisimple group of characteristic p.

Suppose that V is an irreducible, imprimitive F^G-module.
THE PROJECT AND ITS MOTIVATION
SOME RESULTS
REDUCTIONS
HARISH-CHANDRA INDUCTION

REDUCTIVE GROUPS IN DEFINING CHARACTERISTICS

The following result of Seitz contains the classification in defining characteristic.

Theorem (Gary Seitz, 1988)

Let G be a finite reductive, quasisimple group of characteristic p. Suppose that V is an irreducible, imprimitive FG-module. Then G is one of $\text{SL}_2(5), \text{SL}_2(7), \text{SL}_3(2), \text{Sp}_4(3)$.
The following result of Seitz contains the classification in defining characteristic.

Theorem (Gary Seitz, 1988)

Let G be a finite reductive, quasisimple group of characteristic p.

Suppose that V is an irreducible, imprimitive FG-module.

Then G is one of

$$SL_2(5), SL_2(7), SL_3(2), Sp_4(3),$$

and V is the Steinberg module.
The following result of Seitz contains the classification in defining characteristic.

Theorem (Gary Seitz, 1988)

Let G be a finite reductive, quasisimple group of characteristic p. Suppose that V is an irreducible, imprimitive FG-module. Then G is one of $\text{SL}_2(5), \text{SL}_2(7), \text{SL}_3(2), \text{Sp}_4(3)$, and V is the Steinberg module.

Thus it remains to study finite reductive groups in non-defining characteristics (including 0).
Let G be a finite reductive group of characteristic p.
The main reduction theorem

Let G be a finite reductive group of characteristic p. Suppose that G

1. is quasisimple,
Let G be a finite reductive group of characteristic p. Suppose that G

1. is quasisimple,
2. does not have an exceptional Schur multiplier,
Let G be a finite reductive group of characteristic p.

Suppose that G

1. is quasisimple,
2. does not have an exceptional Schur multiplier,
3. is not isomorphic to a finite reductive group of a different characteristic.
Let G be a finite reductive group of characteristic p.

Suppose that G

1. is quasisimple,
2. does not have an exceptional Schur multiplier,
3. is not isomorphic to a finite reductive group of a different characteristic.

Let K be an algebraically closed field with char(K) $\neq p$.

THE MAIN REDUCTION THEOREM

THEOREM (H.-HUSEMoller, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup. Suppose that $\text{Ind}^G_H(V_1)$ is irreducible for some K-module V_1. Then $H = P$ is a parabolic subgroup of G.
Let G be a finite reductive group of characteristic p.

Suppose that G

1. is quasisimple,
2. does not have an exceptional Schur multiplier,
3. is not isomorphic to a finite reductive group of a different characteristic.

Let K be an algebraically closed field with $\text{char}(K) \neq p$.

Theorem (H.-Husen-Magaard, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup.
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.

Suppose that G

1. is quasisimple,
2. does not have an exceptional Schur multiplier,
3. is not isomorphic to a finite reductive group of a different characteristic.

Let K be an algebraically closed field with $\text{char}(K) \neq p$.

Theorem (H.-Husen-Magaard, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup. Suppose that $\text{Ind}^G_H(V_1)$ is irreducible for some KH-module V_1.
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.

Suppose that G

1. is quasisimple,
2. does not have an exceptional Schur multiplier,
3. is not isomorphic to a finite reductive group of a different characteristic.

Let K be an algebraically closed field with $\text{char}(K) \neq p$.

Theorem (H.-Husen-Magaard, 2013)

Let G and K be as above. Let $H \leq G$ be a maximal subgroup. Suppose that $\text{Ind}_H^G(V_1)$ is irreducible for some KH-module V_1. Then $H = P$ is a parabolic subgroup of G.
Let G be a finite group, $H \leq G$, and K a field.
Some easy characteristic-free criteria

Let G be a finite group, $H \leq G$, and K a field.
Let V_1 be a KH-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible.
Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.

Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.

Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}^G_H(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is not centralized by t. In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
Some Easy Characteristic-Free Criteria

Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is **not** centralized by t. In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
4. Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \not\in \langle ^t a, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H] \dim(V_1)$.

Proof of 2: $[G : H]^2 \leq \dim(V)^2 \leq |G|$.

Proof of 3: This is a consequence of Mackey's theorem.

Proof of 4: For $t \in G$, $^tH \cap H = C_G(^t a)$.

Hence $t \not\in \langle ^t a, a \rangle$ for $t \in G \setminus H$, since such a t does not centralize $^tH \cap H$ by 3.
Some Easy Characteristic-Free Criteria

Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \operatorname{Ind}_H^G(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is not centralized by t. In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
4. Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle ^{t}a, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H]\dim(V_1)$.

Proof of 2:

Proof of 3: This is a consequence of Mackey's theorem.

Proof of 4: For $t \in G$, $^tH \cap H = C_G(^t a)$.

Hence $t \notin \langle ^{t}a, a \rangle$ for $t \in G \setminus H$, since such a t does not centralize $^tH \cap H$ by 3.
Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}^G_H(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is not centralized by t. In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
4. Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \not\in \langle ^t a, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H]\dim(V_1)$.

Proof of 2: $[G : H]^2 \leq \dim(V)^2 \leq |G|$.

SOME EASY CHARACTERISTIC-FREE CRITERIA
Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}^G_H(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is not centralized by t. In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
4. Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \not\in \langle ^t a, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H] \dim(V_1)$.

Proof of 2: $[G : H]^2 \leq \dim(V)^2 \leq |G|$.

Proof of 3: This is a consequence of Mackey’s theorem.
Let G be a finite group, $H \leq G$, and K a field. Let V_1 be a KH-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is not centralized by t. In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
4. Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle ^t a, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H]\dim(V_1)$.

Proof of 2: $[G : H]^2 \leq \dim(V)^2 \leq |G|$.

Proof of 3: This is a consequence of Mackey’s theorem.

Proof of 4: For $t \in G$, $^tH \cap H = C_G(^t a, a)$.
Let G be a finite group, $H \leq G$, and K a field.
Let V_1 be a KH-module such that $V := \text{Ind}_H^G(V_1)$ is irreducible. Then

1. $[G : H] \leq \dim(V)$.
2. $|H|^2 \geq |G|$.
3. For all $t \in G \setminus H$, the group $^tH \cap H$ is not centralized by t.
 In particular $^tH \cap H \neq \{1\}$ for all $t \in G$.
4. Suppose that $H = C_G(a)$ for some $a \in G$. Then $t \notin \langle ^t a, a \rangle$ for all $t \in G \setminus H$.

Proof of 1: Clear, since $\dim(V) = [G : H] \dim(V_1)$.
Proof of 2: $[G : H]^2 \leq \dim(V)^2 \leq |G|$.
Proof of 3: This is a consequence of Mackey’s theorem.
Proof of 4: For $t \in G$, $^tH \cap H = C_G(^t a, a)$. Hence $t \notin \langle ^t a, a \rangle$ for $t \in G \setminus H$, since such a t does not centralize $^tH \cap H$ by 3.
Non-parabolic block stabilizers

Large subgroups of finite reductive groups are in general parabolic subgroups.
Non-parabolic block stabilizers

Large subgroups of finite reductive groups are in general parabolic subgroups.
There are, however, many exceptions, causing a lot of trouble.
Large subgroups of finite reductive groups are in general parabolic subgroups.
There are, however, many exceptions, causing a lot of trouble.

Example

Let $G = \text{Sp}_{2m}(q)$ with m even and $q > 3$ odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \text{Sp}_m(q) \times \text{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$.
Large subgroups of finite reductive groups are in general parabolic subgroups.
There are, however, many exceptions, causing a lot of trouble.

Example

Let $G = \text{Sp}_{2m}(q)$ with m even and $q > 3$ odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \text{Sp}_m(q) \times \text{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$. Then $H_0 = C_G(a)$ with $a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix}$, where $\langle \alpha \rangle = \mathbb{F}_q^$.***
Large subgroups of finite reductive groups are in general parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

Example

Let \(G = \text{Sp}_{2m}(q) \) with \(m \) even and \(q > 3 \) odd, and let

\[H = \langle H_0, s \rangle \text{ with } H_0 = \text{Sp}_m(q) \times \text{Sp}_m(q) \text{ and } s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}. \]

Then \(H_0 = C_G(a) \) with \(a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix} \), where \(\langle \alpha \rangle = \mathbb{F}_q^*. \)

Put \(t := \begin{bmatrix} I_m & N \\ N & I_m \end{bmatrix} \) with \(N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \).
Large subgroups of finite reductive groups are in general parabolic subgroups.
There are, however, many exceptions, causing a lot of trouble.

Example

Let \(G = \text{Sp}_{2m}(q) \) with \(m \) even and \(q > 3 \) odd, and let
\[
H = \langle H_0, s \rangle \text{ with } H_0 = \text{Sp}_m(q) \times \text{Sp}_m(q) \text{ and } s = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}.
\]

Then \(H_0 = C_G(a) \) with
\[
a = \begin{bmatrix} \alpha I_m & 0 \\ 0 & \alpha^{-1} I_m \end{bmatrix}, \text{ where } \langle \alpha \rangle = \mathbb{F}^*.
\]

Put
\[
t := \begin{bmatrix} I_m & N \\ N & I_m \end{bmatrix} \text{ with } N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.
\]

Then \(t \in \langle t a, a \rangle \), hence \(t \) centralizes \(t H_0 \cap H_0 \).
Large subgroups of finite reductive groups are in general parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

Example

Let $G = \text{Sp}_{2m}(q)$ with m even and $q > 3$ odd, and let $H = \langle H_0, s \rangle$ with $H_0 = \text{Sp}_m(q) \times \text{Sp}_m(q)$ and $s = \begin{bmatrix} 0 & l_m \\ l_m & 0 \end{bmatrix}$.

Then $H_0 = C_G(a)$ with $a = \begin{bmatrix} \alpha l_m & 0 \\ 0 & \alpha^{-1} l_m \end{bmatrix}$, where $\langle \alpha \rangle = \mathbb{F}^*$.

Put $t := \begin{bmatrix} l_m & N \\ N & l_m \end{bmatrix}$ with $N := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

Then $t \in \langle t^a, a \rangle$, hence t centralizes $tH_0 \cap H_0$.

Finally, $t \in C_G(s)$ and $tH_0 \cap sH_0 = \emptyset$, thus $t \in C_G(tH \cap H)$.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$. According to our main reduction theorem, we may restrict our investigation to parabolic subgroups. Proposition (H.-H.USEN-MAGAARD, 2013) Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_{G}^{P}(V_1)$ is irreducible. Then U is in the kernel of V_1. In other words, $\text{Ind}_{G}^{P}(V_1)$ is Harish-Chandra induced. This allows to apply Harish-Chandra theory to our classification problem, reducing certain aspects to Weyl groups.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with char(K) $\neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

Proposition (H.-Husen-Magaard, 2013)

Let P be a parabolic subgroup of G with unipotent radical U.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

Proposition (H.-Husen-Magaard, 2013)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a K_P-module such that $\text{Ind}_P^G(V_1)$ is irreducible.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

Proposition (H.-Husen-Magaard, 2013)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a K-P-module such that $\text{Ind}_P^G(V_1)$ is irreducible.

Then U is in the kernel of V_1.

In other words, $\text{Ind}_P^G(V_1)$ is Harish-Chandra induced.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$.

According to our main reduction theorem, we may restrict our investigation to parabolic subgroups.

Proposition (H.-Husen-Magaard, 2013)

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}^G_P(V_1)$ is irreducible. Then U is in the kernel of V_1.

In other words, $\text{Ind}^G_P(V_1)$ is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification problem, reducing certain aspects to Weyl groups.
Sketch Proof of Proposition

Proposition

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Choose a head composition factor V_2 of $\text{Res}_L^P(V_1)$. Let Q be the opposite parabolic subgroup of P, so $P \cap Q = L$. Mackey's theorem yields a non-trivial homomorphism $\text{Ind}_P^G(V_1) \rightarrow \text{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \text{Infl}_Q^L(V_2)$. As $\text{Ind}_P^G(V_1)$ is simple, and $\dim(\text{Ind}_Q^G(\tilde{V}_2)) \leq \dim(\text{Ind}_P^G(V_1))$, this implies that $\text{Ind}_P^G(V_1) \sim \text{Ind}_Q^G(\tilde{V}_2)$. It follows that $\dim(V_1) = \dim(V_2)$.

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_G^P (V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P.

Sketch Proof of Proposition
Sketch proof of proposition

Proposition

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Chose a head composition factor V_2 of $\text{Res}_L^P(V_1)$.

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Chose a head composition factor V_2 of $\text{Res}_L^P(V_1)$.
PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Chose a head composition factor V_2 of $\text{Res}_L^P(V_1)$. Let Q be the opposite parabolic subgroup of P, so $P \cap Q = L$. Mackey's theorem yields a non-trivial homomorphism $\text{Ind}_P^G(V_1) \to \text{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \text{Infl}_Q^L(V_2)$. As $\text{Ind}_P^G(V_1)$ is simple, and $\text{dim}(\text{Ind}_Q^G(\tilde{V}_2)) \leq \text{dim}(\text{Ind}_P^G(V_1))$, this implies that $\text{Ind}_P^G(V_1) \cong \text{Ind}_Q^G(\tilde{V}_2)$. It follows that $\text{dim}(V_1) = \text{dim}(V_2)$.

Proposition

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Chose a head composition factor V_2 of $\text{Res}^P_L(V_1)$. Let Q be the opposite parabolic subgroup of P, so $P \cap Q = L$. Mackey's theorem yields a non-trivial homomorphism $\text{Ind}_P^G(V_1) \to \text{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \text{Infl}_L^Q(V_2)$.

Proposition

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Chose a head composition factor V_2 of $\text{Res}_L^P(V_1)$. Let Q be the opposite parabolic subgroup of P, so $P \cap Q = L$. Mackey’s theorem yields a non-trivial homomorphism $\text{Ind}_P^G(V_1) \rightarrow \text{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \text{Infl}_L^Q(V_2)$.

As $\text{Ind}_P^G(V_1)$ is simple, and $\dim(\text{Ind}_Q^G(\tilde{V}_2)) \leq \dim(\text{Ind}_P^G(V_1))$, this implies that

$$\text{Ind}_P^G(V_1) \cong \text{Ind}_Q^G(\tilde{V}_2).$$
Proposition

Let P be a parabolic subgroup of G with unipotent radical U. Let V_1 be a KP-module such that $\text{Ind}_P^G(V_1)$ is irreducible. Then U is in the kernel of V_1.

Proof: (Sketch) Let L be a Levi complement of U in P. Chose a head composition factor V_2 of $\text{Res}_L^P(V_1)$. Let Q be the opposite parabolic subgroup of P, so $P \cap Q = L$. Mackey’s theorem yields a non-trivial homomorphism $\text{Ind}_P^G(V_1) \to \text{Ind}_Q^G(\tilde{V}_2)$, where $\tilde{V}_2 = \text{Infl}_L^Q(V_2)$.

As $\text{Ind}_P^G(V_1)$ is simple, and $\dim(\text{Ind}_Q^G(\tilde{V}_2)) \leq \dim(\text{Ind}_P^G(V_1))$, this implies that

$$\text{Ind}_P^G(V_1) \cong \text{Ind}_Q^G(\tilde{V}_2).$$

It follows that $\dim(V_1) = \dim(V_2)$.
A consequence for maximal subgroups

Let X be a finite classical group on the vector space V.
A CONSEQUENCE FOR MAXIMAL SUBGROUPS

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
Let X be a finite classical group on the vector space V. Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

A CONSEQUENCE FOR MAXIMAL SUBGROUPS
Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is not a maximal subgroup of X.
Let X be a finite classical group on the vector space V. Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}^G_P(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is not a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.
Let X be a finite classical group on the vector space V. Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is not a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is not a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

By the proposition, $V_1 = C_V(U)$, where U is the unipotent radical of P.
A CONSEQUENCE FOR MAXIMAL SUBGROUPS

Let X be a finite classical group on the vector space V.

Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is not a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

By the proposition, $V_1 = C_V(U)$, where U is the unipotent radical of P.

Now $N_H(P)$ stabilizes U, hence fixes V_1.
A CONSEQUENCE FOR MAXIMAL SUBGROUPS

Let X be a finite classical group on the vector space V. Let $G \leq X$ be a quasisimple reductive group such that

1. $\varphi : G \to X \leq \text{SL}(V)$ is absolutely irreducible,
2. $V = \text{Ind}_P^G(V_1)$ for some parabolic subgroup P of G,
3. the G-conjugacy class of P is invariant under $N_X(G)$.

Then $N_X(G)$ is **not** a maximal subgroup of X.

Indeed, putting $H := N_X(G)$, we get $H = GN_H(P)$ by 3.

We have $V = V_1 \oplus \cdots \oplus V_m$, the V_i being permuted by G.

By the proposition, $V_1 = C_V(U)$, where U is the unipotent radical of P.

Now $N_H(P)$ stabilizes U, hence fixes V_1.

Thus $H = GN_H(P)$ permutes the V_i.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$.

By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.)
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.) Then $\text{Ind}_P^G(\text{Infl}_L^P(V_1))$ is irreducible.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with $\text{char}(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.) Then $\text{Ind}^G_P(\text{Infl}^P_L(V_1))$ is irreducible.

Example

$G = \text{GL}_n(q)$, $L = \text{GL}_m(q) \times \text{GL}_{n-m}(q)$ with $m \neq n - m$.
Let G be a finite reductive, quasisimple group of characteristic p, and let K be an algebraically closed field with char$(K) \neq p$. By Harish-Chandra theory, a large proportion of irreducible KG-modules are imprimitive.

Remark

Let L be a Levi subgroup of G, and let V_1 be an irreducible cuspidal KL-module in general position. (The latter means, roughly, that the stabilizer of V_1 in $N_G(L)$ equals L.) Then $\text{Ind}_P^G(\text{Infl}_L^P(V_1))$ is irreducible.

Example

$G = \text{GL}_n(q)$, $L = \text{GL}_m(q) \times \text{GL}_{n-m}(q)$ with $m \neq n - m$. Then every irreducible cuspidal KL-module is in general position.
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = \text{SL}_m(q)$ or $G_m(q) = \text{Sp}_{2m}(q)$.
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = \text{SL}_m(q)$ or $G_m(q) = \text{Sp}_{2m}(q)$. Put

$$f(m, q) := \frac{|\text{Irr}_i(G_m(q))|}{|\text{Irr}(G_m(q))|},$$

where $\text{Irr}_i(G_m(q)) = \{\chi \in \text{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}$.
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = SL_m(q)$ or $G_m(q) = Sp_{2m}(q)$. Put

$$ f(m, q) := \frac{|\text{Irr}_i(G_m(q))|}{|\text{Irr}(G_m(q))|}, $$

where $\text{Irr}_i(G_m(q)) = \{ \chi \in \text{Irr}(G_m(q)) \mid \chi \text{ is imprimitive} \}$. Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists and we have:

1. $f(m) = 1 - 1/m$ if $G_m(q) = SL_m(q)$,
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = \text{SL}_m(q)$ or $G_m(q) = \text{Sp}_{2m}(q)$. Put

$$f(m, q) := \frac{|\text{Irr}_i(G_m(q))|}{|\text{Irr}(G_m(q))|},$$

where $\text{Irr}_i(G_m(q)) = \{\chi \in \text{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}$.

Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists and we have:

1. $f(m) = 1 - 1/m$ if $G_m(q) = \text{SL}_m(q)$,
2. $f(m) = 1 - \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m m!}$, if $G_m(q) = \text{Sp}_{2m}(q)$ [Lübeck].
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = \text{SL}_m(q)$ or $G_m(q) = \text{Sp}_{2m}(q)$. Put

$$f(m, q) := \frac{|\text{Irr}_i(G_m(q))|}{|\text{Irr}(G_m(q))|},$$

where $\text{Irr}_i(G_m(q)) = \{\chi \in \text{Irr}(G_m(q)) \mid \chi \text{ is imprimitive}\}$.

Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists and we have:

1. $f(m) = 1 - \frac{1}{m}$ if $G_m(q) = \text{SL}_m(q)$,
2. $f(m) = 1 - \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2^m m!}$, if $G_m(q) = \text{Sp}_{2m}(q)$ [Lübeck].

In each case, $\lim_{m \to \infty} f(m) = 1$.
Assume from now on that $K = \mathbb{C}$ (our results are best in this case).

Let $G_m(q) = \text{SL}_m(q)$ or $G_m(q) = \text{Sp}_{2m}(q)$. Put

$$ f(m, q) := \frac{|\text{Irr}_i(G_m(q))|}{|\text{Irr}(G_m(q))|}, $$

where $\text{Irr}_i(G_m(q)) = \{ \chi \in \text{Irr}(G_m(q)) \mid \chi \text{ is imprimitive} \}$.

Then $f(m) := \lim_{q \to \infty} f(m, q)$ exists and we have:

1. $f(m) = 1 - 1/m$ if $G_m(q) = \text{SL}_m(q)$,

2. $f(m) = 1 - \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2m-1)}{2^m m!},$ if $G_m(q) = \text{Sp}_{2m}(q)$ [Lübeck].

In each case, $\lim_{m \to \infty} f(m) = 1$.

Analogous results hold for the other classical groups.
Example: $SL_2(q)$, q even

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>$C_3(a)$</th>
<th>$C_4(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>q</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$\chi_3(m)$</td>
<td>$q + 1$</td>
<td>1</td>
<td>$\zeta^{am} + \zeta^{-am}$</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_4(n)$</td>
<td>$q - 1$</td>
<td>-1</td>
<td>0</td>
<td>$-\zeta^{bn} - \zeta^{-bn}$</td>
</tr>
</tbody>
</table>

The characters $\chi_3(m)$ are imprimitive, the others are primitive.

Number of irreducible characters: $q + 1$.

Number of imprimitive irreducible characters: $q/2 - 1$.
Example: $\text{SL}_2(q), \ q \text{ even}$

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>$C_3(a)$</th>
<th>$C_4(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>q</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$\chi_3(m)$</td>
<td>$q + 1$</td>
<td>1</td>
<td>$\zeta^a m + \zeta^{-a m}$</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_4(n)$</td>
<td>$q - 1$</td>
<td>-1</td>
<td>0</td>
<td>$-\zeta^b n - \zeta^{-b n}$</td>
</tr>
</tbody>
</table>

$a, m = 1, \ldots, (q - 2)/2, \quad b, n = 1, \ldots, q/2,$
Example: SL₂(q), q even

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3(a))</th>
<th>(C_4(b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_2)</td>
<td>(q)</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(\chi_3(m))</td>
<td>(q + 1)</td>
<td>1</td>
<td>(\zeta^{am} + \zeta^{-am})</td>
<td>0</td>
</tr>
<tr>
<td>(\chi_4(n))</td>
<td>(q - 1)</td>
<td>-1</td>
<td>0</td>
<td>(-\xi^{bn} - \xi^{-bn})</td>
</tr>
</tbody>
</table>

\(a, m = 1, \ldots, (q - 2)/2, \quad b, n = 1, \ldots, q/2,\)

The characters \(\chi_3(m)\) are imprimitive, the others are primitive.
Example: \(SL_2(q), q \) even

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3(a))</th>
<th>(C_4(b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_2)</td>
<td>(q)</td>
<td>0</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\chi_3(m))</td>
<td>(q+1)</td>
<td>1</td>
<td>(\zeta^{am} + \zeta^{-am})</td>
<td>0</td>
</tr>
<tr>
<td>(\chi_4(n))</td>
<td>(q-1)</td>
<td>(-1)</td>
<td>0</td>
<td>(-\xi^{bn} - \xi^{-bn})</td>
</tr>
</tbody>
</table>

\(a, m = 1, \ldots, (q - 2)/2, \quad b, n = 1, \ldots, q/2, \)

The characters \(\chi_3(m) \) are imprimitive, the others are primitive.

Number of irreducible characters: \(q + 1 \).
Example: $\text{SL}_2(q)$, q even

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>$C_3(a)$</th>
<th>$C_4(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>q</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$\chi_3(m)$</td>
<td>$q + 1$</td>
<td>1</td>
<td>$\zeta^{am} + \zeta^{-am}$</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_4(n)$</td>
<td>$q - 1$</td>
<td>-1</td>
<td>0</td>
<td>$-\xi^{bn} - \xi^{-bn}$</td>
</tr>
</tbody>
</table>

$a, m = 1, \ldots, (q - 2)/2, \quad b, n = 1, \ldots, q/2,$

The characters $\chi_3(m)$ are imprimitive, the others are primitive.

Number of irreducible characters: $q + 1$.

Number of imprimitive irreducible characters: $q/2 - 1$.
Let $G = G^F$ be a finite reductive group.
Let $G = G^F$ be a finite reductive group.
Let $G^* = G^{*F}$ denote a dual reductive group.
Lusztig series

Let $G = G^F$ be a finite reductive group.
Let $G^* = G^*F$ denote a dual reductive group.
We have

$$\text{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series
Lusztig series

Let $G = G^F$ be a finite reductive group. Let $G^* = (G^*)^F$ denote a dual reductive group. We have

$$\text{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^*-conjugacy classes of semisimple elements of G^*).
Lusztig series

Let $G = G^F$ be a finite reductive group.
Let $G^* = G^*F$ denote a dual reductive group.
We have

$$\text{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ($[s]$ runs through the G^*-conjugacy classes of semisimple elements of G^*).

Theorem (H.-H. Husen-Magaard, 2013)

If $C_{G^*}(s)$ is contained in a proper split Levi subgroup of G^*, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.
Let $G = G^F$ be a finite reductive group.
Let $G^* = G^*F$ denote a dual reductive group.
We have

$$\text{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ($[s]$ runs through the G^*-conjugacy classes of semisimple elements of G^*).

Theorem (H.-Husen-Magaard, 2013)

If $C_{G^}(s)$ is contained in a proper split Levi subgroup of G^*, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.*

Suppose that $C_{G^}(s)$ is connected and *not* contained in a proper split Levi subgroup of G^*.***
Let $G = G^F$ be a finite reductive group.
Let $G^* = G^*F$ denote a dual reductive group.
We have
\[
\text{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),
\]
a disjoint union into rational Lusztig series ($[s]$ runs through the G^*-conjugacy classes of semisimple elements of G^*).

Theorem (H.-Husen-Magaard, 2013)

If $C_{G^*}(s)$ is contained in a proper split Levi subgroup of G^*, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

Suppose that $C_{G^*}(s)$ is connected and not contained in a proper split Levi subgroup of G^*.

Then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.
Let $G = G^F$ be a finite reductive group.
Let $G^* = G^*F$ denote a dual reductive group.
We have

$$\text{Irr}(G) = \bigcup_{[s]} \mathcal{E}(G, [s]),$$

a disjoint union into rational Lusztig series ([s] runs through the G^*-conjugacy classes of semisimple elements of G^*).

Theorem (H.-H. Husen-Magaard, 2013)

If $C_{G^}(s)$ is contained in a proper split Levi subgroup of G^*, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced. Suppose that $C_{G^*}(s)$ is connected and not contained in a proper split Levi subgroup of G^*. Then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.*

In particular, the elements of $\mathcal{E}(G, [1])$ are HC-primitive.
Let $G = \text{GL}_n(q)$. Then $G = G^*$.
Let $G = \text{GL}_n(q)$. Then $G = G^*$.

Let $s \in G^* = G$ be semisimple. Then $C_{G^*}(s)$ is connected.
Let $G = \text{GL}_n(q)$. Then $G = G^\ast$.

Let $s \in G^\ast = G$ be semisimple. Then $C_{G^\ast}(s)$ is connected.

Theorem (H.-Husen-Magaard, 2013)

If the minimal polynomial of s is irreducible, then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.
Let $G = \text{GL}_n(q)$. Then $G = G^*$.

Let $s \in G^* = G$ be semisimple. Then $C_{G^*}(s)$ is connected.

Theorem (H.-Husen-Magaard, 2013)

If the minimal polynomial of s is irreducible, then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

Otherwise, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.
Let $G = \text{GL}_n(q)$. Then $G = G^*$. Let $s \in G^* = G$ be semisimple. Then $C_{G^*}(s)$ is connected.

Theorem (H.-Husen-Magaard, 2013)

If the minimal polynomial of s is irreducible, then every element of $\mathcal{E}(G, [s])$ is Harish-Chandra primitive.

Otherwise, every element of $\mathcal{E}(G, [s])$ is Harish-Chandra induced.

Notice that the minimal polynomial of s is irreducible if and only if $C_G(s) \cong \text{GL}_m(q^d)$ for integers m, d with $md = n$.
The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.
The descent from $\text{GL}_n(q)$ to $\text{SL}_n(q)$ is not so easy to describe.

Example (Cédric Bonnafé)

Suppose that q is odd, let $G = \text{GL}_4(q)$ and P a parabolic subgroup with Levi complement $L = \text{GL}_2(q) \times \text{GL}_2(q)$.
The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

Example (Cédric Bonnafé)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$. Let 1 denote the trivial character and 1^- the unique linear character of $GL_2(q)$ of order 2.
The descent from $\text{GL}_n(q)$ to $\text{SL}_n(q)$ is not so easy to describe.

Example (Cédric Bonnafé)

Suppose that q is odd, let $G = \text{GL}_4(q)$ and P a parabolic subgroup with Levi complement $L = \text{GL}_2(q) \times \text{GL}_2(q)$. Let 1 denote the trivial character and 1^- the unique linear character of $\text{GL}_2(q)$ of order 2.

Then $\chi := \text{Ind}_P^G(\text{Infl}_L^P(1 \otimes 1^-))$ is irreducible, hence imprimitive.
The descent from $\text{GL}_n(q)$ to $\text{SL}_n(q)$ is not so easy to describe.

Example (Cédric Bonnafé)

Suppose that q is odd, let $G = \text{GL}_4(q)$ and P a parabolic subgroup with Levi complement $L = \text{GL}_2(q) \times \text{GL}_2(q)$.

Let $\mathbf{1}$ denote the trivial character and $\mathbf{1}^-$ the unique linear character of $\text{GL}_2(q)$ of order 2.

Then $\chi := \text{Ind}_{P}^{G}(\text{Infl}_{L}^{P}(\mathbf{1} \otimes \mathbf{1}^-))$ is irreducible, hence imprimitive.

However, $\text{Res}_{\text{SL}_4(q)}^{G}(\chi) = \psi_1 + \psi_2$, with irreducible, primitive characters ψ_1, ψ_2.
The descent from $GL_n(q)$ to $SL_n(q)$ is not so easy to describe.

Example (Cédric Bonnafé)

Suppose that q is odd, let $G = GL_4(q)$ and P a parabolic subgroup with Levi complement $L = GL_2(q) \times GL_2(q)$.

Let 1 denote the trivial character and 1^- the unique linear character of $GL_2(q)$ of order 2.

Then $\chi := \text{Ind}_P^G(\text{Infl}_L^P (1 \otimes 1^-))$ is irreducible, hence imprimitive.

However, $\text{Res}_{SL_4(q)}^G(\chi) = \psi_1 + \psi_2$, with irreducible, primitive characters ψ_1, ψ_2.

Theorem (H.-Husen-Magaard, 2013)

Let $\chi \in \text{Irr}(GL_n(q))$ be Harish-Chandra primitive.

Then $\text{Res}_{SL_n(q)}^{GL_n(q)}(\chi)$ is irreducible and Harish-Chandra primitive.
Let $G = \text{SL}_n(q)$, $s \in G^* = \text{PGL}_n(q)$ semisimple.
Let $G = \text{SL}_n(q)$, $s \in G^* = \text{PGL}_n(q)$ semisimple. There is a bijection

$$\text{Irr}(W(s)^F) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_\eta,$$

where $W(s)$ is the “Weyl group” of $C_{G^*}(s)$ (Bonnafé).
Let $G = \text{SL}_n(q)$, $s \in G^* = \text{PGL}_n(q)$ semisimple. There is a bijection

$$\text{Irr}(W(s)^F) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_\eta,$$

where $W(s)$ is the “Weyl group” of $C_{G^*}(s)$ (Bonnafé).

Suppose that $\mathcal{E}(G, [s])$ contains Harish-Chandra primitive and imprimitive characters.
Let $G = \text{SL}_n(q)$, $s \in G^* = \text{PGL}_n(q)$ semisimple.

There is a bijection

$$\text{Irr}(W(s)^F) \rightarrow \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_{\eta},$$

where $W(s)$ is the “Weyl group” of $C_{G^*}(s)$ (Bonnafé).

Suppose that $\mathcal{E}(G, [s])$ contains Harish-Chandra primitive and imprimitive characters.

Then $W(s)^F = S: \langle \gamma \rangle$, with $S = S_m \times \cdots \times S_m$, and γ permuting the e factors S_m of S transitively, and $em \mid n$.
Descent from $\text{GL}_n(q)$ to $\text{SL}_n(q)$

Let $G = \text{SL}_n(q)$, $s \in G^* = \text{PGL}_n(q)$ semisimple. There is a bijection

$$\text{Irr}(W(s)^F) \to \mathcal{E}(G, [s]), \quad \eta \mapsto \chi_\eta,$$

where $W(s)$ is the “Weyl group” of $C_{G^*}(s)$ (Bonnafé).

Suppose that $\mathcal{E}(G, [s])$ contains Harish-Chandra primitive and imprimitive characters.

Then $W(s)^F = S : \langle \gamma \rangle$, with $S = S_m \times \cdots \times S_m$, and γ permuting the e factors S_m of S transitively, and $em \mid n$.

Theorem (H.-Magaard)

$\chi_\eta \in \mathcal{E}(G, [s])$ is primitive, if and only if $\text{Res}_{S : \langle \gamma \rangle}^S(\eta)$ is irreducible.
Thank you for listening!