Dynamics of some symmetric n-body problems

Davide L. Ferrario

(University of Milano-Bicocca)

New Perspectives on the N-body Problem (13w5055)
January 13–18, 2013
Banff International Research Station
Introduction

Blow-up and regularizations

Central configurations

Collisionless minimizers

Remarks
We will try to study n-body problems which are symmetric with respect to the action of suitable extensions of finite rotation groups\(^{(1)}\). The space of symmetric configurations is the complement of an arrangement of linear subspaces in a Euclidean space, and blow-up, McGehee coordinates and variational methods can –in some cases– be used to understand local dynamics (around the space of collisions) and some properties of periodic orbits.

Masses: $m_1, m_2, \ldots, m_n > 0$

Positions: $q_1, q_2, \ldots, q_n \in \mathbb{R}^d$

Homogeneity: $-\alpha < 0$

Potential: \[
\sum_{i<j} \frac{m_i m_j}{\|q_i - q_j\|^\alpha}
\]

Symmetries

Two basic types of symmetries:

→ Involving time

 ➤ $t \mapsto t + \delta$: $x(t + \delta) = g x(t)$;

 ➤ $t \mapsto -t$: $x(-t) = g x(t)$;

→ Not involving time $\forall t, x(t) \in X^G$.

Examples:

→ Antipodal symmetry $x(t + \delta) = -x(t)$.
→ Devaney isosceles\(^{(2)}\).
→ Sitnikov.
→ Chenciner Montgomery figure-eight and choreographies.
→ Delgado, Vidal, Venturelli, Ferrario, Terracini, Simò, Martinez, Chen, Salomone, Xia, Gronchi, Negrini, Fusco, ...

Two symmetric 3-choreographies
Consider now finite subgroups of $O(2)$ (planar case) and $SO(3)$ (spatial case). Recall the classification of such groups (*point groups*):

→ **Plane**:
 - Cyclic groups $C_n \subset SO(2)$ (of order n);
 - Dihedral groups $D_n \subset O(2)$ (of order $2n$).

→ **Space**:
 - Cyclic C_n (of order n);
 - Dihedral D_n (of order $2n$);
 - Tetrahedral $T \cong A_4$ (of order 12);
 - Octahedral $O \cong S_4$ (of order 24);
 - Icosahedral $Y \cong A_5$ (of order 60).

For subgroups of $O(3)$, one obtains full groups adding to the above the *inversion* $a : x \mapsto -x$, (which is in the center of $SO(3)$) and yields full groups $I \times C_n, I \times D_n$, with $I = \{1, a\} \ldots$ or the groups of *mixed type* (those without the inversion a).
Now consider a rotation group $K \subset SO(3)$ of order n, and n bodies with equal masses “naturally” symmetric with respect to K. Here “naturally” means that the permutation action on $\{1, \ldots, n\}$ is the (natural) Cayley left action of K on $K \approx \{1, \ldots, n\} \approx K$ by assigning indices to the elements of K. For each g, there exists a corresponding permutation $\sigma \in S_n$ defined by $gg_i = g_{\sigma_i}$. In other words, if $K = \{g_1, \ldots, g_n\}$, we consider configurations of n points (with equal masses) $q_1, \ldots, q_n \in \mathbb{R}^3$. If X is the $3n$-dimensional configuration space, then the induced symmetry $g: X \rightarrow X$ is defined by

$$
g \cdot (q_1, \ldots, q_n) = (gq_{\sigma^{-1}(1)}, gq_{\sigma^{-1}(2)}, \ldots, gq_{\sigma^{-1}(n)}) \cdot
$$

The space of symmetric configurations hence is

$$X^K = \{x \in X : Kx = x\}$$

$$= \{x = (q_1, \ldots, q_n) : q_i = g_i g_j^{-1} q_j \} \approx \{q_1\} = \mathbb{R}^3$$
(Configuration spaces)
(CONFIGURATION SPACES)
Dynamics of some symmetric n-body problems
(Configuration spaces)
Consider the binary collision subspace $\Delta_{ij} = \{q_i = q_j\} \subset X$. The projection π_{ij} onto Δ_{ij} given by

$$
\pi_{ij}(x) = \pi_{ij}(q_1, \ldots, q_i, \ldots, q_j, \ldots, q_n)
= (q_1, \ldots, \frac{m_i q_i + m_j q_j}{m_i + m_j}, \ldots, \frac{m_i q_i + m_j q_j}{m_i + m_j}, \ldots, q_n)
$$

is well-defined, and orthogonal with respect to the mass-metric on X. Now, observe that if $\|x\|_M$ denotes the mass-metric on X

$$
\|x - \pi_{ij}(x)\|_M^2 = m_i \|q_i - \frac{m_i q_i + m_j q_j}{m_i + m_j}\|^2 + m_j \|q_j - \frac{m_i q_i + m_j q_j}{m_i + m_j}\|^2
= \ldots = \frac{m_i m_j}{m_i + m_j} \|q_i - q_j\|^2
$$
The potential
\[\sum_{i<j} \frac{m_im_j}{\|q_i - q_j\|^\alpha} \]
can be therefore written as
\[\sum_{i<j} \frac{(m_i + m_j)^{-\alpha/2}(m_im_j)^{1+\alpha/2}}{\|x - \pi_{ij}(x)\|_M}. \]

It is a weighted sum of powers of distances from \(x \) to binary collision subspaces \(\Delta_{ij} \).

Its restriction to symmetric configurations \(X^K \subset X \) (all equal masses at the moment, but it can be easily generalized, e.g. isosceles or Sitnikov or multiple choreographies or ...)? If \(x \in X^K \), in general it is not true that \(\pi_{ij}(x) \in X^K \), but it happens that again it is a weighted sum of powers of distances from subspaces.
The subgroup H ranges over all the isotropy subgroups of K. The orthogonal projection $p_H : E \to E_H$ project the configuration space E onto the subspace E_H fixed by H, and C_H is a corresponding positive coefficient.
The subgroup $H \subset K$ ranges over all the isotropy subgroups of K. The orthogonal projection $\pi_H : E \rightarrow E^H$ project the configuration space E onto the subspace E^H fixed by H, and C_H is a corresponding positive coefficient.

$$U = \sum_{H \subset K} \frac{C_H}{\|q - \pi_H(q)\|^\alpha}$$
Introduction

Blow-up and regularizations

Central configurations

Collisionless minimizers

Remarks
Let q, p be the canonical coordinates, $(q, p) \in \text{phase space}$. Since U is $-\alpha$-homogeneous, in McGehee coordinates (with mass-metric $\| \cdot \| = \| \cdot \|_M$) $\rho = \|q\|$, $s = \rho^{-1}q$, $z = \rho^{\alpha/2}p$ after rescaling time and defining $v = \langle z, s \rangle$, $w = z - \langle a, s \rangle s$

(where w is tangent to the sphere) Newton equations become:

\[
\begin{align*}
\rho' &= \rho v \\
v' &= \|w\|^2 + \frac{\alpha}{2}v^2 - \alpha U(s) \\
s' &= w \\
w' &= -\|w\|^2 s + \left(\frac{\alpha}{2} - 1\right)v w + \nabla_s U(s),
\end{align*}
\]

where $\nabla_s U$ is the component of the gradient of U tangent to the inertia ellipsoid $S = \{\|q\| = 1\}$.
McGehee coordinates (cont.)

The coordinates ρ, v, s, w yield a map (homeomorphism outside $\{\rho = 0\}$) defined on the phase space

$$(q, p) \mapsto (\rho, v, s, w) \in [0, +\infty) \times \mathbb{R} \times TS,$$

where TS is the tangent bundle of S. The energy H can be written as

$$2\rho^a H = v^2 + \|w\|^2 - 2U(s).$$

All trajectories going to a total collisions touch a submanifold of the boundary $\{\rho = 0\}$, termed the McGehee total collision manifold M_0, defined by the equation

$$v^2 + \|w\|^2 = 2U(s).$$

This equation defines also the projection of all parabolic trajectories as a subset of $\mathbb{R} \times TS$, where one eliminates ρ. (Hence, given a solution in M_0, one can integrate ρ and obtain the full parabolic motion)
Partial collisions are a cone of a subset $\Delta \subset S$. M_0 is a sphere bundle on $S \setminus \Delta$, with fibers $\approx S$. The flow on M_0 is gradient-like (due to v), and stops at singular points in $\Delta \subset S$, or at equilibrium points, i.e., points satisfying the equations

$$\nu^2 = U(s), \quad \nabla_s U(s) = 0, \quad w = 0,$$

which correspond to central configurations: stationary points for the restricted potential $U (s \in S : \nabla_s U(s))$. Other equilibrium points in the phase space do not exist. Equilibrium points must be found, singular points must be regularized...
Introduction

Blow-up and regularizations

Central configurations

Collisionless minimizers

Remarks
Central configurations for D_l-symmetric configurations of $2l$ bodies
(1) If $G = D_l$ is the dihedral group with $2l$ elements, then central configurations for D_l-symmetric configurations are only those of the previous slide ($2l$-agon, l-prism and l-antiprism).

(2) Moreover, all the corresponding equilibrium points in the M_0 flow are hyperbolic\(^{(3)}\).

(3) For the 4-body Klein group, and any $\alpha \in (0, 2)$, there are 12 square central configurations (4 for each coordinate plane), and 8 tetrahedra, which are minima for U.
Dimensions of the stable and unstable manifolds in M_0: 2 and 2 for the tetrahedral CC’s, 3 and 1 ($v > 0$) or 1 and 3 ($v < 0$) for the squares.

(4) For the l-dihedral $2l$-body problem and $\alpha \in (0, 2)$, the three families of central configurations have dimensions of the stable and unstable manifolds in M_0 equal to: prism and planar the same as square CC for the 4-body, all antiprisms the same as tetrahedral CC.

\(^{(3)}\)Ferrario/Portaluri: On the dihedral n-body problem (see n. (1)).
Minimal CC’s for T (of order 12), the O (of order 24) and Y (of order 60) and their 2-covers.
Recall that for a rotation group, $S \approx S^2$ and M_0 is a four-dimensional S^2-bundle over $S \setminus \Delta$.
For each rotation in the symmetry group G, there is a collision axis, and two antipodal collision points in S. Coxeter planes contain pairs of rotation axes, and are invariant in the flow. That is, each of the symmetry planes gives rise to an invariant surface in M_0 containing l-agon collisions, with a rectangular flow analogous to the square flow.
For any α, a bouncing regularization is possible, but only locally within the plane, by setting for the horizontal plane

$$u = \frac{\sin^\alpha(2\theta)}{\sqrt{W(\theta)}} w$$

with $W(\theta) = \sin^\alpha(2\theta)U(\theta)$ and changing time accordingly. Here $\theta \approx s$ and $w \approx w$. Similar formulas hold for the prism and tetrahedral case.

For $\alpha = 1$ a Levi-Civita double covering map can be defined, which gives the “bouncing” regularization on invariant planes. But, as far as we know, not explicitly for any symmetry group (cfr. Lemaitre-Moeckel-Montgomery).
D.L. Ferrario (University of Milano-Bicocca): Dynamics of some symmetric n-body problems
COVERING OF THE TETRAHEDRAL SECTION
Introduction

Blow-up and regularizations

Central configurations

Collisionless minimizers

Remarks
In the negative energy region, one can expect to find (many?) periodic collisionless orbits. A few can be proven to exist by applying previous results\(^{(4)}\)(\(^{(5)}\)), minimizing the Lagrangean action on the Sobolev space of \(G\)-equivariant loops, for suitable \(G\). Let \(\sigma\), \(\tau\) and \(\rho\) be the permutation, time and space representation of \(G\), and \(X\) the configuration space.

\[(6)\] Let \(K = \ker \tau\). If \(\rho(K) \subset SO(3)\) is a finite group of rotations acting transitively on the index set \(\{1, \ldots, n\}\), and if \(X^G = \{0\}\), then there exists a \(G\)-equivariant collisionless minimizer.

How to define group actions satisfying this condition?
(7) Corollary. Given \(K \subset SO(3) \) a subgroup of order \(n \), with permutation regular representation \(\hat{\sigma} : K \to \Sigma_n \), if \(g \in N_{O(3)}K \) is such that \((\mathbb{R}^3)^g = 0 \), and \(s \in \Sigma_n \) is the permutation on \(K \) defined by conjugation with \(g \), then the subgroup \(G \) of \(SO(3) \times \Sigma_n \) generated by the graph of \(\hat{\sigma} \) and the element \((g, s) \) satisfies the hypotheses of (6), with \(\rho, \sigma \) natural projections and \(\tau \) defined as \(\tau(K) = 0, \tau((g, \sigma)) = 1 \).

(8) Corollary. Let \(K \subset SO(3) \) be a subgroup of order \(n \) as above. Then the antipodal map \(g = -I \in O(3) \) normalizes \(K \) and induces the trivial conjugation permutation \(s \).
Examples

Klein group, \(g = -I \) (but the minimizer is also \(\mathbb{Z}_3 \)-symmetric): [▶]

Klein group, \(g = \text{Hip-Hop rotation} \): [▶]
Examples: Tetrahedral Group of Order 12

\[K = \text{tetrahedral group}, \; g = \text{Hip-Hop 4-rotation: } \]

\[K = \text{tetrahedral group}, \; g = \text{Hip-Hop 3-rotation: } \]
Introduction

Blow-up and regularizations

Central configurations

Collisionless minimizers

Remarks
It is possible to consider multiple copies of the same symmetric minimizing orbit, and a minimizer will exist (eight 3-choreographies + 21 singletons: \([\triangleright]\), a 3-choreography + a 5-choreography + a 7-choreography + a 9-choreography and 3 singletons - \(|G| = 630\) \([\triangleright]\)).
It is possible to consider multiple copies of the same symmetric minimizing orbit, and a minimizer will exist (eight 3-choreographies + 21 singletons: [▷], a 3-choreography + a 5-choreography + a 7-choreography + a 9-choreography and 3 singletons - $|G| = 630$ [▷]).

Suitable symmetry groups occur in the problem of constellations of satellites (Walker delta pattern, [▷]...).
It is possible to consider multiple copies of the same symmetric minimizing orbit, and a minimizer will exist (eight 3-choreographies + 21 singletons: $|G| = 630$).

Suitable symmetry groups occur in the problem of constellations of satellites (Walker delta pattern, $|G| = 630$).

Simultaneous regularization of binary collisions in the symmetric $G \subset SO(3)$ n-body problem is possible, and geometrically similar to Moeckel-Montgomery regularization for the reduced 3BP.
It is possible to consider multiple copies of the same symmetric minimizing orbit, and a minimizer will exist (eight 3-choreographies + 21 singletons: [▷], a 3-choreography + a 5-choreography + a 7-choreography + a 9-choreography and 3 singletons - \(|G| = 630\) [▷]).

Suitable symmetry groups occur in the problem of constellations of satellites (Walker delta pattern, [▷]...).

Simultaneous regularization of binary collisions in the symmetric \(G \subset SO(3)\) \(n\)-body problem is possible, and geometrically similar to Moeckel-Montgomery regularization for the reduced 3BP.

Take two subspaces, fixed by involutions, with a single intersection. Minimize in the space of all paths going from one component of a subspace to a component of the other \(\implies\) there exists a collisionless minimizer, yielding a symmetric minimizer (periodic or quasi-periodic ...).

Thank you