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1. Lattice Bose-gas

• Λ := {x ∈ Zd : −Lα/2 ≤ xα < Lα/2, α = 1, . . . , d} ⊂ Zd with

p.b.c., dual set Λ∗ := {qα = 2πn/Lα : n = 0,±1,±2, . . .± (Lα/2−
1), Lα/2, α = 1,2, . . . d} to Λ = L1 × L2 × . . .× Ld, |Λ| = V .

• The one-particle Hilbert space h(Λ) := CΛ, basis {ex}x∈Λ,

ex(y) = δx , y and u =
∑
x∈Λ uxex ∈ h(Λ). The one-particle kinetic-

energy (hopping) operator

(tΛu)(x) :=
∑
y∈Λ

tΛx , y(ux − uy), tΛx y =
1

V

∑
q∈Λ∗

t̂qe
iq(x−y) , t̂q ≥ 0.

• The free boson Hamilton in the Fock FB(h(Λ)):

TΛ :=
∑
x∈Λ

a∗x(tΛa)x =
1

2

∑
x,y ∈Λ

tΛx y(a∗x−a∗y)(ax−ay) =
∑
q∈Λ∗

(t̂0−t̂q)â∗qâq.

[
ax, a∗y

]
= δx , y,

[
âq, â∗p

]
= δq , p. NΛ :=

∑
x∈Λ nx =

∑
q∈Λ∗ â

∗
qâq,

nx := a∗xax.

1



BIRS-Banff October 29, 2013

2. Bose-Einstein Condensation: Bose-Hubbard Model

• Nearest neighbour (n.n.) hopping: the one-particle spectrum:

ε(q) := (t̂0 − t̂q) =
d∑

α=1

4 sin2(qα/2) ≥ 0 , q ∈ Λ∗ .

• Lattice free Bose-gas: the BEC occurs in the zero-mode:

ρfreec, n.n.(β) := lim
µ↑0

lim
Λ

1

V

∑
q∈Λ∗

1

eβ(ε(q)−µ) − 1
=
∫ ∞

0

Nd(dε
eβε − 1

<∞ ,

the density of states Nd(dε) = {cdε(d/2−1) +o(ε(d/2−1))}dε, d > 2.

• Bose-Hubbard model: on-site repulsive interaction

HΛ := TΛ + λ
∑
x∈Λ

nx(nx − 1) , λ ≥ 0 .

• THEOREM [Kennedy-Lieb-Shastry (’88)] There is zero-mode

BEC in the Bose-Hubbard model with n.n. hard-core (λ = +∞)

interaction for the half-filled lattice, ρ(β, µ) ≤ 1.
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3. BEC in the Infinite-Range-Hopping Model

• For the Infinite-Range-Hopping (IRH) Laplacian:

tΛx y =
1

V
(1− δx , y) , x, y ∈ Λ.

the one-particle spectrum ε(q) := (t̂0− t̂q) = (1−δq ,0) has a gap:

lim
q→0

ε(q) = 1 6= ε(0) = 0 ,

but chemical potential µ ≤ 0. Since the density of states is zero

in the gap, Nd(dε) = δ1(ε) dε, the critical particle density:

ρ
free
c, i.r.(β) =

∫ ∞
0

Nd(dε)
eβε − 1

=
1

eβ − 1
, βc(ρ) = ln(1 + 1/ρ).

• THEOREM [Bru-Dorlas (’03)] The IRH Bose-Hubbard model

manifests the BEC, which is suppressed near the integer values

ρ = 1,2, . . . , k, k+1, . . . of the total density ρ for positive repulsion

parameters λ ∈ [λk, λk+1], the ”Mott insulator” phases.
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4. Random IRH Bose-Habbard Model [DPZ(2006)]

• On the probability space,(Ω,Σ,P), consider the random Hamil-

tonian for disordered system:

Hω
Λ =

1

2V

∑
x,y∈Λ

(a∗x − a∗y)(ax − ay) +
∑
x∈Λ

λωxnx(nx − 1) +
∑
x∈Λ

εωxnx,

where {λωx ≥ 0}x∈Zd
{
εωx ∈ R1

}
x∈Zd

, for ω ∈ Ω, are real-valued

stationary and ergodic random fields on Zd.
• THEOREM 1 For almost all ω ∈ Ω,(a.s.), there exists a non-

random thermodynamic limit of the pressure

pωΛ(β, µ) := 1
βV TrFB exp

{
−β(Hω

Λ − µNΛ)
}

exists and is equal to

a.s.− limΛ p
ω
Λ(β, µ) = p(β, µ):=supr≥0{−r2 +

β−1E[ln Tr(FB)x expβ[(µ− εωx −1)nx−λωxnx(nx−1) + r(a∗x+ax)]]},
where E (·) is expectation with respect to the measure P. The

BEC fraction = −r2.
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5.1 Limit of the Hard-Core Bosons: λωx = +∞
• This formally discards from the boson Fock space FB(Λ) all

vectors with more than one particle at one site: there is orthog-

onal projection PΛ such that Fh.c.B (Λ):= PΛ FB(Λ).

THEOREM 2

• ph.c.(β, µ) = supr≥0{−r2 +

β−1E{ln Tr(Fh.c.B )x
exp(βP [(µ− εωx − 1)nx + r(a∗x + ax)]P )}}

• Operators c∗x := Pa∗xP , cx := PaxP restricted to dom c∗x =

dom cx = Fh.c.B , have commutation relations:

[cx, c∗y] = 0 , (x 6= y) , (cx)2 = (c∗x)2 = 0 , cxc∗x + c∗xcx = I .

• Taking the XY representation of these relations one gets:

ph.c.(β, µ) = supr≥0{−r2+

E
{

1
2(µ− εωx − 1) + β−1 ln

[
2 cosh

(
1
2β
√

(µ− εωx − 1)2 + 4r2
)]}
}
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5.2 Limit of the Perfect Bosons: λωx = 0

THEOREM 3 Let εωx ≥ 0.

• p0(β, µ < 0) = supr≥0{−r2 +

β−1E{ln Tr(FB)x exp(β [(µ− εωx − 1)nx + r(a∗x + ax)])}}

• Let inf εωx = 0. Then

p0(β, µ < 0) = β−1E{ln Tr(FB)x exp(β [(µ− εωx − 1)nx])} =

β−1E
{

ln [1− exp{β(µ− εωx − 1)}]−1
}

.

• For µ→ −0:

p0(β, µ = 0) := β−1E
{

ln [1− exp{β(−εωx − 1)}]−1
}

,

ρ(β, µ = 0) := E
[

1
eβ(1+εω)−1

]
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6. Phase Diagram for Interaction λ > 0: Non-Random and

Random Models

• Recall [Bru-Dorlas (’03)]: Let λ ≥ 0 and εωx = 0. Let

p̃(β, µ, λ; r) := 1
β ln TrH exp(−β [hn(µ, λ)− r(a∗+ a)])

hn(µ, λ) := (1− µ)n+ λn(n− 1)

Then critical temperature β−1
c (ρ, λ) and the critical chemical po-

tential µc(ρ, λ) are defined by equations:

p̃′′(β, µ, λ; 0) = 2 , ρ =
1

Z0(β, µ, λ)

∞∑
n=1

n e−βhn(µ,λ) .

• If εωx 6= 0 and λ > 0, then by [Dorlas-Pastur-V.Z.(’06)] one gets

equations:

E
[
p̃′′(β, µ− εω, λ; 0)

]
= 2, ρ = E

 1

Z0(β, µ− εω, λ)

∞∑
n=1

n e−βhn(µ−εω, λ)


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6.1 Random Perfect Bosons: λ = 0

• Assume that random variable εω ∈ [0, ε], then the maximal al-

lowed (critical) value µc = 0, and the critical inverse temperature

βc := βc(ρ, λ = 0) is given by equation:

ρ = E
[

1

eβc(1+εω) − 1

]
.

• Theorem I: Irrespective of the εω-distribution, this equation

implies that the resulting βc(ρ,0) is lower than ln
(
1 + 1

ρ

)
, for

non-random case εωx = 0.

• Disorder enhances Bose-Einstein condensation.

• N.B. This is no longer true when λ > 0, and even the opposite

may hold, if λ is small enough !
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(ε = 0, λ = 0,1) ⇒ Pr = 1/ε (ε = 2, λ = 0,1)
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6.2 Discrete Random Potentials: Hard-Core Bosons

• Equations βc := βc(ρ) = βc(ρ, λ = +∞) for a given density ρ:

E
[

tanhβ(µ− εω − 1)/2

µ− εω − 1

]
= 1 (1)

ρ =
1

2
+

1

2
E
[
tanh

1

2
β(µ− εω − 1)

]
. (2)

(For the hard-core interaction the total particle density ρ ≤ 1).

• Bernoulli random potential: εωx = ε with probability p and

εωx = 0 with probability 1− p.

• New Phenomenon: Let ρ = p = 1/2. Then (1) and (2) ⇒

tanh
βcε

4
=

1

2
ε , λ = +∞ .

This equation has no solution for ε ≥ 2 ⇒ no Bose-Einstein

condensation for Bernoulli potential, if particle density ρ = p and

ε ≥ (some critical value) εcr = 2. Strong randomness is able

to destroy BEC for the fractional density ρ = p = 1/2.
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Pr = 1/2, ε = 4, λ = 3,3.3,4,4.5,6,10,∞
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• Theorem II: One obtains the same phenomenon for ρ = 1−p,

although βc(ρ 6= 1− p, λ = +∞) <∞.

• Strong randomness is able to suppress (not to destroy)

BEC for fractional densities ρ 6= 1− p.
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6.3 Bernoulli random potential for the case λ < +∞.

The critical temperature for free bosons increases due to dis-

order. For the interacting system this is a more subtle matter,

since it depends on the value of repulsion: For a not very large

repulsions close to λc,ρ=1(ε = 0) = 3, we get βc(ρ = 1;λ = 3, ε >

0) < βc(ρ = 1;λ = 3, ε = 0) = +∞ .

This lowering of βc(ρ = 1), which favourites the BEC can be

explained intuitively as follows:

At density ρ = 1, there is one particle per site, if ε > 0, then the

lattice splits (by the Bernoulli random potential) into two parts

with energies 0 and ε. A particle jumping from a site with ε to

a site with ε = 0 loses the energy ε, which counteracts the gain

of λ. This creates more freedom of movement promoting BEC.

See Fig..
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6.4 Trinomial distribution and beyond: λ < +∞

εω =


0 Pr = 1/3
1
2ε Pr = 1/3
ε Pr = 1/3 .


See Fig.
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Pr = 1/3, ε = 10, λ = 3,4,6,8

15



BIRS-Banff October 29, 2013

Pr = 1/10, ε = 10, λ = 8
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THANK YOU FOR YOUR ATTENTION !
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