Disordered Quantum Many-Body Systems
BIRS - Banff, October 27 - November 01 , 2013

Condensation in a Disordered Bose-Hubbard
Model

Valentin A.Zagrebnov
Département de Mathématiques, Aix-Marseille Université and
LATP, France

- Lattice Bose-Gas and Bose-Einstein Condensation

- Bose-Hubbard Model and Mott-type Phase Transition
Aizenman-Lieb-Seiringer-Solovej-Yngvason (2004)

- BEC iIin the Infinite-Range-Hopping Model

Bru-Dorlas (2003)

- Random IRH Bose-Hubbard Model

Dorlas-Pastur-VZ (2006)

- Enhancement/Suppression of BEC by Randomness

O



BIRS-Banff October 29, 2013

1. Lattice Bose-gas

o N i={zxeZ%: —Ly/2 < xq < Lo/2, a = 1,...,d} C Z% with
p.b.c., dual set A* := {go = 27n/Lo :n =0,+1,42, ...+ (Lo/2 —
1),La/2, a=1,2,...d} to AN=L1 X Ly x...xX Ly, IN|=

e The one-particle Hilbert space h(A) = CN  basis {ex}ren,
ex(y) = 0z.y and u = > ca uzer € H(A). The one-particle kinetic-
energy (hopping) operator

1 e i N
tau)(@) = > 0 (ue —uy), th, = = S By g > 0.
yeN qEN*

e The free boson Hamilton in the Fock Fg(h(AN\)):

Thn = Y ap(tpa)es = = Z t y(a a,)(ag—ay) = > (to—tq)agaq.

x EN x,y EN qeEN*
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2. Bose-Einstein Condensation: Bose-Hubbard Model
e Nearest neighbour (n.n.) hopping: the one-particle spectrum:

d
() =Fo—T) = 4sin*(ga/2) >0, geN*.

a=1

e Lattice free Bose-gas: the BEC occurs in the zero-mode:

< 00,

free T : i 1 _ [ Nd(de
pe) wn.(B) = limlim o > eﬂ(é(Q)—u)—l_/o efe — 1

pto AV geEN*
the density of states N;(de) = {cge{¥2~1) 4 o(eld/2=1)Yde, d > 2.
e Bose-Hubbard model: on-site repulsive interaction

Hpn:=Tpa+Xx > ng(ng—1), A>0.
TEN

e THEOREM [Kennedy-Lieb-Shastry ('88)] There is zero-mode
BEC in the Bose-Hubbard model with n.n. hard-core (A = +o0)
interaction for the half-filled lattice, p(3,un) < 1.
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3. BEC in the Infinite-Range-Hopping Model
e For the Infinite-Range-Hopping (IRH) Laplacian:

1
té\y = v(1 — 6z ,y) , T,y €N
the one-particle spectrum e(q) := (tg—tq) = (1—46,4,0) has a gap:
lime(g) =1#¢(0) =0,
q—0

but chemical potential © < 0. Since the density of states is zero
in the gap, N (de) = §1(¢) de, the critical particle density:

ffr'e.e — /OO Nd(d€> — 1 —
pC, Z.T’.(B) 0 656 _1 65 _1 ) BC(:O) In(l + 1/p)

e THEOREM [Bru-Dorlas ('03)] The IRH Bose-Hubbard model
manifests the BEC, which is suppressed near the integer values

p=1,2,...,k,k+1,... of the total density p for positive repulsion
parameters A € [Ag, A\p11], the " Mott insulator” phases.
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4. Random IRH Bose-Habbard Model [DPZ(2006)]
e On the probability space,(£2,>,P), consider the random Hamil-
tonian for disordered system:

Z (ar — ay)(ax —ay) + Z Aing(ng — 1) + Z XN,
x,yeN TEN reN
where {)\2 >0}, ;a0 {e% € Rl}a}EZd'
stationary and ergodic random fields on 74,

e THEOREM 1 For almost all w € ©2,(a.s.), there exists a non-
random thermodynamic limit of the pressure

PR(B, 1) = ﬁTrgB exp {—B(HX — MN,\)} exists and is equal to
a.s.— imp pR (B, n) = p(B, u):=sup,>o{—r2 +

B~1E[In Trz ), exXP Bl(n—ef — 1)ne — Agna(ne — 1) +r(ay + az)]l},
where E (-) is expectation with respect to the measure P. The
BEC fraction = —r2.

2V

for w € 2, are real-valued
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5.1 Limit of the Hard-Core Bosons: )Y = +oo
e This formally discards from the boson Fock space Fg(A) all
vectors with more than one particle at one site: there is orthog-
onal projection Py such that F4¢(A):= Pp Fg(N).

THEOREM 2

¢ ph.c.(ﬁ:/‘) — SUDTZO{_TQ +

B~IE{In Tr(%%'c')x exp(BP [(up—e% — 1)ng + r(ak + az)] P)}}

e Operators c¢i = PalP, cy := PagP restricted to dom ¢}, =
dom c; = 3’}3-0-, have commutation relations:

[ca, il =0, (w#y), ()?=()?=0, cc+cica=1I.

e Taking the XY representation of these relations one gets:

Ph.c.(B, 1) = sup,>of{—r2+
E {%(M —e¥ —1)4+p1In [2 cosh (%5\/@ —ew —1)2 4 4T2>] }}
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5.2 Limit of the Perfect Bosons: )\ =0
THEOREM 3 Let £ > 0.

® pO(ﬁa,U < O) — SUDTZO{_TQ +
B~IE{In Tr(35). exp(B[(p—e¥ — )ng + r(ak + az)])}}

e Let infef = 0. Then
po(B, < 0) = B7IE{In Tr(z ) exp(B[(k— ey — Dng])} =
BIE{In[1 —exp{B(n—e& — DN}

e For u — —0:

po(B e =0) i= B {In[L —exp{f(~e — D} "'}
:0(67/1' = O) =K [65(1_&3(,0)_1]
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6. Phase Diagram for Interaction )\ > 0: Non-Random and
Random Models
e Recall [Bru-Dorlas ('03)]: Let A >0 and ¥ = 0. Let
BB, p, A1) =3 510 Try exp(=p [hn(p, A) — r(a® + a)])
hn(p, A) 1= (1 — u)n + An(n — 1)
Then critical temperature Bgl(p, A) and the critical chemical po-
tential uc(p, \) are defined by equations:

1
Zo(Bs p, A) =

o If e¥ A~ 0 and X > 0, then by [Dorlas—Pastur—V.Z.(’06)] one gets
equations:

(B, X 0) =2, p=

Z n G_Bhn(l%)\)

1
—Bhn(pu—e“, )
Zo(B, i — &, \) nzlm

E[p'(B,n—e”, X 0) =2, p=E
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6.1 Random Perfect Bosons: A =20

e Assume that random variable ¥ € [0,¢], then the maximal al-
lowed (critical) value u. = 0, and the critical inverse temperature
Be := Be(p, A = 0) is given by equation:

1
P =B it - 1] |

e Theorem I: Irrespective of the ¥-distribution, this equation
implies that the resulting B.(p,0) is lower than In (1 +%) for
non-random case &% =

e Disorder enhances Bose-Einstein condensation.

e N.B. This is no longer true when X > 0, and even the opposite
may hold, if A is small enough |
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(e=0, A=0,1) = Pr=1/e (e=2,2=0,1)
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6.2 Discrete Random Potentials: Hard-Core Bosons
e Equations 8. := Bc(p) = Bc(p, N = +00) for a given density p:

tanh —e¥ —-1)/2
u—e¥ —1
1 1 1
= — 4+ —FE |[tanh = —“’—1]. 2
p= 5+ E|tanh JB(u— e — 1) (2)
(For the hard-core interaction the total particle density p < 1).
e Bernoulli random potential: ¥ = ¢ with probability p and

e = 0 with probability 1 —p
e New Phenomenon: Let p=p=1/2. Then (1) and (2) =

1
anh% &0 A= oo,

This equation has no solution for ¢ > 2 = no Bose-Einstein
condensation for Bernoulli potential, if particle density p = p and
e > (some critical value) e, = 2. Strong randomness is able
to destroy BEC for the fractional density p=p =1/2.

10
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Pr=1/2, e=4, A=3,3.3,4,4.5,6,10, cc

11
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e Theorem II: One obtains the same phenomenon for p =1 —p,
although Be(p = 1 —p, A= 4o0) < 0.

e Strong randomness is able to suppress (not to destroy)
BEC for fractional densities p = 1 — p.

12
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6.3 Bernoulli random potential for the case )\ < +oo.

The critical temperature for free bosons increases due to dis-
order. For the interacting system this is a more subtle matter,
since it depends on the value of repulsion: For a not very large
repulsions close to A, ,—1(¢ = 0) = 3, we get Be(p =1, A =3, >
0) < Be(p=1;2=3,e=0) =400 .

This lowering of B.(p = 1), which favourites the BEC can be
explained intuitively as follows:

At density p = 1, there is one particle per site, if € > 0, then the
lattice splits (by the Bernoulli random potential) into two parts
with energies O and . A particle jumping from a site with £ to
a site with € = 0O loses the energy e, which counteracts the gain
of A. This creates more freedom of movement promoting BEC.
See Fig..

13
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6.4 Trinomial distribution and beyond: )\ < 4+

O Pr=1/3
e’ =1{ e Pr=1/3
e Pr=1/3

See Fig.
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Pr=1/3, e=10, A= 3,4,6,8
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Pr=1/10, e =10, A =8
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THANK YOU FOR YOUR ATTENTION !
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