Coherent structure identification using flow map composition and spectral interpolation

Clancy Rowley
Joint work with S. Brunton, M. Luchtenburg, and M. Williams

Princeton University

BIRS: Uncovering Transport Barriers in Geophysical Flows
September 23, 2013
Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD
Acknowledgments

- Steve Brunton (U. Washington)
 - Finite-time Lyapunov exponents

- Mark Luchtenburg (Princeton)
 - Uncertainty quantification
 - Perron-Frobenius

- Matt Williams (Princeton)
 - Koopman eigenfunctions via Dynamic Mode Decomposition
Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD
Goal

- Efficient, accurate representation of nonlinear maps
- Example: double gyre
Two simple ideas

- Flow map composition
 - Represent a long-time flow map as a composition of short-time flow maps
 - Each short-time flow map should be relatively easy to describe
Two simple ideas

- Flow map composition
 - Represent a long-time flow map as a composition of short-time flow maps
 - Each short-time flow map should be relatively easy to describe

- Spectral interpolation
 - Expand each short-time flow map in terms of orthogonal functions (e.g., Legendre polynomials)
 - Can determine coefficients from values at collocation points
Consider the logistic map
\[x_{k+1} = f(x_k) \]

\[f(x) = 4x(1 - x) \]
Flow map composition: example

Consider the logistic map

\[x_{k+1} = f(x_k) \]

\[f(x) = 4x(1 - x) \]
\[f^2(x) = 16x(1 - x)(1 - 2x)^2 \]
Flow map composition: example

Consider the logistic map

\[x_{k+1} = f(x_k) \]

\[f(x) = 4x(1 - x) \]
\[f^2(x) = 16x(1 - x)(1 - 2x)^2 \]
\[f^3(x) = -2^{14}x^8 + \cdots \]
Flow map composition: example

Consider the logistic map

\[x_{k+1} = f(x_k) \]

\[
\begin{align*}
 f(x) &= 4x(1 - x) \\
 f^2(x) &= 16x(1 - x)(1 - 2x)^2 \\
 f^3(x) &= -2^{14}x^8 + \cdots \\
 f^4(x) &= -2^{30}x^{16} + \cdots
\end{align*}
\]
Flow map composition: example

Consider the logistic map

\[x_{k+1} = f(x_k) \]

\[f(x) = 4x(1-x) \]
\[f^2(x) = 16x(1-x)(1-2x)^2 \]
\[f^3(x) = -2^{14}x^8 + \cdots \]
\[f^4(x) = -2^{30}x^{16} + \cdots \]
\[f^k(x) = -cx^{2^k} + \cdots \]

- Degree of polynomial increases exponentially in the number of compositions
- Leads to complex long-time map, though short-time map is simple
Representing short-time flow maps

- Short-time flow maps are reasonably “well behaved”
- Represent them with relatively low-order polynomials
- Use orthogonal polynomials
 - Expand flow map ϕ in terms of orthogonal polynomials ψ_j (e.g., Legendre polynomials):
 \[
 \phi(x) = \sum_{j=1}^{n} a_j \psi_j(x) \quad a_j = \langle \phi, \psi_j \rangle
 \]
 - Can compute coefficients a_j by evaluating ϕ at collocation points, using Gauss quadrature
 - Simply propagate the collocation points through the flow map to obtain the corresponding coefficients
Representing short-time flow maps

- Short-time flow maps are reasonably “well behaved”
- Represent them with relatively low-order polynomials
- Use orthogonal polynomials
 - Expand flow map ϕ in terms of orthogonal polynomials ψ_j (e.g., Legendre polynomials):
 $$
 \phi(x) = \sum_{j=1}^{n} a_j \psi_j(x) \quad a_j = \langle \phi, \psi_j \rangle
 $$
 - Can compute coefficients a_j by evaluating ϕ at collocation points, using Gauss quadrature
 - Simply propagate the collocation points through the flow map to obtain the corresponding coefficients
Representing short-time flow maps

- Short-time flow maps are reasonably “well behaved”
- Represent them with relatively low-order polynomials
- Use orthogonal polynomials
 - Expand flow map ϕ in terms of orthogonal polynomials ψ_j (e.g., Legendre polynomials):
 $$\phi(x) = \sum_{j=1}^{n} a_j \psi_j(x)$$
 $$a_j = \langle \phi, \psi_j \rangle$$
 - Can compute coefficients a_j by evaluating ϕ at collocation points, using Gauss quadrature
 - Simply propagate the collocation points through the flow map to obtain the corresponding coefficients

![Diagram of flow map and collocation points]
Why flow map composition and spectral interpolation?

- Accurate long-time behavior

- Minimal storage needed to represent flow map

- Degree of the flow map polynomial grows exponentially with number of compositions: if short-time flow map is approximated by a degree-\(p \) polynomial, after \(k \) compositions the degree is \(p^k \)

- For a non-autonomous system, number of parameters grows linearly with number of compositions.

- For an autonomous system, number of parameters is constant, independent of number of compositions.

- Spectral interpolation is accurate and efficient

- Typically \(p + 1 \) collocation points for a degree-\(p \) approximation
Why flow map composition and spectral interpolation?

- Accurate long-time behavior
- Minimal storage needed to represent flow map
 - Degree of the flow map polynomial grows exponentially with number of compositions: if short-time flow map is approximated by a degree-p polynomial, after k compositions the degree is p^k
 - For a non-autonomous system, number of parameters grows linearly with number of compositions.
 - For an autonomous system, number of parameters is constant, independent of number of compositions.

- Spectral interpolation is accurate and efficient
Why flow map composition and spectral interpolation?

- Accurate long-time behavior
- Minimal storage needed to represent flow map
 - Degree of the flow map polynomial grows exponentially with number of compositions: if short-time flow map is approximated by a degree-p polynomial, after k compositions the degree is p^k
 - For a non-autonomous system, number of parameters grows linearly with number of compositions.
 - For an autonomous system, number of parameters is constant, independent of number of compositions.
- Spectral interpolation is accurate and efficient
 - Typically $p + 1$ collocation points for a degree-p approximation
Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD
Spectral interpolation for FTLE of double gyre

Gauss-Lobatto collocation points

512 × 256 uniform grid (exact)

Short-time flow map (\(\Delta t = 0.1\))

10 × 5 collocation points (\(\Delta t = 0.1\))
Error comparison

- Measure errors as a function of number of flow map compositions and number of collocation points
- Compare spectral interpolation with cubic spline and linear interpolation
 - Spectral is the most accurate, and uses the least memory
 - Cubic spline faster; a good alternative
 - Linear interpolation is fast, but poor accuracy
Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD
Simple ODE example

\[\dot{x} = x(1 - x^2), \quad x \in [-1, 1] \]

- Want flow map \(\phi_t \) for large times.
- Approximate in terms of Legendre polynomials \(\psi_i(x) \):

\[\phi_t \approx \sum_{i=0}^{P} a_i(t) \psi_i(x) \]

- Same as \textit{polynomial chaos} expansion, for an uncertain initial condition uniformly distributed in \([-1, 1]\).
Simple ODE example

\[\dot{x} = x(1 - x^2), \quad x \in [-1, 1] \]

- Want flow map \(\phi_t \) for large times.
- Approximate in terms of Legendre polynomials \(\psi_i(x) \):

\[
\phi_t \approx \sum_{i=0}^{P} a_i(t) \psi_i(x)
\]

- Same as polynomial chaos expansion, for an uncertain initial condition uniformly distributed in \([-1, 1]\).
Flow map composition: ODE example

- Compare with results for flow map composition
 - Degree-3 polynomial for $\phi_{\Delta t}$, $\Delta t = 0.2$

\[
\phi^T(x)
\]

- Greatly improved accuracy, with spectral convergence
Flow map composition: ODE example

- Compare with results for flow map composition
 - Degree-3 polynomial for $\phi_{\Delta t}$, $\Delta t = 0.2$

![Graph showing $\phi^T(x)$ for $T = 3$ and $T = 6$](image)

- Greatly improved accuracy, with spectral convergence

 Standard PC: poor convergence
 Composition: Spectral convergence

![Graph showing L2 Error vs. P](image)
Propagating a PDF in the double gyre

- Propagation of a probability density function using flow map composition
 - Double gyre parameters: $A = 0.25$, $\epsilon = 0.25$, $\omega = 2\pi$
 - Legendre polynomial basis with 11×6 collocation points

![Images showing the propagation at $T = 0$, $T = 1$, $T = 10$, and $T = 20$.]
Almost invariant sets: low resolution

- Calculate eigenvectors of the approximation of Perron-Frobenius
 - 22 x 12 collocation points
 - Double gyre: $A = 0.25$, $\epsilon = 0.25$, $\omega = 2\pi$
 - Eigenvectors corresponding to near-unity eigenvalues reveal almost-invariant sets
Almost invariant sets: high resolution

- Same calculation at higher resolution reveals islands
 - 43 \times 22 collocation points

Eigenvector 2

Eigenvector 3
Almost invariant sets: high resolution

- Same calculation at higher resolution reveals islands
 - 43×22 collocation points
Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD
Approximating a few Koopman eigenfunctions using Dynamic Mode Decomposition

Given a discrete-time dynamical system $\mathbf{x}_{n+1} = F(\mathbf{x}_n)$ with $\mathbf{x}_n \in \mathbb{R}^N$, the action of the Koopman operator \mathcal{K} on $\psi : \mathbb{R}^N \to \mathbb{C}$ is

$$(\mathcal{K}\psi)(\mathbf{x}_n) = \psi(F(\mathbf{x}_n)) = \psi(\mathbf{x}_{n+1}).$$
Approximating a few Koopman eigenfunctions using Dynamic Mode Decomposition

Given a discrete-time dynamical system $\vec{x}_{n+1} = F(\vec{x}_n)$ with $\vec{x}_n \in \mathbb{R}^N$, the action of the Koopman operator K on $\psi : \mathbb{R}^N \rightarrow \mathbb{C}$ is

$$(K\psi)(\vec{x}_n) = \psi(F(\vec{x}_n)) = \psi(\vec{x}_{n+1}).$$

Our goal is to approximate a few Koopman eigenfunctions, $\varphi(\vec{x})$, using two sets of data,

$$X = [\vec{x}_1 \ \vec{x}_2 \ \ldots \ \vec{x}_M], \quad Y = [\vec{y}_1 \ \vec{y}_2 \ \ldots \ \vec{y}_M],$$

where $\vec{y}_n = F(\vec{x}_n)$.
Approximating a few Koopman eigenfunctions using Dynamic Mode Decomposition

Given a discrete-time dynamical system $\tilde{x}_{n+1} = F(\tilde{x}_n)$ with $\tilde{x}_n \in \mathbb{R}^N$, the action of the Koopman operator \mathcal{K} on $\psi : \mathbb{R}^N \to \mathbb{C}$ is

$$(\mathcal{K}\psi)(\tilde{x}_n) = \psi(F(\tilde{x}_n)) = \psi(\tilde{x}_{n+1}).$$

Our goal is to approximate a few Koopman eigenfunctions, $\varphi(\tilde{x})$, using two sets of data,

$$X = [\tilde{x}_1 \; \tilde{x}_2 \; \ldots \; \tilde{x}_M], \quad Y = [\tilde{y}_1 \; \tilde{y}_2 \; \ldots \; \tilde{y}_M],$$

where $\tilde{y}_n = F(\tilde{x}_n)$.

Using Dynamic Mode Decomposition, the approximations of the Koopman modes and eigenvalues are obtained by solving the eigenvalue problem:

$$A\tilde{v} = \lambda \tilde{v},$$

with $A = YX^\dagger$, where the rank of A is the smaller of N or M.
Extending Dynamic Mode Decomposition

Instead of operating on raw data, we define M observables, $\psi_m(\vec{x}) : \mathbb{R}^N \to \mathbb{C}$, and form the transformed data matrices

$$\Psi_X = \begin{bmatrix} \psi_1(\vec{x}_1) & \cdots & \psi_1(\vec{x}_M) \\ \vdots & \ddots & \vdots \\ \psi_M(\vec{x}_1) & \cdots & \psi_M(\vec{x}_M) \end{bmatrix}, \quad \Psi_Y = \begin{bmatrix} \psi_1(\vec{y}_1) & \cdots & \psi_1(\vec{y}_M) \\ \vdots & \ddots & \vdots \\ \psi_M(\vec{y}_1) & \cdots & \psi_M(\vec{y}_M) \end{bmatrix},$$

and compute the left-eigenvectors of

$$\vec{\tilde{w}}^*(\Psi_Y \Psi_X^\dagger) = \lambda \vec{\tilde{w}}^*.$$

For a given left-eigenvector, the approximation of the Koopman eigenfunction is

$$\tilde{\varphi}(\vec{x}) = \sum_{j=1}^M w_j^* \psi_j(\vec{x}), \quad (1)$$

where w_j^* is the complex conjugate of the j-th element of $\vec{\tilde{w}}$. Note: using regular DMD $\psi_j(\vec{x}) = u_j^* x$, where u_j is a basis vector for the image of X.
Computing Koopman eigenfunctions: a linear example

\[\vec{x}_{n+1} = \begin{bmatrix} 0.8 & -0.05 \\ 0 & 0.7 \end{bmatrix} \vec{x}_n, \text{ with } \lambda = 0.8, 0.7. \]

- Data are a time series of 11 snapshots
- Basis functions (observables) are \(\psi_{i,j}(x, y) = x^i y^j \) for \(i, j = 0, 1, 2, 3 \).

Computed eigenvalues

- Desired eigenfunctions: \(\varphi_{i,j}(x, y) = (2x - y)^i y^j \) for \(i, j \in \mathbb{N} \)
- \(\lambda_{i,j} = (0.8)^i (0.7)^j \)
Comparing the eigenfunctions: a linear example

DMD Eigenfunctions

Koopman Eigenfunctions
A nonlinear example: the Stuart-Landau equation

\[\frac{dA}{dt} = a_0 A - a_1 |A|^2 A, \text{ with} \]
\[A \in \mathbb{C}, \quad a_0 = 1, \quad a_1 = 1 + i \]

- Eight time series (\(\Delta t = 0.1 \)) with 29 snapshots each
- Choose \(\psi_{m,n}(r, \theta) = r^m e^{i n \theta} \) with \(A = r \exp(i \theta) \)
- \(m = -4, \ldots, 3 \) and \(n = -16, \ldots, 16. \)

Computing isochrons in the Stuart-Landau equation

Koopman eigenfunctions:
\[\phi_{m,n} = \left(\frac{1}{r^2} - 1 \right)^m \exp \left(in \left(\theta + \ln \left(\frac{1}{r} \right) \right) \right) \]

Plot of the level sets of \(\angle \phi_{0,1} \)

Good agreement with the analytical results

Summary

- Efficient representation of long-time flow maps
 - Compose short-time flow maps
 - Represent short-time flow maps by spectral interpolation
- Examples
 - Computing FTLE fields
 - Propagating probability density functions
 - Computing eigenfunctions of Perron-Frobenius
- Approximate Koopman eigenfunctions using Dynamic Mode Decomposition (DMD)
 - Sample several observables from different points in phase space
 - Reconstructs Koopman eigenfunctions for both linear and nonlinear problems