ad

Parallel EnKF
algorithm

Parallel Implementation of an Ensemble
Kalman Filter

P.L. Houtekamer — BIRS 2013

I *I Environment Environnement
Canada Canada

18-22 February 2013

credits

Parallel EnKF
algorithm

The EnKF benefits from contributions by many:

Xingxiu Deng: running many experiments and operational
transfers,

Herschel Mitchell: science issues,

Bin He: Fortran code optimization,

Seung-Jong Baek: Fortran code modularization,

Ervig Lapalme: script development,

Jeffrey Blezius: Fortran code unification with En-Var
group,

Normand Gagnon: model development and user support,

management: unwavering support.

overview

Parallel EnKF Introduction
algorithm
m parallel computers

The EnKF algorithm
m Monte Carlo approach to data assimilation
m sequential algorithm
® time interpolation
m localization

Scaling

m computation of analyses

m strong scaling

m weak scaling

m application towards better results
Discussion

m code complexity and evolution

m scientific challenges

ad

Parallel EnKF
algorithm

parallel
computers

introduction

Over recent years, we have been increasing all resolution

related parameters of the Canadian operational global EnKF.

Implementation | Nig, Np: Ny Neps Nops cost
January 2005 | 300 150 28 96 100 000 1
August 2011 | 400 200 58 192 300 000 22
February 2013 | 600 300 74 192 700 000 | 148

As a - not so bad - assumption we take:

cost = O(Nlon X Nigt X Njgy X Neps X Nobs)

The substantial increase in resolution and cost has been made
possible by an equally substantial increase of the capacity of
the super computer clusters at our center.

Example computer cluster with 2 nodes,
each having 4 cores

a)

b)

c)

d)

€)

node 1

node 2

c1L c2 c1 C2
c3 c4 c3 c4
PL|P2 PS5 | P6
P3|P4 P7 P8

P1

P3

P2

P4

P1

P2

P1,t1+2

P3,t1+2

P2,t1+2

P4,t1+2

a) The computer cluster has 2 nodes
each with 4 cores sharing memory.
b) Eight processes run without
sharing memory (pure MPI model).
c) Four processes run without
sharing memory. Each process uses
two physical cores.

d) One process runs on each code. A
process uses all the memory available
on its node.

e) Each process consists of two
software threads which can share
memory (hybrid MPI + OpenMP
model).

Parallelization using the MPI
Message Passing Interface

At the largest scale, parallelization on the computer cluster
uses the MP| message passing interface. Different copies of a
program runs simultaneously on the cluster to solve different
parts of the same numerical problem. When necessary, they
communicate using messages sent via the MPI protocol.
Messages are sent between processes which may or may not
run on the same node.

Just using MPI, it is possible for a program to make use of the
entire computer cluster. For this to be efficient:
it must be possible to split the problem into a large
number (O(1000)) of quasi-independent sub-problems.

each sub-problem should (have enough memory to) run on
just one core.

I*I parallelization using OpenMP

Parallel EnKF
algorithm

Within a software process, running on part of a node, one can
have multiple software threads sharing memory.
Shared-memory parallelization, using OpenMP, is often at the
- level of loops in Fortran code as illustrated in an example from
computers the book by Chandra et al.
I$omp parallel do private(j,x,y)
doi=1m
do j=1,n
x=i/real(m)
y=i/real(n)
depth(i,j)=mandel_val(x,y,maxiter)
enddo
enddo
I$omp end parallel do

hybrid use of MPI and OpenMP

Historically, the Canadian EnKF only used MPI for
parallelization. As we are moving towards more challenging
problems, with more ensemble members, more observations and
more model coordinates, individual processes require increasing
amounts of memory. For some problems, just to provide
enough memory to a process, we need to run with less
MPI-processes per computer node.

To still make use of the available software threads, we recently
(in 2012) started using OpenMP in addition to MPI. For small
problems, when available memory is not an issue, the hybrid
use of OpenMP and MPI is now almost as efficient as the pure
MPI application.

The POWERY7 clusters

Parallel EnKF
algorithm Since December 2011, our center has access to 2 IBM

POWERY clusters. Operations run with priority on one cluster.
The other cluster, identical in principle, is exclusively for R&D.

e Each of these clusters, has approximately 250 compute nodes
and each of these nodes has 32 cores. A single user program
could use an entire cluster in several ways:
m 8000 x 1: run 8000 MPI-processes each having only one
thread,
m 4000 x 2: run 4000 MPI-processes each having 2 OpenMP
threads,
. ...
m 250 x 32: run 250 MPI-processes each having 32 OpenMP
threads.

Parallel EnKF
algorithm

parallel
computers

Originally, our prototype EnKF could run on a computer with
only one process (1 CPU). This program, which was coded in
Fortran77, used neither MPI nor OpenMP.

With the arrival of NEC vector processing machines, we
introduced parallelization with MPI to use 2-4 vector
processors.

With the arrival of the IBM P7 clusters, to handle bigger
problems, we had to also introduce OpenMP. The hybrid MPI
and OpenMP parallelization matches the structure with nodes
and cores of the POWERY.

How well a program exploits the available computer resources
translates directly into the size of problem that can be handled
and thus also into the quality of the results.

I*I Defining characteristics of the Canadian EnKF

Parallel EnKF
algorithm

Gradually, the Canadian EnKF evolved into a system having:

Monte Carlo method (1998),

The EnKE cross-validation (1998),

e additive model error (2000),

localization using a Schur product (2001),
sequential algorithm (2001),

[@ extended state-vector approach (2005).

We do not claim there is no better algorithm possible, but we

think we can make substantial progress staying in the current
framework.

a Monte Carlo ensemble of model runs

Parallel EnKF
algorithm

ensemble of
analyses

Monte Carlo
approach to data
assimilation

forecast model

4

ensemble of
backgrounds

At a technical level, the application
of the Monte Carlo method is trivial.
One just has to rerun a system a
number of times.

In this example, the forecast model is
considered to be a black box. It is
provided with an input analysis and
provides a background trajectory as
an output.

If the model itself is uncertain, this
uncertainty will have to be sampled
as well.

ad

Parallel EnKF
algorithm

Monte Carlo
approach to data
assimilation

EnKF flowchart

ensemble of ; model error perturbed
analyses addition ; analyses
: states at digital filter
weighted é a number of
mean time levels forecast model

/N

observations

For each of Ng,s = 192 ensemble members, we go through a 6h

data-assimilation cycle. All information comes together in the
computation of the weighted mean, where the weights are
computed using the ensemble of N,s background fields.

the Kalman gain

Parallel EnKF
algorithm

The weighted mean is obtained using the Kalman Gain matrix:
K. =PIHT(HPIHT + R)™!

Monte Carlo

The difficulty here is that the analysis increments are computed
ikl using the input ensemble of backgrounds. This ensemble of
backgrounds has also been used to obtain P.. Thus we first
tune the analysis using an ensemble and subsequently this same
ensemble is used to test the quality of analysis.

This invalid application of the Monte Carlo method is also
known as “inbreeding”.

cross validation

Parallel EnKF
algorithm

In the operational EnKF, we use 4-fold cross-validation to
obtain the analysis ensemble:

The ensemble of 192 background fields is split into 4 sub
ensembles of 48 members.

Monte Carla To assimilate data into sub ensemble k, k =1,--- ,4, the
s miston Kalman gain is computed from the backgrounds of the 3
other sub ensembles.

The 4 sub ensembles are combined into a 192-member
analysis ensemble.

For a subsequent operational delivery, we consider moving to
8-fold cross validation. Various computations involving sub
ensembles have been parallelized using OpenMP.

I*I issues with the random inputs

Parallel EnKF
algorithm

Currently, the addition of large-amplitude random fields is of
critical importance to our system. We do not know what error
sources correspond to these fields.

To permit a reduction of their amplitude, we likely need to
2",,‘;_?33'55[!5 N sample:
assimilation

systematic errors in the observational network,

model physics problems near the surface.

The EnKF system benefits from the continuous progress in all
aspects of NWP. With the steady reduction of systematic
errors, the natural growth of well-simulated random errors
tends to become more important.

sequential algorithm

Parallel EnKF
algorithm

sequential
algorithm

N first-guess fields

first-guess

covariances
from the ensemble

}

— |EnKF (a1, a2) | ~—

}

N second-guess fields

second-guess

covariances
from the ensemble

}

— | EnKF (617/32) i

}
{

N analysis fields

first set
of
observations

second set
of
observations

sequential algorithm

Parallel EnKF
algorithm

The use of the sequential algorithm permits us to deal with the
inverse in:
K. = PIHT(HPIHT + R)™!

using the direct Cholesky decomposition method. (The cost of
the matrix inversion scales as N3,).

However:

sequential
algorithm

m observations in different batches must have independent
errors,

m when we return in the same area for a second batch the
ensembles are no longer independent.

In view of these fundamental problems, Herschel Mitchell is
investigating the use of a variational solution algorithm.

Parallel EnKF
algorithm

time
interpolation

The EnKF assimilates all data in a 6-h window at the
appropriate time (Hunt et al. 2004, Tellus A), as is also done
in 4D variational algorithms:

/ data data\
3\ /7 data data\

3\ 6 /9

For the time interpolation in the forward operator H, we need
the model state at t = 3h, 4h,5h,6h, 7h,8h and 9h. Only the
analysis at the central time t = 6h is used to start the
subsequent integration.

o
@)

| B3 | naive implementation

Parallel EnKF
algorithm

The cost of the data assimilation step is dominated by
operations involving the matrix PAHT. These have a cost:

cost = O(Nmodel * Ntimelevels * Nobs * Nens)-

Using Niimelevels = 7 leads to a seven-fold increase of the cost!

time
interpolation

In the sequential algorithm, observations are assimilated one
batch at a time. We need to keep track of the “evolving”
trajectories because the forward operator H first interpolates
the model state to the time of the observation.

expansion of the state vector

Parallel EnKF
algorithm

time
interpolation

The vector Hx of interpolated observations can be added to
the state vector (Tarantola 1987; Anderson, MWR, 2001),
which then becomes the expanded state-vector (x, Hx).

Since H is precomputed, it is sufficient to have as state vector

(x(t = 6h), Hx(t = tops)). The information about the temporal
evolution is in the evolving correlations between x(t = 6h) and
Hx(t = tops)-

This revised algorithm has cost:

cost = O((Nmodel+Nobs)*Nobs*Nens) ~ O(Nmodel*Nobs*Nens)

| B3 | localization

Parallel EnKF
algorithm

Localization needs to be used - almost always - in an Ensemble
Kalman Filter (EnKF) due to restrictions on the size of the
ensembles. In fact, localization is the key technique which
makes the ensemble approximation to the Kalman filter
computationally feasible.

Example: with N,,04¢; = 50 000 000 in an Extended Kalman
filter, we need N oq4e/ integrations of the tangent linear model.
localization If we can solve the same problem with an EnKF with

Nens = 250, we have a cost reduction factor of 200 000!

How localization is best applied depends on aspects of the
model dynamics and the observational network. A reasonable
choice often leads to a substantial improvement in performance.

Parallel EnKF
algorithm

To reflect the increase of length scales with height, the
horizontal localizing function py(z) in the EnKF changes with
height z:

K= {PVOPH(Z)O(PfHT)} [pVOpH(Z)O(HPfHT)JrR}_l

Localization in EnKF

layer (hPa) | length (km)
2-14 3000
14-100 2800
100-400 2500
400-1050 2100

The vertical localization is in two units of In(P).

I*I localization with a compact function

Parallel EnKF
algorithm

localization

latitude

Parallelization strategies

/.
P-3 " opa

REGION-1

longitude

The compact support of
the localization is
exploited to update the
state vector only in the
vicinity of a group of
observations.

In one step of the
sequential algorithm, we
can assimilate
observations from
several independent
areas on the analysis
grid in parallel.

cost in a data-assimilation cycle

Parallel EnKF
algorithm

A data-assimilation cycle consists of two main steps:

perform an ensemble of short integrations with the
forecast model,

use observations to obtain analysis increments.

computation of

analyses With current parameters, the model integration step is 7
times more expensive than the analysis step. However, the

ensemble of independent model integrations is embarrassingly
parallel and not time critical.

How to parallelize the analysis is non-trivial and time
critical. It is the focus of this section.

I*I preparation of observations for the EnKF

Parallel EnKF
algorithm

Observations, for the EnKF, have been preprocessed by our
center's deterministic high-resolution (4d-Var) data-assimilation
system. We benefit from:

data thinning of, in particular, satellite data to about 150
km,

computation of

analyses bias correction of the observations,

quality control with respect to a high-resolution
deterministic background field,

A a further selection of observations to include only those to

be assimilated by the EnKF. The EnKF system does not
use AIRS and IASI observations.

I*I EnKF observation pre-processing

Parallel EnKF
algorithm

In the EnKF itself, we have 4 observation pre-processing steps.

Decode the observation file: 10 seconds.
There would be some potential for parallelization.

Evaluate the forward operator: 2 minutes.
The problem is almost independent for different members
computation of and Scales We“

analyses

Background check: 16 seconds.
The software is sequential. It could be made parallel.

Sort for sequential processing: 20 seconds.
The software is sequential and could be made parallel.

This software mainly evolves as a consequence of code
unification with the En-Var group. It is not discussed further.

cost of analysis components

Parallel EnKF A .
algorithm The cost of the analysis is shown for a case with 288 cores.

description of routine seconds percentage

update state vector 543 80.4 %
communicate observations 28 4.1 %

Cholesky decomposition 26 3.9 %
communicate H(x) 20 3.0 %

_ perturb observations 13 1.9 %

e g update extended part of state vector 10 1.5%
write analyses 10 1.5%

read trial fields 8 1.2 %

wall clock 675 100 %

The two routines in blue parallelize well. One nicely optimized
routine takes more than 80 % of the cost. Routines in red have
yet to benefit from optimization.

updating the state vector in parallel

Parallel EnKF
algorithm

Parallelization strategies

3
/ P-4

REGION-1

Subsequent grid points
are assigned to

25 1 subsequent processes in
a round-robin manner.

latitude
S
T

strong scaling

Since the number of grid
o 1 points is large, it is easy
to parallelize operations

. ‘ ‘ ‘ ‘ ‘ involving PHT .

longitude

Parallel EnKF
algorithm

Given a sequential fraction s and N CPUs, the application
speedup S is:

1
S = 1-s
STW

(Amdahl’s law)

strong scaling

In the example above, with 81.9 % parallel, we have s ~ 0.18.
The maximum speedup, for N — oo will be 5.5.

This relation is verified with a strong scaling test.

strong scaling results

Parallel EnKF
algorithm

strong scaling

time (s)

strong scaling using only MPI

2048 |

1024

256

T
measured ime +
Amdahl's law

perfect parallel program 4

128 256 512 1024 2048 4096

number of cores

In a strong scaling
experiment, one tries to
run a given problem
faster using a bigger
fraction of the cluster.

The current EnKF code
does not scale well
beyond say 1000 cores.
At that stage, however,
the analysis completes in
about 5 minutes.

Parallel EnKF
algorithm

weak scaling

Good strong scaling is difficult because a very high fraction of
the code needs to be parallelized. In practice, once we have
reasonably fast execution, we are more likely to want to
increase the problem size to obtain better results.

Currently, 80 % of the cost goes to updating the state vector.
The corresponding operations involve the matrix PH”. From
an operation count we have:

Cost = Neps X Nmoder X Nops-
In weak scaling experiments, the number of nodes is

proportional to the computed cost. ldeally, the execution time
(secs) remains constant when the problem is made bigger.

Parallel EnKF
algorithm

weak scaling with ensemble size

weak scaling

1400 . ;
measured sequential +
measured parallel
. measured total time
1200 sequential model 4
o parallel model -------
3 total model -
1000 T i
R e e ¥
% 800 e 4
= O |
‘T 600 | N

400 - <
200 - 4

.
128 256
ensemble size

ensemble size.

L
512

Here the number of cores equals the

1024

In a weak scaling
experiment, one tries to
run a bigger problem in
the same time on a
bigger fraction of the
cluster.

The execution time stays
about the same when
more members are used.
Unfortunately the
fraction associated with
the parallel problem
decreases.

weak scaling with the number of grid points

Parallel EnKF
algorithm

A weak scaling experiment has been performed with

m a 600 x 300 horizontal grid (as at operations since Feb. 13
2013) and

m a 800 x 400 horizontal grid (in preparation for a delivery in
2013).

The weak scaling was nearly perfect (not shown).
Consequently, using more nodes we can move to higher

resolution grids and maintain our current execution times for
the analysis.

weak scaling

For a 1200 x 600 grid, one of our programs did not have
enough memory to run. This has yet to be investigated.

scaling with the number of observations

Parallel EnKF
algorithm

weak scaling with observation count
1200 T T T

T
1000 |- E 1
800 |- + 4

600 F 4

time (s)

400 | 4
weak scaling

200 - B

total measured execution ime +
linear model -------
0 . . . h

0 1 2 3 4 5
number of observation sets

Here, we use 384 cores per observation set.

The cost of most of
the unoptimized
sequential code
depends on the
observation count.
The execution time
almost doubles when
the number of
observations is
increased with a
factor of 4.

summary of scaling results

Parallel EnKF
algorithm

Using a large fraction of an IBM P7 cluster, the
operational EnKF could run in 4 minutes.

m A larger fraction could also be used towards having more
members or bigger grids.

m Before we increase the observation count by a substantial
weak scaling factor (> 5), we may need to revisit the code and/or the
algorithm.

m Since we can run bigger problems, it is interesting to
investigate how much quality we gain with that.

I*I relationship between numerical cost
and meteorological quality

Parallel EnKF
algorithm

Recently (February 13 2013), we had an upgrade to the Global
Ensemble Prediction System (GEPS) and EnKF.

EnKF parameters
Date Nion Nzt Ny, | timestep Nops
August 2011 | 400 200 58 0:30 300 000
February 2013 | 600 300 74 0:20 700 000

application
etter

results

This upgrade was closely related to the migration from a pair
of IBM P5 clusters (2000 cores each) to a pair of IBM P7
clusters (8000 cores each). The impact of the individual
resolution changes on analysis quality will be shown.

I*I The 13 February 2013 EnKF upgrade
From “reference” to “newops”

Parallel EnKF
algorithm efficiency of EnKF improvements

3.22 T T
ensemble size
3.2 _— i
.18 reference]
316 multiscale]
temporal
£ 3.14 E
2
3 3.12 |- / ensemble size B
©
& 31| — |
L e horizontal resolution
application 5
towards better 3.08 - . o
results horizontal
3.06 - filteredtopo dense B
304 b vertical i
vertical resolution
.02 B
3.0 data thinning
3 L L L L
0.5 1 2 4 8 16

Analysis cost

Parallel EnKF
algorithm

code complexity
and evolution

The EnKF system originated as a stand-alone system with only
inputs from the global assimilation system.

Soon, we could be two-way coupled to:
an EnKF system for surface fields,

an En-Var system for the deterministic analysis,

We could be providing input to:
a regional EnKF (itself possibly linked to a regional
En-Var),
a regional EPS,
the global EPS.

code history

Parallel EnKF
algorithm

Currently our center has data-assimilation software for:
the EnKF (which was developed from scratch and with
input from the global 3D-Var),

the En-Var (which evolved from the global 4D-Var),

the regional 4D-Var (which evolved from the global
4D-Var).

code complexity
and evolution

Some of the code has a long history (10-20 years). Some of the
original developers have now left our center or could retire soon.

New developments, like changing to a new version of the
RTTOV operator, have to be introduced into the different
coding systems. There is some duplication of work.

code evolution

Parallel EnKF
algorithm

Our center is putting a major effort into:
m the transition towards a unified job-sequencer and common
scripting standards. The transition is almost completed.

m the transition towards the use of shared Fortran-90
code compleity modules. We recently managed to unify the handling of
observational data between the En-Var and EnKF group.

The full unification, revision and modernization of all
data-assimilation operators is a multi-year continuing effort.

scientific challenges

Parallel EnKF
algorithm

In the coming years, we can likely benefit from having
increasingly powerful computer clusters.

At the same time, we would to like to make progress on some
challenging data-assimilation issues:

we need to reduce the amplitude of the “model error”
scientific Component,

challenges

we need to deal with correlated observation errors,

we need to reduce the model spin-up and shorten the
data-assimilation window.

ad

Parallel EnKF
algorithm

Thank you

scientific
challenges

	Introduction
	parallel computers

	The EnKF algorithm
	Monte Carlo approach to data assimilation
	sequential algorithm
	time interpolation
	localization

	Scaling
	computation of analyses
	strong scaling
	weak scaling
	application towards better results

	Discussion
	code complexity and evolution
	scientific challenges

