Hybrid 4DVAR and nonlinear EnKS method without tangents and adjoints

E. Bergou, S. Gratton, and J. Mandel

INP-ENSEEIHT, CERFACS Toulouse, and University of Colorado Denver

Probabilistic Approaches to Data Assimilation for Earth Systems Workshop, February 2013
Outline

1. Problem statement
2. Globalisation methods
3. A LM-EnKS method
4. Computational results
5. Summary
Outline

1. Problem statement
2. Globalisation methods
3. A LM-EnKS method
4. Computational results
5. Summary
Problem statement

Let consider the following **stochastic non necessary linear** system:

\[
\begin{align*}
X_0 &= x_b + V_0, \quad V_0 \sim N(0, B) \\
X_i &= \mathcal{M}_i(X_{i-1}) + V_i, \quad V_i \sim N(0, Q_i) \quad \text{where} \\
d_i &= \mathcal{H}_i(X_i) + W_i, \quad W_i \sim N(0, R_i)
\end{align*}
\]

- \(X_i\) is the \(n\) dimensional **state** at time \(i\); it is random,
- \(d_i\) is the random **observation** vector at time \(i\),
- \(\mathcal{M}_i\) is the (nonlinear) model **propagator** at time \(i\),
- \(\mathcal{H}_i\) is the **observation operator** at time \(i\), it is not linear,
- \(x_b\) is **background vector**,
- \(B\) is the **background error covariance matrix**,
- \(Q_i\) and \(R_i\) are respectively the model, and observation, error covariance matrices at time \(i\),
Our goal is to find the best estimate of the state X_0, \ldots, X_k knowing the data set d_1, \ldots, d_k.

4DVAR method solves this problem, in the sense of minimizing the sum of the squares of the errors, weighted by the error covariance matrices.
Problem statement

\[
X_0 = x_b + V_0, \quad V_0 \sim N(0, B)
\]
\[
X_i = M_i(X_{i-1}) + V_i, \quad V_i \sim N(0, Q_i)
\]
\[
d_i = H_i(X_i) + W_i, \quad W_i \sim N(0, R_i)
\]

- Our goal is to find the best estimate of the state \(X_0, \ldots, X_k\) knowing the data set \(d_1, \ldots, d_k\).
- 4DVAR method solves this problem, in the sense of minimizing the sum of the squares of the errors, weighted by the error covariance matrices.
Weak constraint 4DVar

We want to determine \(x_0, \ldots, x_k \) \((x_i = \text{state at time } i)\) from background, model and observations (data)

\[
x_0 \approx x_b \quad \text{state at time } 0 \approx \text{the background},
\]

\[
x_i \approx M_i (x_{i-1}) \quad \text{state evolution } \approx \text{by the model },
\]

\[
H_i (x_i) \approx d_i \quad \text{value of observation operator } \approx \text{data}.
\]

\(\Rightarrow \) nonlinear least-squares problem

\[
J(x_{0:k}) = \| x_0 - x_b \|_B^{-1} + \sum_{i=1}^{k} \| x_i - M_i (x_{i-1}) \|_{Q_i}^{-1}
\]

\[
+ \sum_{i=1}^{k} \| d_i - H_i (x_i) \|_{R_i}^{-1} \rightarrow \min_{x_{0:k}}
\]
We want to determine x_0, \ldots, x_k ($x_i =$ state at time i) from background, model and observations (data)

\[x_0 \approx x_b \quad \text{state at time } 0 \approx \text{the background}, \]
\[x_i \approx M_i(x_{i-1}) \quad \text{state evolution } \approx \text{by the model}, \]
\[H_i(x_i) \approx d_i \quad \text{value of observation operator } \approx \text{data}. \]

\[\Rightarrow \text{nonlinear least-squares problem} \]

\[J(x_{0:k}) = \| x_0 - x_b \|_B^{-1} + \sum_{i=1}^{k} \| x_i - M_i(x_{i-1}) \|_Q^{-1} \]
\[+ \sum_{i=1}^{k} \| d_i - H_i(x_i) \|_R^{-1} \rightarrow \min_{x_{0:k}} \]
Weak constraint 4DVar

- Originally in 4DVar (strong constraint), \(x_i = M_i(x_{i-1}) \) (perfect model). The weak constraint \(x_i \approx M_i(x_{i-1}) \) accounts for model error (Trémolet, 2007).

- In the linear case, Kalman Filter and Kalman Smoother (KF and KS) and their Ensemble variants (EnKF and EnKS) (Evensen, 2009) give the pdf (mean and covariance) of the state knowing the data set.

- In the non-linear case, variants of the Kalman Filter were proposed such as Extended Kalman Filter (EKF). These methods may fail to find a minimum of 4DVar, especially for highly non-linear case.

- Iterated Kalman Filter or 4DVar Incremental approach (Courtier et al., 1994) may also fail to converge.
Weak constraint 4DVar

- Originally in 4DVar (strong constraint), \(x_i = M_i (x_{i-1}) \) (perfect model). The weak constraint \(x_i \approx M_i (x_{i-1}) \) accounts for model error (Trémolet, 2007).

- In the linear case Kalman Filter and Kalman Smoother (KF and KS) and their Ensemble variants (EnKF and EnKS) (Evensen, 2009) give the pdf (mean and covariance) of the state knowing the data set,

- In the non linear case, variants of the Kalman Filter were proposed such as Extended Kalman Filter (EKF). These methods may fail to find a minimum of 4DVar, especially for highly non linear case,

- Iterated Kalman filter or 4DVar Incremental approach (Courtier et al., 1994) may also fail to converge.
Weak constraint 4DVar

- Originally in 4DVar (strong constraint), \(x_i = M_i(x_{i-1}) \) (perfect model). The weak constraint \(x_i \approx M_i(x_{i-1}) \) accounts for model error (Trémolet, 2007).
- In the linear case Kalman Filter and Kalman Smoother (KF and KS) and their Ensemble variants (EnKF and EnKS) (Evensen, 2009) give the pdf (mean and covariance) of the state knowing the data set,
- In the non linear case, variants of the Kalman Filter were proposed such as Extended Kalman Filter (EKF). These methods may fail to find a minimum of 4DVar, especially for highly non linear case,
- Iterated Kalman filter or 4DVar Incremental approach (Courtier et al., 1994) may also fail to converge.
Weak constraint 4DVar

- Originally in 4DVar (strong constraint), \(x_i = M_i(x_{i-1}) \) (perfect model). The weak constraint \(x_i \approx M_i(x_{i-1}) \) accounts for model error (Trémolet, 2007).

- In the linear case, Kalman Filter and Kalman Smoother (KF and KS) and their Ensemble variants (EnKF and EnKS) (Evensen, 2009) give the pdf (mean and covariance) of the state knowing the data set.

- In the non-linear case, variants of the Kalman Filter were proposed such as Extended Kalman Filter (EKF). These methods may fail to find a minimum of 4DVar, especially for highly non-linear case.

- Iterated Kalman filter or 4DVar Incremental approach (Courtier et al., 1994) may also fail to converge.

Hybrid 4DVAR and nonlinear EnKS method
Incremental 4DVar

- Incremental approach (Courtier et al., 1994): linearization

\[
\mathcal{M}_i (x_{i-1} + \delta x_{i-1}) \approx \mathcal{M}_i (x_{i-1}) + \mathcal{M}'_i (x_{i-1}) \delta x_{i-1},
\]

\[
\mathcal{H}_i (x_i + \delta x_i) \approx \mathcal{H}_i (x_i) + \mathcal{H}'_i (x_i) \delta x_i,
\]

gives the Gauss-Newton method, (Bell, 1994), (Nichols et al., 2007) iterations

\[
x_0:k \leftarrow x_0:k + \delta x_0:k
\]

with the linear least-squares problem for the increments

\[
\|x_0 + \delta x_0 - x_b\|_B^{-1} + \sum_{i=1}^{k} \|d_i - \mathcal{H}_i (x_i) - \mathcal{H}'_i (x_i) \delta x_i\|_{R_i}^{-1}
\]

\[
+ \sum_{i=1}^{k} \|x_i + \delta x_i - \mathcal{M}_i (x_{i-1}) - \mathcal{M}'_i (x_{i-1}) \delta x_{i-1}\|_{Q_i}^{-1}
\]
Incremental 4DVar

- Incremental approach (Courtier et al., 1994): linearization

\[M_i (x_{i-1} + \delta x_{i-1}) \approx M_i (x_{i-1}) + M_i' (x_{i-1}) \delta x_{i-1}, \]
\[H_i (x_i + \delta x_i) \approx H_i (x_i) + H_i' (x_i) \delta x_i, \]

- gives the Gauss-Newton method, (Bell, 1994), (Nichols et al., 2007) iterations \(x_{0:k} \leftarrow x_{0:k} + \delta x_{0:k} \) with the linear least-squares problem for the increments

\[
\| x_0 + \delta x_0 - x_b \|_B^{-1} + \sum_{i=1}^{k} \| d_i - H_i (x_i) - H_i' (x_i) \delta x_i \|_{R_i}^{-1}
\]
\[
+ \sum_{i=1}^{k} \| x_i + \delta x_i - M_i (x_{i-1}) - M_i' (x_{i-1}) \delta x_{i-1} \|_{Q_i}^{-1}
\]

Hybrid 4DVAR and nonlinear EnKS method
Incremental 4Dvar

\[\| x_0 + \delta x_0 - x_b \|^2 B^{-1} + \sum_{i=1}^{k} \| d_i - \mathcal{H}_i(x_i) - \mathcal{H}'_i(x_i) \delta x_i \|^2 R_i^{-1} \]

\[+ \sum_{i=1}^{k} \| x_i + \delta x_i - \mathcal{M}_i(x_{i-1}) - \mathcal{M}'_i(x_{i-1}) \delta x_{i-1} \|^2 Q_i^{-1} \]

- **Tangent and adjoint** code needed,
- **Is difficult to parallelize,**
- **May fail to converge.**
Problem statement
Globalisation methods
A LM-EnKS method
Computational results
Summary
References

Weak constraint 4DVAR
Incremental 4DVar

Incremental 4DVar

\[
\| x_0 + \delta x_0 - x_b \|_B^{-1} + \sum_{i=1}^{k} \| d_i - \mathcal{H}_i(x_i) - \mathcal{H}_i'(x_i) \delta x_i \|_R^{-1}
\]

\[
+ \sum_{i=1}^{k} \| x_i + \delta x_i - \mathcal{M}_i(x_{i-1}) - \mathcal{M}_i'(x_{i-1}) \delta x_{i-1} \|_Q^{-1}
\]

- **Tangent and adjoint** code needed,
- **Is difficult** to parallelize,
- May fail to converge.

Hybrid 4DVAR and nonlinear EnKS method
Incremental 4DVar

\[\|x_0 + \delta x_0 - x_b\|^2_{B^{-1}} + \sum_{i=1}^{k} \|d_i - \mathcal{H}_i(x_i) - \mathcal{H}'_i(x_i)\delta x_i\|^2_{R_i^{-1}} \]

\[+ \sum_{i=1}^{k} \|x_i + \delta x_i - \mathcal{M}_i(x_{i-1}) - \mathcal{M}'_i(x_{i-1})\delta x_{i-1}\|^2_{Q_i^{-1}} \]

- **Tangent and adjoint** code needed,
- **Is difficult** to parallelize,
- **May fail** to converge.
Outline

1. Problem statement
2. Globalisation methods
3. A LM-EnKS method
4. Computational results
5. Summary
Globalisation methods

- Convergence from any starting point obtained with the globalization techniques based on the control of the size of the increments.
 - Trust region method: at each iteration a linearized problem is solved within a region where the linear approximation is trusted.
 - Levenberg-Marquart method: a penalized variant of the nonlinear least-squares problem is solved.
Globalisation methods

- Convergence from any starting point obtained with the globalization techniques based on the control of the size of the increments.
- Trust region method: at each iteration a linearized problem is solved within a region where the linear approximation is trusted.
- Levenberg-Marquart method: a penalized variant of the nonlinear least-squares problem is solved.
Globalisation methods

- Convergence from any starting point obtained with the globalization techniques based on the control of the size of the increments.
 - Trust region method: at each iteration a linearized problem is solved within a region where the linear approximation is trusted.
 - Levenberg-Marquart method: a penalized variant of the nonlinear least-squares problem is solved.
Levenberg-Marquart Method

- Add a penalty (Tikhonov regularization) to control the size of the increments,
- Let consider the following nonlinear least-squares:

$$\arg\ min_{x\in\mathbb{R}^n} F(x) = \|f(x)\|^2,$$

where f from $\mathbb{R}^n \to \mathbb{R}^m$ is a (possibly nonlinear) function.
- In the Levenberg-Marquart method, at each iteration we solve the linear least-squares problem:

$$FL(x_j + \delta x) = \|f(x_j) + J_f(x_j)\delta x\|^2 + \gamma\|\delta x\|^2 \to \min_{\delta x},$$

where x_j is the j-th iterate, $J_f(x_j)$ is the Jacobian of f at x_j and γ is the regularization parameter,
Levenberg-Marquart Method

- Add a penalty (Tikhonov regularization) to control the size of the increments,
- Let consider the following nonlinear least-squares:

\[
\arg \min_{x \in \mathbb{R}^n} F(x) = \|f(x)\|^2,
\]

where \(f \) from \(\mathbb{R}^n \to \mathbb{R}^m \) is a (possibly nonlinear) function.

- In the Levenberg-Marquart method, at each iteration we solve the linear least-squares problem:

\[
FL(x_j + \delta x) = \|f(x_j) + J_f(x_j)\delta x\|^2 + \gamma \|\delta x\|^2 \to \min_{\delta x},
\]

where \(x_j \) is the j-th iterate, \(J_f(x_j) \) is the Jacobian of \(f \) at \(x_j \) and \(\gamma \) is the regularization parameter,
Levenberg-Marquart Method

- Add a penalty *(Tikhonov regularization)* to control the size of the increments,
- Let consider the following nonlinear least-squares:

\[
\arg\min_{x \in \mathbb{R}^n} F(x) = \|f(x)\|^2,
\]

where \(f \) from \(\mathbb{R}^n \rightarrow \mathbb{R}^m \) is a (possibly nonlinear) function.
- In the Levenberg-Marquart method, at each iteration we solve the linear least-squares problem:

\[
FL(x_j + \delta x) = \|f(x_j) + J_f(x_j)\delta x\|^2 + \gamma \|\delta x\|^2 \rightarrow \min_{\delta x},
\]

where \(x_j \) is the j-th iterate, \(J_f(x_j) \) is the Jacobian of \(f \) at \(x_j \) and \(\gamma \) is the regularization parameter,
Levenberg-Marquart Method

- The solution of this linear least-squares is a solution of the normal equation

\[(J_f(x_j)^T J_f(x_j) + \gamma I) \delta x = -J_f(x_j)f(x_j) = -\nabla F(x_j), \]

- When \(\gamma = 0 \), \(\delta x = -(J_f(x_j)^T J_f(x_j))^{-1} \nabla F(x_j) = \) Incremental method (Gauss-Newton) (fast convergence).
- When \(\gamma \to \infty \), \(\delta x \to 0 \) and it is positively proportional to \(-\nabla F(x_j) \) (steepest descent),
- When \(0 < \gamma < \infty \) there is a balance between the Gauss-Newton direction and steepest descent direction,
\[\Rightarrow \text{The term } \gamma \| \delta x \|^2 \text{ controls the step size as well as rotates the step direction towards the steepest descent.} \]
Levenberg-Marquart Method

The solution of this linear least-squares is a solution of the normal equation

$$(J_f(x_j)^T J_f(x_j) + \gamma I)\delta x = -J_f(x_j) f(x_j) = -\nabla F(x_j),$$

When $\gamma = 0$, $\delta x = -(J_f(x_j)^T J_f(x_j))^{-1}\nabla F(x_j)$ = Incremental method (Gauss-Newton) (fast convergence).

When $\gamma \to \infty$, $\delta x \to 0$ and it is positively proportional to $-\nabla F(x_j)$ (steepest descent),

When $0 < \gamma < \infty$ there is a balance between the Gauss-Newton direction and steepest descent direction,

\Rightarrow The term $\gamma \|\delta x\|^2$ controls the step size as well as rotates the step direction towards the steepest descent.
Levenberg-Marquart Method

The solution of this linear least-squares is a solution of the normal equation

\[(J_f(x_j)^T J_f(x_j) + \gamma I)\delta x = -J_f(x_j)f(x_j) = -\nabla F(x_j),\]

When \(\gamma = 0\), \(\delta x = -(J_f(x_j)^T J_f(x_j))^{-1}\nabla F(x_j)\) (Incremental method \((\text{Gauss-Newton})\) (fast convergence).

When \(\gamma \to \infty\), \(\delta x \to 0\) and it is positively proportional to \(-\nabla F(x_j)\) (steepest descent).

When \(0 < \gamma < \infty\) there is a balance between the Gauss-Newton direction and steepest descent direction, \(\Rightarrow\) The term \(\gamma \|\delta x\|^2\) controls the step size as well as rotates the step direction towards the steepest descent.
Levenberg-Marquart Method

The solution of this linear least-squares is a solution of the normal equation

\[(J_f(x_j)^T J_f(x_j) + \gamma I)\delta x = -J_f(x_j) f(x_j) = -\nabla F(x_j),\]

- When \(\gamma = 0\), \(\delta x = -(J_f(x_j)^T J_f(x_j))^{-1} \nabla F(x_j)\) is Incremental method (Gauss-Newton) (fast convergence).
- When \(\gamma \to \infty\), \(\delta x \to 0\) and it is positively proportional to \(-\nabla F(x_j)\) (steepest descent).
- When \(0 < \gamma < \infty\) there is a balance between the Gauss-Newton direction and steepest descent direction,
 \(\Rightarrow\) The term \(\gamma \|\delta x\|^2\) controls the step size as well as rotates the step direction towards the steepest descent.
In LM method γ may remain constant over the iterations, or adaptive:

1. γ remains constant, it must be chosen large enough to ensure the convergence.
2. γ adaptive: at each iteration we compute

$$\psi = \frac{F(x_j) - F(x_j + \delta x)}{F(x_j) - FL(x_j + \delta x)}$$

- If $\psi \geq \sigma > 0$, we decrease γ,
- Else, we increase γ,
In LM method γ may remain constant over the iterations, or adaptive:

1. γ remains constant, it must be chosen large enough to ensure the convergence.
2. γ adaptive: at each iteration we compute

$$\psi = \frac{F(x_j) - F(x_j + \delta x)}{F(x_j) - F(x_j + \delta x)}$$

- If $\psi \geq \sigma > 0$, we decrease γ.
- Else, we increase γ.

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model
In LM method γ may remain constant over the iterations, or adaptive:

1. γ remains constant, it must be chosen large enough to ensure the convergence.
2. γ adaptive: at each iteration we compute

$$\psi = \frac{F(x_j) - F(x_j + \delta x)}{F(x_j) - FL(x_j + \delta x)}$$

- If $\psi \geq \sigma > 0$, we decrease γ,
- Else, we increase γ,

Hybrid 4DVAR and nonlinear EnKS method
In LM method γ may remain constant over the iterations, or adaptive:

1. γ remains constant, it must be chosen large enough to ensure the convergence.
2. γ adaptive: at each iteration we compute

$$\psi = \frac{F(x_j) - F(x_j + \delta x)}{F(x_j) - FL(x_j + \delta x)}$$

- If $\psi \geq \sigma > 0$, we decrease γ.
- Else, we increase γ.
In LM method γ may remain constant over the iterations, or adaptive:

1. γ remains constant, it must be chosen large enough to ensure the convergence.
2. γ adaptive: at each iteration we compute

$$\psi = \frac{F(x_j) - F(x_j + \delta x)}{F(x_j) - FL(x_j + \delta x)}$$

- If $\psi \geq \sigma > 0$, we decrease γ,
- Else, we increase γ,

Levenberg-Marquart Method
Linearized 4DVar as Kalman smoother
Derivative-free implementation of the EnKS - model
Levenberg-Marquart Method

In 4DVar linearized problem we add regularization as follows,

\[
\tilde{J}(x_0; k) = \| x_0 + \delta x_0 - x_b \|^2_{B^{-1}} + \sum_{i=1}^{k} \left\| x_i + \delta x_i - \mathcal{M}_i(x_{i-1}) - \mathcal{M}_i'(x_{i-1}) \delta x_{i-1} \right\|_{Q_i^{-1}}^2 \\
+ \sum_{i=1}^{k} \left\| d_i - \mathcal{H}_i(x_i) - \mathcal{H}_i'(x_i) \delta x_i \right\|_{R_i^{-1}}^2 + \gamma \sum_{i=0}^{k} \| \delta x_i \|^2_{S_i^{-1}}
\]

Assume the model and observation operator are regular and that \(\gamma \) is larger than a problem dependent constant: The gradient of the iterates goes to 0 for any initial iterate (global convergence property).
In 4DVar linearized problem we add regularization as follows,

\[\tilde{J}(x_{0:k}) = \|x_0 + \delta x_0 - x_b\|^2_{B^{-1}} \]

\[+ \sum_{i=1}^{k} \|x_i + \delta x_i - M_i(x_{i-1}) - M_i'(x_{i-1}) \delta x_{i-1}\|^2_{Q_i^{-1}} \]

\[+ \sum_{i=1}^{k} \|d_i - H_i(x_i) - H_i'(x_i) \delta x_i\|^2_{R_i^{-1}} + \gamma \sum_{i=0}^{k} \|\delta x_i\|^2_{S_i^{-1}} \]

Assume the model and observation operator are regular and that \(\gamma \) is larger than a problem dependent constant: The gradient of the iterates goes to 0 for any initial iterate (global convergence property).
Linearized 4DVar as Kalman smoother

Write the linear least-squares problem for the increments $z_{0:k} = \delta x_{0:k}$ as

$$\|z_0 - z_b\|^2_{B^{-1}} + \sum_{i=1}^{k} \|z_i - M_i z_{i-1} - m_i\|^2_{Q_i^{-1}} + \sum_{i=1}^{k} \|d_i - H_i z_i\|^2_{R_i^{-1}}$$

$$z_b = x_b - x_0, \quad m_i = M_i (x_{i-1}) - x_i, \quad d_i = d_i - H_i (x_i), \quad M_i = M'_i (x_{i-1}), \quad H_i = H'_i (x_i)$$

This is the same function as minimized in the Kalman smoother for the following linear and gaussian system (Rauch et al., 1965; Bell, 1994)

$$Z_0 = z_b + V_0, \quad V_0 \sim N(0, B)$$
$$Z_i = M_i Z_{i-1} + m_i + V_i, \quad V_i \sim N(0, Q_i)$$
$$d_i = H_i Z_i + W_i, \quad W_i \sim N(0, R_i)$$
Write the linear least-squares problem for the increments $z_{0:k} = \delta x_{0:k}$ as

$$
\| z_0 - z_b \|^2_{B^{-1}} + \sum_{i=1}^{k} \| z_i - M_i z_{i-1} - m_i \|^2_{Q_i^{-1}} + \sum_{i=1}^{k} \| d_i - H_i z_i \|^2_{R_i^{-1}}
$$

$$
z_b = x_b - x_0, \quad m_i = M_i (x_{i-1}) - x_i, \quad d_i = d_i - H_i (x_i),
$$

- This is the same function as minimized in the Kalman smoother for the following linear and gaussian system (Rauch et al., 1965; Bell, 1994)

$$
Z_0 = z_b + V_0, \quad V_0 \sim N(0, B)
$$

$$
Z_i = M_i Z_{i-1} + m_i + V_i, \quad V_i \sim N(0, Q_i)
$$

$$
d_i = H_i Z_i + W_i, \quad W_i \sim N(0, R_i)
$$
Ensemble Kalman filter (EnKF) and smoother (EnKS)

$Z^N_{i|k} = [z^1_{i|k}, \ldots, z^N_{i|k}]$ is ensemble of states at time i, conditioned on all data up to time k.

Algorithm (EnKF)

1. **Initialize**

 $$z^\ell_{0|0} \sim N(z_b, B), \quad \ell = 1, \ldots, N. \quad (1)$$

2. **For $i = 1, \ldots, k$, advance in time**

 $$z^\ell_{i|i-1} = M_i z^\ell_{i-1|i-1} + m_i + v^\ell_i, \quad v^\ell_i \sim N(0, Q_i), \quad (2)$$

 $$z^\ell_{i|i} = z^\ell_{i|i-1} - P^N_i H_i^T (H_i P^N_i H_i^T + R_i)^{-1} \cdot (H_i z^\ell_{i|i-1} - d_i - w^\ell_i), \quad w^\ell_i \sim N(0, R_i), \quad (3)$$
The EnKS is obtained by applying the same analysis step (3) as in the EnKF to the composite state $Z_{0:i|i-1}$ from time 0 to i, conditioned on data up to time $i-1$,

$$\begin{bmatrix}
Z_{0|i-1}^N \\
Z_{1|i-1}^N \\
\vdots \\
Z_{i|i-1}^N
\end{bmatrix}.$$

in the place of $Z_{i|i-1}$.

The observation term $H_i Z_{i|i-1}^N - d_i$ becomes

$$[0, \ldots, H_i] Z_{0:i|i-1}^N - d_i = H_i Z_{i|i-1}^N - d_i. \quad (5)$$
Ensemble Kalman filter (EnKF) and smoother (EnKS)

- The EnKS is obtained by applying the same analysis step (3) as in the EnKF to the composite state $Z_{0:i|i-1}$ from time 0 to i, conditioned on data up to time $i-1$,

$$Z_{0:i|i-1}^N = \begin{bmatrix} Z_{0|i-1}^N \\ \vdots \\ Z_{i|i-1}^N \end{bmatrix}.$$

in the place of $Z_{i|i-1}$.

- The observation term $H_iZ_{i|i-1}^N - d_i$ becomes

$$[0, \ldots, H_i]Z_{0:i|i-1}^N - d_i = H_iZ_{i|i-1}^N - d_i. \quad (5)$$
Ensemble Kalman filter (EnKF) and smoother (EnKS)

Algorithm (EnKS)

Given z_b,

1. Initialize $z_0^\ell | 0 \sim N (z_b, B)$, $\ell = 1, \ldots, N$.

2. For $i = 1, \ldots, k$, advance in time,

$$z_i^\ell | i-1 = M_i z_{i-1}^\ell | i-1 + m_i + v_i^\ell, \quad v_i^\ell \sim N (0, Q_i), \quad (6)$$

$$Z^N_{0:i|i} = Z^N_{0:i|i-1} - P^N_{0:i,0:i-1} \tilde{H}_0:i^T (\tilde{H}_0:i P_{0:i,0:i-1} \tilde{H}_0:i^T + R_i)^{-1} \cdot (\tilde{H}_0:i Z^N_{0:i|i-1} - d_i - w_i), \quad w_i \sim N (0, R_i), \quad (7)$$

where $\tilde{H}_0:i = [0, \ldots, H_i]$, and $P^N_{0:i,0:i-1}$ is the sample covariance matrix of $Z^N_{0:i|i-1}$.

Levenberg-Marquart Method

Linearized 4DVar as Kalman smoother

Derivative-free implementation of the EnKS - model
The linearized model $M_i = M'_i(x_{i-1})$ occurs only in advancing the time as an action on the ensemble $Z^N = [z^n] = [\delta x^n]$,
\[M_i \delta x_{i-1}^n + m_i = M'_i(x_{i-1}) \delta x_{i-1}^n + M_i(x_{i-1}) - x_i, \]
Approximating by finite differences with a parameter $\tau > 0$:
\[M_i \delta x_{i-1}^n + m_i \approx \frac{M_i(x_{i-1} + \tau \delta x_{i-1}^n) - M_i(x_{i-1})}{\tau} + M_i(x_{i-1}) - x_i, \]
Accurate in the limit $\tau \to 0$.

Hybrid 4DVAR and nonlinear EnKS method
The linearized model $M_i = M_i' (x_{i-1})$ occurs only in advancing the time as an action on the ensemble $Z^N = [z^n] = [\delta x^n]$,

$$M_i \delta x_{i-1}^n + m_i = M_i' (x_{i-1}) \delta x_{i-1}^n + M_i (x_{i-1}) - x_i,$$

Approximating by finite differences with a parameter $\tau > 0$:

$$M_i \delta x_{i-1}^n + m_i \approx \frac{M_i (x_{i-1} + \tau \delta x_{i-1}^n) - M_i (x_{i-1})}{\tau} + M_i (x_{i-1}) - x_i,$$

Accurate in the limit $\tau \to 0$.

Derivative-free implementation of the EnKS - model

Hybrid 4DVAR and nonlinear EnKS method
Derivative-free implementation of the EnKS - model

The linearized model $M_i = M_i'(x_{i-1})$ occurs only in advancing the time as an action on the ensemble $Z^N = [z^n] = [\delta x^n]$,

$$M_i \delta x^n_{i-1} + m_i = M_i'(x_{i-1}) \delta x^n_{i-1} + M_i(x_{i-1}) - x_i,$$

Approximating by finite differences with a parameter $\tau > 0$:

$$M_i \delta x^n_{i-1} + m_i \approx \frac{M_i (x_{i-1} + \tau \delta x^n_{i-1}) - M_i (x_{i-1})}{\tau} + M_i (x_{i-1}) - x_i,$$

Accurate in the limit $\tau \to 0$.
The linearized model $\mathbf{M}_i = \mathbf{M}'_i(x_{i-1})$ occurs only in advancing the time as an action on the ensemble $Z^N = [z^n] = [\delta x^n]$,

$$\mathbf{M}_i \delta x^n_{i-1} + m_i = \mathbf{M}'_i(x_{i-1}) \delta x^n_{i-1} + \mathbf{M}_i(x_{i-1}) - x_i,$$

Approximating by finite differences with a parameter $\tau > 0$:

$$\mathbf{M}_i \delta x^n_{i-1} + m_i \approx \frac{\mathbf{M}_i(x_{i-1} + \tau \delta x^n_{i-1}) - \mathbf{M}_i(x_{i-1})}{\tau} + \mathbf{M}_i(x_{i-1}) - x_i,$$

Accurate in the limit $\tau \to 0$.
The linearized model $M_i = M'_i(x_{i-1})$ occurs only in advancing the time as an action on the ensemble $Z^N = [z^n] = [\delta x^n]$,

$$M_i \delta x^n_{i-1} + m_i = M'_i(x_{i-1}) \delta x^n_{i-1} + M_i(x_{i-1}) - x_i,$$

Approximating by finite differences with a parameter $\tau > 0$:

$$M_i \delta x^n_{i-1} + m_i \approx \frac{M_i(x_{i-1} + \tau \delta x^n_{i-1}) - M_i(x_{i-1})}{\tau} + M_i(x_{i-1}) - x_i,$$

Accurate in the limit $\tau \to 0$.
Derivative-free implementation of the EnKS - model

The linearized model \(M_i = M'_i(x_{i-1}) \) occurs only in advancing the time as an action on the ensemble \(Z^N = [z^n] = [\delta x^n] \),

\[
M_i \delta x^n_{i-1} + m_i = M'_i(x_{i-1}) \delta x^n_{i-1} + M_i(x_{i-1}) - x_i,
\]

Approximating by finite differences with a parameter \(\tau > 0 \):

\[
M_i \delta x^n_{i-1} + m_i \approx \frac{M_i(x_{i-1} + \tau \delta x^n_{i-1}) - M_i(x_{i-1})}{\tau} + M_i(x_{i-1}) - x_i,
\]

Accurate in the limit \(\tau \to 0 \).
Derivative-free implementation of the EnKS - model

The linearized model $M_i = M'_i(x_{i-1})$ occurs only in advancing the time as an action on the ensemble $Z^N = [z^n] = [\delta x^n]$,

$$M_i \delta x^n_{i-1} + m_i = M'_i(x_{i-1}) \delta x^n_{i-1} + M_i(x_{i-1}) - x_i,$$

Approximating by finite differences with a parameter $\tau > 0$:

$$M_i \delta x^n_{i-1} + m_i \approx \frac{M_i(x_{i-1} + \tau \delta x^n_{i-1}) - M_i(x_{i-1})}{\tau} + M_i(x_{i-1}) - x_i,$$

Accurate in the limit $\tau \to 0$.

Hybrid 4DVAR and nonlinear EnKS method
The observation matrix occurs only in the action on the ensemble,

\[H_i Z^N = [H_i \delta x^1, \ldots, H_i \delta x^N]. \]

Approximating by finite differences with a parameter \(\tau > 0 \):

\[H_i \delta x^n_i \approx \frac{H_i (x_{i-1} + \tau \delta x^n_{i-1}) - H_i (x_{i-1})}{\tau}, \]

Accurate in the limit \(\tau \to 0 \).

In tests below, \(\tau = 0.1 \) seems to work well enough. But this is application dependent: smaller \(\tau \) may be needed.
Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

\[H_i Z^N = [H_i \delta x^1, \ldots, H_i \delta x^N]. \]

Approximating by finite differences with a parameter \(\tau > 0 \):

\[H_i \delta x_i^n \approx \frac{H_i (x_{i-1} + \tau \delta x_{i-1}^n) - H_i (x_{i-1})}{\tau}, \]

Accurate in the limit \(\tau \to 0 \).

In tests below, \(\tau = 0.1 \) seems to work well enough. But this is application dependent: smaller \(\tau \) may be needed.
Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

\[H_i Z^N = \left[H_i \delta x^1, \ldots, H_i \delta x^N \right]. \]

Approximating by finite differences with a parameter \(\tau > 0 \):

\[H_i \delta x_i^n \approx \frac{\mathcal{H}_i (x_{i-1} + \tau \delta x_{i-1}) - \mathcal{H}_i (x_{i-1})}{\tau}, \]

Accurate in the limit \(\tau \to 0 \).

In tests below, \(\tau = 0.1 \) seems to work well enough. But this is application dependent: smaller \(\tau \) may be needed.
Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

\[H_i Z^N = \left[H_i \delta x^1, \ldots, H_i \delta x^N \right]. \]

Approximating by finite differences with a parameter \(\tau > 0 \):

\[H_i \delta x^n_i \approx \frac{H_i \left(x_{i-1} + \tau \delta x^n_{i-1} \right) - H_i \left(x_{i-1} \right)}{\tau}, \]

Accurate in the limit \(\tau \to 0 \).

In tests below, \(\tau = 0.1 \) seems to work well enough. But this is application dependent: smaller \(\tau \) may be needed.
Derivative-free implementation of the EnKS - observation

The observation matrix occurs only in the action on the ensemble,

\[H_i Z^N = [H_i \delta x^1, \ldots, H_i \delta x^N]. \]

Approximating by finite differences with a parameter \(\tau > 0 \):

\[H_i \delta x^n_i \approx \frac{\mathcal{H}_i (x_{i-1} + \tau \delta x^n_{i-1}) - \mathcal{H}_i (x_{i-1})}{\tau}, \]

Accurate in the limit \(\tau \to 0 \).

In tests below, \(\tau = 0.1 \) seems to work well enough. But this is application dependent: smaller \(\tau \) may be needed.
A LM-EnKS method

Given $x_0, x_1, \ldots, x_k, \gamma, \lambda > 1, \tau \leq 1, \sigma < 1$.

For outer loop $= 1, 2, \ldots$

- Initialize $z^\ell_0|0 \sim N(0, B)$, for $\ell = 1, \ldots, N$

- for $i = 1, \ldots, k$ advance z^ℓ in time following (2), with the
 linearized operator approximated by finite differences:

$$z^\ell_i|i-1 = \frac{M_i \left(x_{i-1} + \tau z^\ell_{i-1}|i-1 \right) - M_i \left(x_{i-1} \right) }{\tau} + M_i \left(x_{i-1} \right) - x_i + v^\ell_i, \quad v^\ell_i \sim N(0, Q_i)$$

followed by the smoother analysis step with matrix-vector
products $H^i z^i$ approximated by finite differences.
A LM-EnKS method

Given $x_0, x_1, \ldots, x_k, \gamma, \lambda > 1, \tau \leq 1, \sigma < 1$.

For outer loop $= 1, 2, \ldots$

- Initialize $z_{0|0}^\ell \sim N(0, B)$, for $\ell = 1, \ldots, N$

- for $i = 1, \ldots, k$ advance z^ℓ in time following (2), with the linearized operator approximated by finite differences:

 $$z_{i|i-1}^\ell = \frac{M_i (x_{i-1} + \tau z_{i-1|i-1}^\ell) - M_i (x_{i-1})}{\tau} + M_i (x_{i-1}) - x_i + v_i^\ell, \quad v_i^\ell \sim N(0, Q_i)$$

 followed by the smoother analysis step with matrix-vector products $H_i z_i$ approximated by finite differences.
Tikhonov regularization is considered as a further observations

\[\tilde{d}_i = 0 = z_i + \tilde{W}_i \quad \tilde{W}_i \sim N \left(0, \frac{1}{\gamma} S_i \right), \]

simply run the analysis step the second time with observation operator equal to identity and observation error covariance equal to \(\frac{1}{\gamma} S_i \).

\[x_i \leftarrow x_i + \frac{1}{N} \sum_{\ell=1}^{N} z^\ell_{i|k}, \quad i = 1, \ldots, k \]
Tikhonov regularization is considered as a further observations

\[\tilde{d}_i = 0 = z_i + \tilde{W}_i \quad \tilde{W}_i \sim N \left(0, \frac{1}{\gamma} S_i \right), \]

simply run the analysis step the second time with observation operator equal to identity and observation error covariance equal to \(\frac{1}{\gamma} S_i \).

\[x_i \leftarrow x_i + \frac{1}{N} \sum_{\ell=1}^{N} z_{i|k}^{\ell}, \quad i = 1, \ldots, k \]
Towards a convergence theory

- In linear case (Mandel et al., 2009), (Le Gland et al., 2011) show that when $N \to \infty$, $\forall 1 \leq p < \infty$ the sample mean and covariance computed by EnKF converge in L^p to the exact mean and covariance,

- We show the same result for the Kalman Smoother,

- When $\tau \to 0$ we prove that the LM-EnKS method is asymptotically equivalent to the method with the derivatives,

- When $\tau \to 0$ and $N \to \infty$, $\forall p, 1 \leq p < \infty$ we prove that at each iteration of LM-EnKS method, the sample mean converges in L^p to the exact solution of the linearized problem.

- When $\tau \to 0$ and $N \to \infty$, we prove that the gradient of the iterates goes to 0 for any initial iterate.
Towards a convergence theory

- In linear case (Mandel et al., 2009), (Le Gland et al., 2011) show that when $N \to \infty$, $\forall 1 \leq p < \infty$ the sample mean and covariance computed by EnKF converge in L^p to the exact mean and covariance,

- We show the same result for the Kalman Smoother,

- When $\tau \to 0$ we prove that the LM-EnKS method is asymptotically equivalent to the method with the derivatives,

- When $\tau \to 0$ and $N \to \infty$, $\forall p, 1 \leq p < \infty$ we prove that at each iteration of LM-EnKS method, the sample mean converges in L^p to the exact solution of the linearized problem.

- When $\tau \to 0$ and $N \to \infty$, we prove that the gradient of the iterates goes to 0 for any initial iterate.
Towards a convergence theory

- In linear case \((\text{Mandel et al., 2009}, \text{(Le Gland et al., 2011)})\) show that when \(N \to \infty, \forall 1 \leq p < \infty\) the sample mean and covariance computed by EnKF converge in \(L^p\) to the exact mean and covariance,

- We show the same result for the Kalman Smoother,

- When \(\tau \to 0\) we prove that the LM-EnKS method is asymptotically equivalent to the method with the derivatives,

- When \(\tau \to 0\) and \(N \to \infty, \forall p, 1 \leq p < \infty\) we prove that at each iteration of LM-EnKS method, the sample mean converges in \(L^p\) to the exact solution of the linearized problem.

- When \(\tau \to 0\) and \(N \to \infty\), we prove that the gradient of the iterates goes to 0 for any initial iterate.
Towards a convergence theory

- In linear case (Mandel et al., 2009), (Le Gland et al., 2011) show that when \(N \to \infty, \forall 1 \leq p < \infty \) the sample mean and covariance computed by EnKF converge in \(L^p \) to the exact mean and covariance,

- We show the same result for the Kalman Smoother,

- When \(\tau \to 0 \) we prove that the LM-EnKS method is asymptotically equivalent to the method with the derivatives,

- When \(\tau \to 0 \) and \(N \to \infty \), \(\forall p, 1 \leq p < \infty \) we prove that at each iteration of LM-EnKS method, the sample mean converges in \(L^p \) to the exact solution of the linearized problem.

- When \(\tau \to 0 \) and \(N \to \infty \), we prove that the gradient of the iterates goes to 0 for any initial iterate.
Towards a convergence theory

- In linear case (Mandel et al., 2009), (Le Gland et al., 2011) show that when $N \to \infty$, $\forall 1 \leq p < \infty$ the sample mean and covariance computed by EnKF converge in L^p to the exact mean and covariance,
- We show the same result for the Kalman Smoother,
- When $\tau \to 0$ we prove that the LM-EnKS method is asymptotically equivalent to the method with the derivatives,
- When $\tau \to 0$ and $N \to \infty$, $\forall p, 1 \leq p < \infty$ we prove that at each iteration of LM-EnKS method, the sample mean converges in L^p to the exact solution of the linearized problem.
- When $\tau \to 0$ and $N \to \infty$, we prove that the gradient of the iterates goes to 0 for any initial iterate.
Outline

1. Problem statement
2. Globalisation methods
3. A LM-EnKS method
4. Computational results
5. Summary
To evaluate the performance of the method, we use the twin experiment technique.

Truth = an integration of the model over time,

We obtain the background by adding a gaussian perturbation to the initial state,

We obtain the data d_i by applying the observation operator \mathcal{H}_i to the truth and then adding a gaussian perturbation,

Try to recover the truth using LM-EnKS method.
To evaluate the performance of the method, we use the twin experiment technique.

Truth = an integration of the model over time,

We obtain the background by adding a gaussian perturbation to the initial state,

We obtain the data d_i by applying the observation operator H_i to the truth and then adding a gaussian perturbation,

Try to recover the truth using LM-EnKS method.
Computational results

- To evaluate the performance of the method, we use the twin experiment technique.
- Truth = an integration of the model over time,
- We obtain the background by adding a gaussian perturbation to the initial state,
- We obtain the data d_i by applying the observation operator H_i to the truth and then adding a gaussian perturbation,
- Try to recover the truth using LM-EnKS method.
Computational results

- To evaluate the performance of the method, we use the twin experiment technique.
- Truth = an integration of the model over time,
- We obtain the background by adding a gaussian perturbation to the initial state,
- We obtain the data d_i by applying the observation operator H_i to the truth and then adding a gaussian perturbation,
- Try to recover the truth using LM-EnKS method.
Computational results

- To evaluate the performance of the method, we use the twin experiment technique.
- Truth = an integration of the model over time,
- We obtain the background by adding a Gaussian perturbation to the initial state,
- We obtain the data d_i by applying the observation operator \mathcal{H}_i to the truth and then adding a Gaussian perturbation,
- Try to recover the truth using LM-EnKS method.
$\frac{dx}{dt} = -\sigma(x - y)$

$\frac{dy}{dt} = \rho x - y - xz$

$\frac{dz}{dt} = xy - \beta z$

σ, ρ and β are chosen to have the values 10, 28 and $8/3$ respectively.
The system is discretized using the fourth-order Runge-Kutta method.

\[
B = \sigma_b^2 \text{diag} \left(1, \frac{1}{4}, \frac{1}{9} \right), \quad R_i = \sigma_r^2 I,
\]

\[
\mathcal{H}_i (x, y, z) = (x^2, y^2, z^2).
\]

\[Q_i = \varepsilon I, \quad \sigma_b = 1, \quad \sigma_r = 1, \quad \text{and} \quad \varepsilon = 0.0001.\]
Computational results
Lorenz 63 model

Figure: The first component $x(t)$ of the truth and five iterations of LM-EnKS. The initial conditions for the truth are $x(0) = 1$, $y(0) = 1$, and $z(0) = 1$, time step $dt = 0.1$, observations are the full state at each time, ensemble size is 100. And Root mean square error of LM-EnKS iterations over 50 timesteps.
Computational results
Lorenz 63 model

Figure: The first component $x(t)$ of the truth and five iterations of LM-EnKS. The initial conditions for the truth are $x(0) = 1$, $y(0) = 1$, and $z(0) = 1$, time step $dt = 0.1$, observations are the full state at each time, ensemble size is 100. And Root mean square error of LM-EnKS iterations over 50 timesteps.
Computational results
Lorenz 63 model

Figure: The first component $x(t)$ of the truth and five iterations of LM-EnKS. The initial conditions for the truth are $x(0) = 1$, $y(0) = 1$, and $z(0) = 1$, time step $dt = 0.1$, observations are the full state at each time, ensemble size is 100. And Root mean square error of LM-EnKS iterations over 50 time steps.
Figure: The first component $x(t)$ of the truth and five iterations of LM-EnKS. The initial conditions for the truth are $x(0) = 1$, $y(0) = 1$, and $z(0) = 1$, time step $dt = 0.1$, observations are the full state at each time, ensemble size is 100. And Root mean square error of LM-EnKS iterations over 50 time steps.
Computational results
Lorenz 63 model

Figure: The first component $x(t)$ of the truth and five iterations of LM-EnKS. The initial conditions for the truth are $x(0) = 1$, $y(0) = 1$, and $z(0) = 1$, time step $dt = 0.1$, observations are the full state at each time, ensemble size is 100. And Root mean square error of LM-EnKS iterations over 50 timesteps.
LM-EnKS for Lorenz 63 model

Root mean square error of LM-EnKS iterations over 50 time steps

<table>
<thead>
<tr>
<th>Iteration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>20.16</td>
<td>15.37</td>
<td>3.73</td>
<td>2.53</td>
<td>0.09</td>
<td>0.09</td>
</tr>
</tbody>
</table>
An example where Gauss-Newton does not converge

\[(x_0 - 2)^2 + (3 + x_1^3)^2 + 10^6(x_0 - x_1)^2 \rightarrow \text{min}\]

Could be seen as 4DVar problem with \(x_b = 2, B = I, M_1 = I, H_1(x) = -x^3, d_1 = 3, Q_1 = 10^{-6}\)
- **Adaptive gamma** is better than fix gamma.
Outline

1. Problem statement
2. Globalisation methods
3. A LM-EnKS method
4. Computational results
5. Summary

Hybrid 4DVAR and nonlinear EnKS method
Advantages of LM-EnKS

- Solve the linear least-squares from 4DVar by EnKS, naturally parallel over the ensemble members.
- Linear algebra glue is cheap.
- Finite differences \Rightarrow no tangent and adjoint operators needed.
- Add Tikhonov regularization to the linear least-squares \Rightarrow Levelberg-Marquardt method, guaranteed convergence.
- Cheap and simple implementation of Tikhonov regularization within EnKS as an additional observation.
Advantages of LM-EnKS

- Solve the linear least-squares from 4DVar by EnKS, naturally parallel over the ensemble members.
- Linear algebra glue is cheap.
- Finite differences \Rightarrow no tangent and adjoint operators needed.
- Add Tikhonov regularization to the linear least-squares \Rightarrow Levelberg-Marquardt method, guaranteed convergence.
- Cheap and simple implementation of Tikhonov regularization within EnKS as an additional observation.
Advantages of LM-EnKS

- Solve the linear least-squares from 4DVar by EnKS, naturally parallel over the ensemble members.
- Linear algebra glue is cheap.
- Finite differences \Rightarrow no tangent and adjoint operators needed.
- Add Tikhonov regularization to the linear least-squares \Rightarrow Levelberg-Marquardt method, guaranteed convergence.
- Cheap and simple implementation of Tikhonov regularization within EnKS as an additional observation.
Advantages of LM-EnKS

- Solve the linear least-squares from 4DVar by EnKS, naturally parallel over the ensemble members.
- Linear algebra glue is cheap.
- Finite differences \Rightarrow no tangent and adjoint operators needed.
- Add Tikhonov regularization to the linear least-squares \Rightarrow Levelberg-Marquardt method, guaranteed convergence.
- Cheap and simple implementation of Tikhonov regularization within EnKS as an additional observation.
Advantages of LM-EnKS

- Solve the linear least-squares from 4DVar by EnKS, naturally parallel over the ensemble members.
- Linear algebra glue is cheap.
- Finite differences \Rightarrow no tangent and adjoint operators needed.
- Add Tikhonov regularization to the linear least-squares \Rightarrow Levelberg-Marquardt method, guaranteed convergence.
- Cheap and simple implementation of Tikhonov regularization within EnKS as an additional observation.
Thank you for your attention!
Some related work

- The equivalence between weak constraint 4DVar and Kalman smoothing is approximate for nonlinear problems, but still useful (Fisher et al., 2005).
- (Hamill et al. 2000) estimated background covariance from ensemble for 4DVar.
- Gradient methods in the span of the ensemble for one analysis cycle (i.e., 3DVAR) (Sakov et al., 2012) (with square root EnKF as a linear solver in Newton method), and (Bocquet and Sakov, 2012), who added regularization and use LETKF-like approach to minimize the nonlinear cost function over linear combinations of the ensemble.
- (Liu et al. 2008), (Liu et al. 2009) combine ensembles with (strong constraint) 4DVar and minimize in the observation space.
References

