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Women in Topology (Banff 2013) was the first workshop organized by our newly founded network WIT-
HT (Women in Topology - Homotopy Theory) as an effort to increase the number and visibility of active
female researchers in homotopy theory, as well as the participation by women in research activities in the
field. The main feature of the meeting was engagement in collaborative group projects for teams of 5-7
participants, each including senior and junior researchers, as well as students.

In addition to the generous support of the Banff International Research Station, we would also like to
thank the Clay Mathematics Institute’s Enhancement and Partnership program, which funded travel for our
participants, and the Pacific Institute for Mathematical Sciences and École Polytechnique Fédérale de Laus-
sane for additional support.

1 Objectives
The goal of our workshop was to support and expand the research efforts by female mathematicians in the
field of homotopy theory. Inspired by the success of the Women in Numbers network (who held 5-day BIRS
Workshops in 2008 and 2011, with another to follow in 2014), we shared similar objectives. In particular, we
aimed to contribute to the success of women in homotopy theory by

• contributing to the training of graduate students;

• highlighting the research activities of women in homotopy theory;

• building collaborations amongst female researchers in homotopy theory;

• increasing the participation of women in research activities in homotopy theory; and

• publishing the findings of each team.

We believe that we have achieved the first four goals. We have also made significant progress on the final
goal, as each team has submitted a research paper on their results to a volume of Contemporary Mathematics
dedicated to the workshop. Some of the teams have continued the collaborations that began at the WIT
workshop.

When surveyed afterwards, the workshop participants reported overwhelmingly that the workshop had a
significant positive impact on them as individuals. Testimonials from this first workshop can be found at the
link

http://www.birs.ca/events/2013/5-day-workshops/13w5145/testimonials

1



2

In summary, the workshop participants reported that the workshop had a positive impact on their research, was
more productive than a usual workshop as each team produced a new result, and created new collaborations
amongst the team members.

In order to best capitalize on the experience, we have created a Women in Topology - Homotopy Theory
network which is being used to continue collaborations, make women aware of important opportunities in
homotopy theory, and offer education and support for issues which are surmountable obstacles to success for
women in mathematics.

2 Participants and Format
Participation in the WIT workshop was limited to women in order to best support our objectives. We initially
solicited research project proposals from 15 established researchers (women with permanent positions) who
would eventually lead 7 teams. We then began to invite team members, selecting these from graduate students,
recent graduates, post doctoral fellows, and women who indicated an eagerness to increase research activity
after a lapse in activity. We solicited recommendations for participants from a lengthy list of graduate student
supervisors in Canada, the US and Europe. We were fortunate to be able to accommodate all of the women
who indicated interest in the workshop.

After establishing our participant list, we advertised project proposals to team members. Team mem-
bers were asked to rank their preference for team membership, and we used this information together with
consideration of each member’s expertise to form cohesive teams.

In the winter preceding the workshop, team leaders began to contact their teams to prepare and train
them. Each team prepared differently. Some team leaders prepared their teams by distributing a list of
required reading and prerequisites well in advance of the meeting, others sent “homework” assignments or
exercises to engage their teams in advance. Every team had enough exposure to their proposed problem in
advance to be able to start working when they arrived.

On the first day of the workshop, team leaders presented a very short introduction to their proposed
research problem. These presentations were 5-10 minutes in length, and the purpose of these presentations
was more to provide a brief description of the proposed project to non-team members, since the team members
were already familiar with the project upon arrival. On the last day of the workshop, the team members (as
opposed to the team leaders) provided a brief (20 minute) presentation of the team’s findings. The project
presentations typically involved all of the team members, thus every workshop participant had an opportunity
to give a talk. The lectures were essential for making all workshop participants familiar with each other’s
work, and helped in establishing networks outside of the teams.

In between these events, the teams engaged in intensive research. We organized six 3 hour working
sessions for the teams, but most of the teams simply filled their entire time by doing mathematics. There
were two non-mathematical events scheduled (aside from meals): these were two evening discussion of
issues of concern to women in mathematics.

After the workshop, we established a network of women researchers called Women in Topology - Homo-
topy Theory. We have continued to grow this network by inviting more participants. The network advertises
opportunities in math as well as pertinent information for women working in any field in which they are
underrepresented.

Finally, the teams continued to work after the workshop concluded. Each team prepared a research
paper on their results. These papers are currently being refereed for a volume of Contemporary Mathematics
devoted to the workshop. In Sections 3 – 9 of this document, the main results obtained by each of the teams
is described. Briefly, the seven teams considered

• Bredon homology of the poset of direct-sum decompositions of Cn;

• an investigation of derived A-infinity algebras;

• calculations of higher order topological Hochschild homology;

• calculations and examples of unbased functor calculus related to André-Quillen homology;

• the existence of a model structure on the category of small G-categories;
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• the establishment of a left-induced model category structure and Postnikov presentations of model
categories; and

• an investigation of the mapping spaces of orbispaces.

These projects represent diverse areas within homotopy theory, and are numerous enough to touch on most of
the major active areas of research in the field. Some of the teams have continued their collaborations beyond
their first project.

The final reports for each team are below. Team members marked with * are team leaders.

3 Bredon Homology: Julie Bergner*, Ruth Joachimi, Kathryn Lesh*,
Vesna Stojanoska, Kirsten Wickelgren

Our project is part of a program to generalize recent work of Arone, Dwyer, and Lesh, [2], in which they
compute Bredon homology and cohomology of the partition complex for the set {1, . . . , n}, to a bu-version
involving Bredon homology and cohomology for the poset of direct-sum decompositions of Cn. One moti-
vation for the work in the discrete case is an expected proof of the Whitehead Conjecture which does not rely
on detailed homology calculations, and an analogous statement is expected to hold in the bu-case.

Arone and Lesh set up a parallel picture to the discrete case in the context of the unitary group [1]. For
example, the symmetric group Σn corresponds to the unitary group U(n), p-subgroups correspond to p-toral
subgroups, and the partition complex for {1, . . . , n} corresponds to the partition complex Ln for Cn by
orthogonal direct-sum decompositions. The first step in the unitary program, to establish the analogues of
Arone, Dwyer, and Lesh’s results for the bu-case, was the motivating problem for our team.

In particular, our goal was to answer the following question.
Problem 1. Characterize the p-toral subgroups H of U(n) for which LHn fails to be contractible.

The first expected part of the answer to characterizing these “problematic” subgroups was that they must
be projective elementary abelian p-groups of U(n), and we proved that this fact is indeed true. However,
it is known that this condition is not sufficient; the remainder of our work was concerned with further re-
fining the conditions under which the LHn is not contractible. We were able to prove the following further
characterizations of the groups H:

• the group H must be abstractly isomorphic to one of the form Γi × ∆j (where these groups are as
defined by Oliver), and

• if k = i+ j, then H is (conjugate to) a subgroup of Γk diagonally embedded in U(n) (where n = mpk

for some m).

The next step in the program, which the team has begun to consider, is the following. Let A be the
collection of all p-toral subgroups of U(n), and let Γ be a p-constrained Mackey functor for U(n), in the
sense of Libman, [13].
Problem 2. Establish that for any reasonable U(n)-spaceX , the approximationXA → X is an isomorphism
on Bredon homology and cohomology with coefficients in Γ.

4 Derived A-infinity algebras: Camil Aponte, Muriel Livernet*, Marcy
Robertson, Sarah Whitehouse*, Stephanie Ziegenhagen

The study of A∞-algebras goes back to the work of Stasheff [18] on group-like topological spaces in the
sixties. Since then the importance of A∞-structures has become well established in many areas including al-
gebra, geometry and mathematical physics. Working over a ground field, these structures play a key role in the
theory of minimal models and classification of differential graded algebras (dgas) up to quasi-isomorphism.
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Recently Sagave [17] developed the notion of derived A∞-algebra, in order to have a theory of minimal
models for dgas over a general commutative ring. Joint work of Livernet, Roitzheim and Whitehouse [14]
introduced a description of this structure using operads. This project has developed this operadic approach to
derived A∞-structures in several directions.

Our operads are nonsymmetric operads in the category of bicomplexes with zero horizontal differential.
We start from an operad dAs in this category encoding bidgas, that is, monoids in bicomplexes. Previous
work establishes that derived A∞-algebras are precisely algebras over the operad

dA∞ = (dAs)∞ = Ω((dAs)¡).

Thus we can view a derived A∞-algebra as the infinity version of a bidga, in the same sense that an A∞-
algebra is the infinity version of a dga.

The first part of the project involved investigating the operad dAs further, in particular giving a simple
description of (dAs)¡-coalgebras. In the classical case, the structure of anAs¡-coalgebra is well-known to be
the same as a usual coassociative coalgebra. In the case of (dAs)¡-coalgebras, we obtain coassociative coal-
gebras with an extra piece of structure. We also study representations of derived A∞-algebras, via suitable
coderivations and also concretely in terms of comodules over the corresponding coassociative coalgebras that
are suitably compatible with the extra structure. We explain how this relates to Sagave’s derivedA∞-modules
described in terms of coderivations on the reduced cotensor algebra.

The next part covers model category structures on the category of derived A∞-algebras, establishing
the existence of a model structure whose weak equivalences are Sagave’s E2-equivalences. Among the
good properties of this structure are that Sagave’s resolutions are cofibrant objects and that there is a nice
relationship to a previously developed model structure on A∞-algebras due to Lefèvre-Hasegawa [12].

Finally, we have defined some new explicit families of examples of derived A∞-algebras. The construc-
tion is based on some examples of A∞-algebras due to Allocca [1].

Overall, substantial progress was made on developing elements of the theory of derived A∞-algebras.
The emphasis of our work turned out to differ quite substantially from the original project proposal, which
focused on cohomology of these algebras. This is a topic that we expect to return to in future work building
on this project.

5 Calculations of Higher Order Topological Hochschild Homology:
Irina Bobkova, Ayelet Lindenstrauss*, Kate Poirier, Birgit Richter*,
Inna Zakharevich

Given a commutative ring T and a T -moduleM , J.-L. Loday (e.g.,[15]) introduced a functor L(T,M) which
takes a based simplicial set X. to the simplicial T -module which consists in degree n of M tensored with
one copy of T with each element in Xn \ {∗}, with face maps di sending the T corresponding to τ ∈ Xn to
the T or M corresponding to di(τ) ∈ Xn−1 (and multiplying everything that lands in the same coordinate).
Applying this functor to the usual model of S1 with one non-degenerate 0-cell and one non-degenerate 1-
cell, we get the classical Hochschild complex whose homology is HH∗(T ;M). Extending this, the higher
topological Hochschild homology HH[n]

∗ (T ;M) was defined to be the homology of L(T,M) of Sn. The
homology of the image of the Loday functor turns out to be independent of the simplicial structure used on
|X.|, and moreover depends only on its homotopy type.

M. Brun, G. Carlsson, and B. Dundas [5] introduced a topological version of L(T,M) for a ring spectrum
T and T -module M . When evaluated on Sn, it yields the spectrum THH[n](T ;M), higher topological
Hochschild homology.

T. Veen [22] used a decomposition result on L(T,M) to inductively calculate

THH[n]
∗ (Fp) = π∗(THH

[n](Fp))

for all n ≤ 2p. (When M = T with the obvious action by multiplication, it is omitted from the notation.)
He sets up a spectral sequence of Hopf algebras calculating THH[n]

∗ (Fp) from THH[n−1]
∗ (Fp) (with the base

case THH[1]
∗ (Fp) being known by work of M. Bökstedt), and explains why it has to collapse for n ≤ 2p. By
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more careful analysis of the structure of the spectral sequence, motivated by computer calculations, we were
able to show that Veen’s spectral sequence collapses for n ≤ 2p+2, thus getting a calculation of THH[n]

∗ (Fp)
for those n. The computer analysis found, however, potential nontrivial differentials in the spectral sequence
when n = 2p+ 3.

We were also able to show that for an Fp-algebra A and a abelian group G,

THH[n]
∗ (A[G]) ∼= THH[n]

∗ (A)⊗ HH[n]
∗ (Fp[G]).

Using this, we calculated THH[n]
∗ (Fp[G]) for any finitely generated abelian group G for n ≤ 2p + 1. (For

general abelian groups, observe that higher Hochschild homology commutes with direct limits.) Since we
know THH[n]

∗ (Fp) in that range, we only need to calculate HH[n]
∗ (Fp[G]). But for abelian groups H and G,

Fp[G×H] ∼= Fp[G]⊗Fp[H], and therefore HH[n]
∗ (Fp[G×H])OngHH[n]

∗ (Fp[G])⊗HH[n]
∗ (Fp[H]). Thus

we only need to consider the case of cyclic groupsG. By Veen’s method, we can calculate HH[n]
∗ (Fp[Ck]) for

finite cyclic groups, and also HH[n]
∗ (Fp[x]). Since Fp[Z] is étale over Fp[x], we prove that HH[n]

∗ (Fp[Z]) ∼=
Fp[Z]⊗Fp[x] HH

[n]
∗ (Fp[x]), and conclude the calculation.

6 Functor Calculus: Maria Basterra*, Kristine Bauer*, Agnes Beudry,
Rosona Eldred, Brenda Johnson*, Mona Merling, Sarah Yeakel

In a series of papers published between 1990 and 2003, Tom Goodwillie developed what is now known as the
calculus of homotopy functors [6], [7], [8]. The calculus of homotopy functors associates to a given functor
of spaces or spectra F , a so-called Taylor tower of functors and natural transformations,

F

zz ✏✏ %%
· · · // Pn+1F // PnF // Pn�1F · · · //// P1F // P0F,

1

resembling the Taylor series for functions of real variables. In particular, Goodwillie’s theory produces a
universal n-excisive approximation to a homotopy functor F . Inspired by Goodwillie’s work, Brenda Johnson
and Randy McCarthy [10] produced a related theory of calculus in an abelian setting which produces what
can be thought of as a “discrete” Taylor tower for a functor.

In the Johnson-McCarthy discrete calculus, a homotopy functor is approximated by a universal degree
n functor. While n-excisive functors are necessarily degree n, the converse does not generally hold. The
Johnson-McCarthy model was originally developed for use in algebraic settings, and functors were assumed
to be from a pointed category to an abelian category (often, chain complexes). The hypothesis that the
domain category be pointed was more restrictive than what Goodwillie’s theory required, nonetheless, the
pointed theory has been quite useful. In particular, it has been used successfully to express certain interesting
homology theories as derivatives of naturally arising functors. For example, Johnson and McCarthy [10], and
Kantorovitz and McCarthy [11] have provided ways of viewing André-Quillen homology as parts of discrete
calculus towers.

Recently, the Johnson-McCarthy theory of calculus was expanded by Kristine Bauer, Brenda Johnson and
Randy McCarthy [3]. The new theory includes functors from categories that are not necessarily pointed to
categories that are not necessarily abelian. At the Women in Topology workshop, our team set, as a general
goal, the development of some concrete examples for this new theory of “unbased” discrete calculus. These
examples went in three distinct, yet interrelated, directions.

The first line of work revisited the construction of the nth term, PnF , in the unbased discrete Taylor
tower of F , using a streamlined model of Ben Walter’s for homotopy pullbacks in differential graded rational
vector spaces, DG. The result of this direction was an alternative proof of one of the key results used in [3]
to construct PnF for functors to DG. In particular, the functor PnF relies on the existence of an n-th cross
effect functor, crnF , which measures the failure of F to be degree n. For a functor F : C → DG the second
cross effect cr2F (X,Y ) is the total homotopy fiber of the square diagram
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F (X
`

A Y ) //

✏✏

F (X
`

A B)

✏✏
F (B

`
A Y ) // F (B

`
A B)

1

where A is the initial object of C, B is the terminal object, and
∐
A is the coproduct in C. A major difficulty

in establishing this theory was verifying that the functor ⊥n F (X) = crnF (X, · · · , X) is part of a cotriple.
This property is required to define PnF . We obtained the following result as a concrete calculation using
explicit models for homotopy pullbacks.

Theorem 1. Let C be a model category. For a homotopy functor F : C → DG, the functor ⊥n F is part of a
cotriple.

In particular, we showed that the total homotopy fiber functor is part of a cotriple.
Our second accomplishment was to determine the values of the cross effect functors, essential building

blocks for the terms in discrete Taylor towers, for a large class of examples in the unbased setting. For the
category DGAη of differential graded algebras factoring a fixed map η : A→ B, let J(X) be the homotopy
fiber of U(X) → U(B), where U is the forgetful functor to Ch(k). Then our calculations specialize as
follows.

Theorem 2. For cofibrant X in DGAη , crnJ(X, · · · , X) ' J(X)⊗kn where ⊗ is the derived tensor prod-
uct.

Underlying these first two directions was the desire to work toward understanding André-Quillen homol-
ogy as an example of calculus in the unbased setting, as the Kantorovitz-McCarthy results involved “adding
a basepoint” in order to use the based calculus. In the last direction of our project, we set up a framework
for relating the based calculus interpretation of André-Quillen homology to an unbased one, by relating the
unbased derivative of J to the based derivative of J using an unpublished theorem of Randy McCarthy.
Adapting this theorem to our setting will be a future direction of inquiry for our team.

7 G-categories and G-spaces: Anna Marie Bohmann, Kristen Mazur,
Angelica Osorno*, Viktoriya Ozornova, Kate Ponto*, Caroline Yarnell

In [20], Thomason proved that the category of small categories admits a closed model structure. Additionally,
he showed this structure is Quillen equivalent to the usual model structure on the category of simplicial sets.
This equivalence implies thatCat is Quillen equivalent to the category of topological spaces with the standard
model structure. An important implication of this theorem is that every homotopy type is represented by the
classifying space of a category. We have shown that a similar result holds equivariantly.

Theorem 3. If G is a finite group, there is a model structure on the category GCat of small G-categories,
and this category is Quillen equivalent to the standard model structure on the categroy of G-spaces.

For any category C we can define a category GC of G-objects in C and a presheaf category OGC. Recall
that OG is the category with objects G-sets G/H for H a subgroup of G and morphisms G-maps. The
category of functors

X : OopG → C,
presheaves on C, is denoted OGC. There is a canonical functor

Φ: GC → OGC

that sends an object Y of GC to its system of fixed points, i.e, Φ(Y )(G/H) = Y H . This functor has a left
adjoint Λ, which is given by Λ(X) = X(G/e)

Marc Stephan [19] has proved a general result that provides conditions on the category C that allow one
to lift the projective model structure on OGC to a model structure on GC, and further imply the fixed point
functor Φ is a Quillen equivalence. As a result, much of the work in our project was verifying that conditions
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of his result are satisfied when C is the category of categories. In this case his conditions reduce to two
conditions on the fixed point functors (−)H : GC → C. These functors must preserve some directed colimits
and some pushouts.

More explicitly, we used Stephan’s results [19] and some new results of our own to show that all the
categories in the following diagram have model structures, and all the arrows of the diagram form Quillen
equivalences:

GCat
Ex2N //

�

✏✏

GsSets

�

✏✏

cSd2
oo

|�|
// GTop

�

✏✏

S•(�)oo

OGCat
Ex2N //

⇤

OO

OGsSets
cSd2

oo
|�|

//

⇤

OO

OGTop.
S•(�)oo

⇤

OO

1

8 Results of the Model Categories Team: Marzieh Bayeh, Kathryn
Hess*, Varvara Karpova, Magdalena Kedziorek, Emily Riehl, Brooke
Shipley*

8.1 The problem
Let (M, Fib, Cof, WE) be a model category, and C a bicomplete category. Given a pair of adjoint functors

L :M� C : R,

there are well known conditions under which there is a model category structure on C with R−1(WE),
R−1(Fib) as weak equivalences and fibrations, respectively. Our team studied the dual situation, where
one has a pair of adjoint functors

L : C �M : R (1)

and wants to know when is there a model category structure on C with L−1(WE), L−1(Cof) as weak equiva-
lences and cofibrations, respectively. We call this a left-induced model category structure.

One possible answer to this question can be formulated in terms of the following constructions. Let X be
a class of morphisms in a complete category C. Let Y : λop → C be a functor, where λ is an ordinal. If for
all β < λ, there is a pullback

Y�+1

✏✏

// X 0
�+1

x�+12X
✏✏

Y�

k�2C // X�+1

1

and Yγ := limβ<γ Yβ for all limit ordinals γ < λ, then the composition of the tower

lim
λop

Yβ → Y0,

is an X-Postnikov tower. The class of all X-Postnikov towers is denoted PostX.
A Postnikov presentation of a model category (M, Fib, Cof, WE) consists of a pair of classes of mor-

phisms (X, Z) satisfying
Fib = P̂ostX and Fib ∩ WE = P̂ostZ,

where (̂.) denotes the closure under retracts of a class of morphisms, and such that for all f ∈ morM, there
exist
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• i ∈ Cof and p ∈ PostZ such that f = pi, and

• j ∈ Cof ∩ WE and q ∈ PostX such that f = qj.

As shown in earlier work by the team leaders, given an adjoint pair (1), if L
(
PostR(Z)

)
⊂ WE, and for all

f ∈ mor C there exist

• i ∈ L−1(Cof) and p ∈ PostR(Z) such that f = pi, and

• j ∈ L−1(Cof ∩ WE) and q ∈ PostR(X) such that f = qj,

then C admits a left-induced model category structure with Postnikov presentaion
(
R(X), R(Z)

)
. This ex-

istence result had already been applied successfully by the team leaders to prove existence of left-induced
model category structure in concrete cases [9].

8.2 Our results
Building on recent work of Makkai and Rosicky [16], we established the following existence result for model
category structure on a category of coalgebrasMK over a comonad K acting on a model categoryM.

Theorem 4. LetM be a combinatorial model category in which the cofibrations are exactly the monomor-
phisms, K is an accessible comonad on M that preserves monomorphisms, Fib ∩ WE = P̂ostZ , and
UK(PostKZ) ⊂ WE where UK : MK →M is the forgetful functor.

The category of K-coalgebras MK has a left-induced model category structure such that the class of
acyclic fibrations is P̂ostKZ and such that the forgetful/cofree adjunction UK : MK �M : FK is a Quillen
pair.

We also constructed calculationally explicit fibrant replacements forK-coalgebras, under certain fibrancy
conditions in the underlying category.

Theorem 5. Let M be a simplicial model category with Postnikov presentation (Fib, Fib ∩ WE), and let
K be a comonad onM. Let (M,ρ) be a K-coalgebra such that the shifted K-cobar construction on M is
Reedy fibrant inM. Then there exists a factorization inMK

M
⇢ //

⇠
##

KM,

Tot⌦•
M

2PostK(Fib)

::

1

where Ω•M denotes the usual K-cobar construction on M .

We were particularly interested in properties and existence of left-induced model category structures on
categories of diagrams in a given model category, with respect to the adjunction ι∗D : MD � MRanιD
induced by the inclusion ιD : Dδ → D of the discrete subcategory.

Theorem 6. Let M be a model category, and let D be a small category. Suppose that MD admits the
left-induced model category structure.

1. If M is left or right proper, then so is MD.

2. If M is a V-model category for some monoidal model category V , then so isMD.

3. IfM has Postnikov presentation (X, Z), thenMD has Postnikov presentation (X×D, Z×D).

Theorem 7. 1. When D is a Reedy category, then Reedy model structure onMD has a Postnikov pre-
sentation given explicitly by a pullback-cotensor involving boundaries of representables and the gen-
erating (acyclic) fibrations.

2. IfM is a Grothendieck abelian category, then Ch(M)D has the left induced (injective) model struc-
ture with Postnikov presentation.
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Remark 1. Applying Theorem 5 to the comonad ι∗DRanιD , one obtains a model for fibrant replacements in
MD that should be useful for homotopy limit calculations (and indeed might be the same as the Bousfield-
Kan formula).

We studied properties of left-induced model category structures in general as well.

Theorem 8. Let L : C � M : R be an adjoint pair, where M is a model category, and C admits the
left-induced model category structure.

1. IfM is left proper, then C is left proper.

2. IfM is a a V-model category for some monoidal model category V , L a R is a V-adjunction, and C is
a tensored and cotensored V-category, then C is a V-model category.

Finally we observed that the proofs of several of the steps in establishing the existence of right Bousfield
localizations do not actually require a full model structure and would therefore apply immediately to the dual
setting with a Postnikov presentation. We intend to continue working in this direction.

9 Orbi Mapping Spaces as Groupoids: Vesta Coufal, Faten Labassi,
Dorette Pronk*, Carmen Rovi, Laura Scull*, Courtney Thatcher

Background Orbispaces can be modeled using equivalence classes of proper étale groupoids, i.e., topological
groupoids

G1 ⇥G0
G1

m // G1
i // G1

s //

t
// G0uoo

1

such that G0 and G1 are locally compact Hausdorff spaces, source and target maps s, t : G1 ⇒ G0 are local
homeomorphisms, the diagonal (s, t) : G1 → G0 × G0 is a proper map. We refer to such a groupoid as an
orbigroupoid. Two orbigroupoids G and H can represent the same orbispace, so we say that they are Morita
equivalent if and only if there is a third groupoid K with essential equivalences G ← K → H, where the
essential equivalence used is an internalization (for topological spaces) of the notion of weak equivalence
between categories. Then orbispaces are represented by Morita equivalence classes of orbigroupoids.

Essential equivalences between topological groupoids are not invertible in general. However, they satisfy
the conditions to form a bicategory of fractions. As a consequence an orbimap G → H between two or-

bigroupoids is given by a pair G K�oo ' //H ,

1

where υ is an essential equivalence. A 2-cell between
two such maps is an equivalence class of diagrams

K
�

xx

'

&&G ↵1+ L
⌫1

OO

⌫2✏✏

↵2+ H

K0�0

ee

'0

88

1

where υ, υ′, ν1 and ν2 are essential equivalences. We write OrbiSpaces to denote the resulting bicategory of
orbigroupoids, orbimaps, and 2-cells between them.

Our Project The 2-cells in OrbiSpaces are all invertible with respect to the vertical composition, so we
obtain a groupoid OrbiSpaces(G,H) of orbimaps and 2-cells between any two two orbigroupoids G and H.
This mapping groupoid is the main object of study of this project. Our project is to show that this carries the
structure of an orbigroupid, and hence we could make the maps between orbispaces into a mapping space.

To do this, we first show that this groupoid can be given a topology to form an orbigroupoid OMap(G,H).
We show that with this topology, the bicategory OrbiSpaces is Cartesian closed, that is, for any orbigroupoids
L, G and H there is an equivalence of categories OrbiSpaces(L × G,H) ' OrbiSpaces(L,OMap(G,H)).
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We also work out in detail what the orbispaces of the form OMap(∗G,H) look like, where ∗G is the or-
bigroupoid with space of objects {∗} and space of arrows the discrete group G (with composition induced by
the multiplication ofG). Lastly, we consider the question of the hom-groupoids, in the bicategory of fractions.
We show that OMap(G,H) is the pseudo colimit of a diagram of groupoids of the form GMap(K,H), where
K has an essential equivalence into G, and GMap(K,H) is the orbigroupoid of groupoid homomorphisms
and groupoid natural transformations from K to H. This pseudo colimit construction carries a topology and
allows us to define a true orbispace of maps between any two orbispaces.
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