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Introduction and motivation

Introduction
Factor models are a unified tool for the analysis of
high-dimensional responses with dependence coming from latent
variables so that the number of dependence parameters is O(d).

We construct factor models based on copula functions for item
response variables, Y1, . . . ,Yd for d items, where the items
(questions) are measured in an ordinal scale; Yj ∈ {0, . . . ,K − 1}
for j = 1, . . . ,d .

The p-factor model assumes that Y1, . . . ,Yd are conditionally
independent given latent variables X1, . . . ,Xp, and hence the joint
probability mass function (pmf) is:

πd (y) = Pr(Y1 = y1, . . . ,Yd = yd )

=

∫ d∏
j=1

Pr(Yj = yj |X1 = x1, . . . ,Xp = xp) dFX1,...,Xp (x1, . . . , xp),

where FX1,...,Xp is the distribution of the latent variable.
Aristidis K. Nikoloulopoulos (UEA/CMP) Factor copula models Banff: 23-05-2013 2 / 16



uealogo.png

Introduction and motivation

Motivation
We will use a general copula construction, based on a set of
bivariate copulas that link observed to latent variables, to specify
Pr(Yj = yj |X1 = x1, . . . ,Xp = xp) and arrive at a very general
conditional independence or factor model.

Discretized multivariate normal (MVN) models with p-factor
correlation matrices, are special cases of our general construction
when all the above bivariate linking copulas are bivariate normal.

Other choices of copulas are better if
1 Yj ’s have more probability in joint upper and/or lower tail than would

be expected with discretized MVN;
2 Yj ’s can be considered as discretized maxima/minima or mixtures

of discretized means rather than discretized means.

For such items multivariate extreme value, elliptical distributions
and copula theory can be used to select suitable copulas that link
observed to latent variables.
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Introduction and motivation

Science item response data
This data set comes from the Consumer Protection and Perceptions of
Science and Technology section of the 1992 Euro-Barometer Survey
(Karlheinz and Melich, 1992). The questions (items) asked are given below:

1 Science and technology are making our lives healthier and easier.
2 Scientific and technological research cannot play an important role in

protecting the environment and repairing it.
3 The application of science and new technology will make work more

interesting.
4 Thanks to science and technology, there will be more opportunities for

the future generations.
5 New technology does not depend on basic scientific research.
6 Scientific and technological research do not play an important role in

industrial development.
7 The benefits of science are greater than any harmful effect it may have.

All of the items were measured on a four-group scale with response
categories “0=strongly disagree", “1=disagree to some extent", “2=agree to
some extent" and “3=strongly agree".
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The factor copula model for ordinal response

1-factor copula model
Let the cutpoints in the uniform U(0,1) scale for the j th
item/variable be aj,k , k = 1, . . . ,K − 1, with aj,0 = 0 and aj,K = 1.

Let X1 be a latent variable, which we assumed to be standard
uniform. From Sklar (1959), there is a bivariate copula CX1j such
that Pr(X1 ≤ x ,Yj ≤ y) = CX1j(x ,Fj(y)) for 0 ≤ x ≤ 1 where Fj is
the cdf of Yj .

Then it follows that Fj|X1
(y |x) := Pr(Yj ≤ y |X1 = x) =

∂CX1 j (x ,Fj (y))
∂x ;

let Cj|X1
(a|x) = ∂CX1j(x ,a)/∂x for shorthand notation.

The pmf for the 1-factor model is

πd (y) =

∫ 1

0

d∏
j=1

Pr(Yj = yj |X1 = x) dx

=

∫ 1

0

d∏
j=1

[
Cj|X1

(aj,yj+1|x)− Cj|X1
(aj,yj |x)

]
dx
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The factor copula model for ordinal response

2-factor copula model
Consider two latent independent uniform U(0,1) variables X1,X2.

Let CX1j be defined as in the 1-factor model, and let CX2j be a
bivariate copula such that,

Pr(X2 ≤ x2,Yj ≤ y |X1 = x1) = CX2j(x2,Fj|X1
(y |x1)).

Here we are making the simplifying assumption that the
conditional copula for the univariate distributions FX2|X1

= FX2 and
Fj|X1

does not depend on x1.

Then for 0 ≤ x1, x2 ≤ 1,

Pr(Yj ≤ y |X1 = x1,X2 = x2) =
∂

∂x2
Pr(X2 ≤ x2,Yj ≤ y |X1 = x1)

=
∂

∂x2
CX2j(x2,Fj|X1

(y |x1)) = Cj|X2
(Fj|X1

(y |x1)|x2).
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The pmf for the 2-factor model is

πd (y) =

∫ 1

0

∫ 1

0

d∏
j=1

Pr(Yj = yj |X1 = x1,X2 = x2) dx1dx2

=

∫ 1

0

∫ 1

0

d∏
j=1

[
Cj|X2

(Fj|X1
(yj |x1)|x2)−Cj|X2

(Fj|X1
(yj−1|x1)|x2)

]
dx1dx2.

For parametric 1-factor and 2-factor models, we let CX1j and CX2j
be parametric bivariate copulas, say with parameters θj and δj
respectively.

Our general statistical model allows for selection of CX1j and CX2j
independently among a variety of parametric copula families, i.e.,
there are no constraints in the choices of parametric copulas
{CX1j ,CX2j : j = 1, . . . ,d}.
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The factor copula model for ordinal response

Relationship with vines
These factor models can be explained as truncated canonical vines
rooted at the latent variables.
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The factor copula model for ordinal response

The special case of the discretized MVN
The pmf for the 1-factor model becomes,∫ 1

0

d∏
j=1

Φ

αj,y+1 − θj Φ
−1(x)√

1− θ2
j

− Φ

αj,y − θj Φ
−1(x)√

1− θ2
j

dx

=

∫ ∞
−∞

d∏
j=1

Φ

αj,y+1 − θjz√
1− θ2

j

− Φ

αj,y − θjz√
1− θ2

j

 φ(z) dz.

Hence this model is the same as a discretrized MVN model with a
1-factor correlation matrix R = (rjk ) with rjk = θjθk for j 6= k .

Similarly it can be shown that our model is a discretrized MVN model
with a 2-factor correlation matrix R = (rjk ) with
rjk = θjθk + δj (1− θ2

j )1/2δk (1− θ2
k )1/2 for j 6= k .

Note that the copula factor model formulation of the parameters is best
seen through partial correlations for the second (and subsequent)
factor(s).
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The factor copula model for ordinal response

Choices of bivariate copulas
1 Normal The resulting model in this case is the same as discretized

MVN with factor correlation structure and has latent (ordinal)
variables that can be considered as (discretized) means.

2 Gumbel The latent (ordinal) variables can be considered as
(discretized) maxima, and there is more probability in the joint
upper tail.

3 Survival Gumbel The latent (ordinal) variables can be considered
as (discretized) minima, and there is more probability in the joint
lower tail.

4 Student tν The latent (ordinal) variables can be considered as
mixtures of (discretized) means. A small value of ν, such as
1 ≤ ν ≤ 5, leads to a model with more probabilities in the joint
upper and joint lower tails compared with the normal copula.
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Estimation and behavior of log-likelihood

Estimation
For a sample of size N with data y1, . . . ,yN , the joint log-likelihood
of the factor copula model is,

`(θ) =
N∑

i=1

logπd (yi ;θ). (1)

The Inference Function of Margins (IFM) method in Joe (2005,
JMVA), can efficiently estimate the model parameters.

In the first step, the univariate cutpoints are estimated as:

âj0 = pj0, âj1 = pj0 + pj1, . . . , âj,K−1 = pj0 + pj1 + . . .+ pj,K−1,

where pjy , y = 0, . . . ,K − 1, for j = 1, . . . ,d are the univariate
sample proportions, and in the second step the joint log-likelihood
(1) is maximized over the copula parameter vector with the
cutpoints fixed at the estimated values from the first step.
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Estimation and behavior of log-likelihood

Behavior of the log-likelihood for the 2-factor model

For the special case of the 2-factor normal, one of CX2j can be set
as independence copula without loss of generality, because the
model with 2d parameters is not identifiable.

What happens if other copulas such as Gumbel and tν are used
for bivariate linking copulas? Is the model with 2d bivariate linking
copulas still not identifiable?

Conclusions from comparing the asymptotic covariance matrices

A model with 2d Gumbel or tν copulas with ν ≤ 3 is clearly
identifiable and the parameters can be interpreted.

For tν with larger values of ν, we can set one of the CX2j to be an
independence copula, i.e., use 2d − 1 copulas, in order to make
the parameters interpretable.
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Application: Science item response data

Table: Diagnostics based on the fit of the bivariate normal, Gumbel,
s.Gumbel, and t5 copulas, at each of the pair of items, comparing observed
versus model-based bivariate counts with an emphasis on the tails.

Y3 Y7 observed normal Gumbel s.Gumbel t5
0 0 4 3 3 5 5
0 1 8 11 11 11 11
0 2 12 15 15 13 12
0 3 9 3 4 4 5
1 0 6 7 7 6 6
1 1 34 29 30 29 31
1 2 47 47 48 47 47
1 3 11 15 13 16 14
2 0 8 9 10 8 7
2 1 52 50 50 49 49
2 2 111 104 106 106 111
2 3 35 43 40 44 40
3 0 3 1 1 2 3
3 1 6 10 9 11 10
3 2 23 28 24 28 24
3 3 23 17 21 14 19
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Application: Science item response data

Table: Estimated parameters, SEs in Kendall’s τ scale and log-likelihoods `,
along with M2 statistics (Maydeu-Olivares and Joe, 2006, Pka).

2-factor normal Gumbel/t2 t2/Gumbel t3/Gumbel
Est. Est. SE Est. SE Est. SE

θ1 0.32 0.27 0.05 0.22 0.07 0.24 0.06
θ2 -0.03 0.36 0.05 -0.18 0.07 -0.17 0.07
θ3 0.38 0.15 0.05 0.36 0.06 0.37 0.05
θ4 0.58 0.28 0.06 0.47 0.07 0.50 0.07
θ5 -0.03 0.36 0.06 -0.24 0.08 -0.22 0.08
θ6 0.09 0.44 0.05 -0.08 0.08 -0.06 0.07
θ7 0.34 0.21 0.05 0.32 0.06 0.32 0.06
δ1 0.13 0.20 0.07 0.24 0.06 0.24 0.06
δ2 0.46 -0.31 0.07 0.42 0.05 0.43 0.05
δ3 -0.09 0.36 0.06 0.13 0.07 0.11 0.07
δ4 -0.01 0.49 0.07 0.30 0.09 0.30 0.09
δ5 0.49 -0.37 0.07 0.47 0.06 0.48 0.06
δ6 0.44 -0.21 0.09 0.50 0.05 0.50 0.05
δ7 0.02 0.30 0.06 0.19 0.06 0.17 0.06
` -2921.9 -2864.7 -2866.3 -2866.7

M2 296.8 169.9 169.9 175.0
df 176 175 175 175

p-value < 0.001 0.59 0.59 0.49
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Discussion
We have proposed factor or conditional independence models
where we replace bivariate normal distributions, between
observed and latent variables, with bivariate copulas.

It is the most general conditional independence model with
univariate parameters separated from dependence parameters
and latent variables that don’t have necessarily an additive latent
structure.

Our factor copula construction includes the classic factor model as
a special case and can provide a substantial improvement on the
latter based on log-likelihood and goodness-of-fit.

This improvement relies on the fact that when we use appropriate
bivariate copulas other than normal copulas in the construction,
there is an interpretation of latent variables that can be
maxima/minima or high/low quantiles instead of means.
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Discussion

Extensions and future research

The discrete factor model in Nikoloulopoulos and Joe (2013, Pka)
can also easily be extended to other types of discrete data and to
inclusion of covariates.

Another direction of future research is to extend our factor model
to capture the residual dependence:

I Braeken et al. (2007, Pka) and Braeken (2011, Pka) explored the
use of Archimedean copulas or a mixture of the independence and
comonotonicity copulas to capture the residual dependence of the
Rasch model.

I A more general approach makes use of truncated vine copula
models to model the residual dependence with O(d) dependence
parameters for d items.
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