Specialized Macdonald polynomials, quantum K-theory, and Kirillov-Reshetikhin crystals

Cristian Lenart

State University of New York at Albany

Whittaker Functions: Number Theory, Geometry, and Physics
Banff International Research Station, October 2013
Macdonald polynomials

λ: dominant weight for classical subsystem of untwisted affine root system.
Macdonald polynomials

λ: dominant weight for classical subsystem of untwisted affine root system.

$P_{\lambda}(x; q, t)$: Weyl group invariant polynomials, orthogonal, generalizing the corresponding irreducible characters $= P_{\lambda}(x; 0, 0)$.

Macdonald polynomials

λ: dominant weight for classical subsystem of untwisted affine root system.

$P_\lambda(x; q, t)$: Weyl group invariant polynomials, orthogonal, generalizing the corresponding irreducible characters $= P_\lambda(x; 0, 0)$.

Defined in the DAHA setup, as common eigenfunctions of the Cherednik operators Y_μ.
Macdonald polynomials

λ: dominant weight for classical subsystem of untwisted affine root system.

$P_\lambda(x; q, t)$: Weyl group invariant polynomials, orthogonal, generalizing the corresponding irreducible characters $= P_\lambda(x; 0, 0)$.

Defined in the DAHA setup, as common eigenfunctions of the Cherednik operators Y_μ.

Recursive construction procedure (for the non-symmetric ones $E_\mu(x; q, t)$), based on Cherednik’s intertwiners I_i.
Braverman-Finkelberg q-Whittaker functions

$\Psi_\lambda(x; q)$: same (a priori different) than those of Ion, Cherednik;
Braverman-Finkelberg q-Whittaker functions

$\Psi_\lambda(x; q)$: same (a priori different) than those of Ion, Cherednik; generalize the type A ones of Gerasimov-Lebedev-Oblezin.
Braverman-Finkelberg q-Whittaker functions

$\Psi_\lambda(x; q)$: same (a priori different) than those of Ion, Cherednik; generalize the type A ones of Gerasimov-Lebedev-Oblezin.

Viewed as functions of λ, they are defined as the universal eigenfunction of the quantum difference Toda integrable system (Etingof, Sevostyanov).
Braverman-Finkelberg q-Whittaker functions

$\Psi_\lambda(x; q)$: same (a priori different) than those of Ion, Cherednik; generalize the type A ones of Gerasimov-Lebedev-Oblezin.

Viewed as functions of λ, they are defined as the universal eigenfunction of the quantum difference Toda integrable system (Etingof, Sevostyanov).

Let

$$\hat{\Psi}_\lambda(x; q) := \Psi_\lambda(x; q) \prod_{i \in I} \prod_{r=1}^{\langle \lambda, \alpha_i^\vee \rangle} (1 - q^r).$$
Braverman-Finkelberg q-Whittaker functions

$\Psi_\lambda(x; q)$: same (a priori different) than those of Ion, Cherednik; generalize the type A ones of Gerasimov-Lebedev-Oblezin.

Viewed as functions of λ, they are defined as the universal eigenfunction of the quantum difference Toda integrable system (Etingof, Sevostyanov).

Let

$$\hat{\Psi}_\lambda(x; q) := \Psi_\lambda(x; q) \prod_{i \in I} \prod_{r=1}^{\langle \lambda, \alpha_i^\vee \rangle} (1 - q^r).$$

Theorem (Braverman-Finkelberg, Ion)

We have

$$P_\lambda(x; q, t = 0) = \hat{\Psi}_\lambda(x; q).$$
Schubert calculus

Flag variety G/B, Schubert variety $X_w = \overline{B^{-} w B}/B$, for $w \in W$.

$H^\ast(G/B)$ and $K(G/B)$ have bases of Schubert classes; for K-theory, they are the classes $[O_w] = [O_{X_w}]$ of structure sheaves of X_w.

The quantum cohomology algebra $QH^\ast(G/B)$ still has the Schubert basis, but over $\mathbb{C}[q_1, \ldots, q_r]$. The structure constants (for multiplying Schubert classes) are the 3-point Gromov-Witten (GW) invariants. A k-point GW invariant (of degree d) counts curves of degree d passing through k given Schubert varieties.
Flag variety G/B, Schubert variety $X_w = \overline{B - wB/B}$, for $w \in W$.

$H^*(G/B)$ and $K(G/B)$ have bases of Schubert classes;
Flag variety G/B, Schubert variety $X_w = \overline{B^- wB/B}$, for $w \in W$.

$H^*(G/B)$ and $K(G/B)$ have bases of Schubert classes; for K-theory, they are the classes $[\mathcal{O}_w] = [\mathcal{O}_{X_w}]$ of structure sheaves of X_w.

The quantum cohomology algebra $QH^*(G/B)$ still has the Schubert basis, but over $\mathbb{C}[q_1, \ldots, q_r]$.

A k-point GW invariant (of degree d) counts curves of degree d passing through k given Schubert varieties.
Schubert calculus

Flag variety G/B, Schubert variety $X_w = B^{-wB}/B$, for $w \in W$.

$H^*(G/B)$ and $K(G/B)$ have bases of Schubert classes; for K-theory, they are the classes $[O_w] = [O_{X_w}]$ of structure sheaves of X_w.

The quantum cohomology algebra $QH^*(G/B)$ still has the Schubert basis, but over $\mathbb{C}[q_1, \ldots, q_r]$.
Flag variety G/B, Schubert variety $X_w = B^{-wB}/B$, for $w \in W$.

$H^*(G/B)$ and $K(G/B)$ have bases of Schubert classes; for K-theory, they are the classes $[\mathcal{O}_w] = [\mathcal{O}_{X_w}]$ of structure sheaves of X_w.

The quantum cohomology algebra $QH^*(G/B)$ still has the Schubert basis, but over $\mathbb{C}[q_1, \ldots, q_r]$.

The structure constants (for multiplying Schubert classes) are the 3-point Gromov-Witten (GW) invariants.
Schubert calculus

Flag variety G/B, Schubert variety $X_w = \overline{B^-wB/B}$, for $w \in W$.

$H^*(G/B)$ and $K(G/B)$ have bases of Schubert classes; for K-theory, they are the classes $[\mathcal{O}_w] = [\mathcal{O}_{X_w}]$ of structure sheaves of X_w.

The quantum cohomology algebra $QH^*(G/B)$ still has the Schubert basis, but over $\mathbb{C}[q_1, \ldots, q_r]$.

The structure constants (for multiplying Schubert classes) are the 3-point Gromov-Witten (GW) invariants.

A k-point GW invariant (of degree d) counts curves of degree d passing through k given Schubert varieties.
Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.
Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.

The structure constants for the quantum K-theory $QK(G/B)$ are defined based on the 2- and 3-point invariants (complex formula).
Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.

The structure constants for the quantum K-theory $QK(G/B)$ are defined based on the 2- and 3-point invariants (complex formula).

The K-theoretic J-function is the generating function of 1-point K-theoretic GW invariants.
Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.

The structure constants for the quantum K-theory $QK(G/B)$ are defined based on the 2- and 3-point invariants (complex formula).

The K-theoretic J-function is the generating function of 1-point K-theoretic GW invariants.

Theorem (Braverman-Finkelberg)

In simply-laced types, the q-Whittaker function $\Psi_{\lambda}(x; q)$ (viewed as a function of λ) coincides with the K-theoretic J-function.
Kirillov-Reshetikhin (KR) modules

$W^{r,s}$: finite dimensional modules for \hat{g} ($r \in I$, $s \geq 1$).
Kirillov-Reshetikhin (KR) modules

$W^{r,s}$: finite dimensional modules for $\hat{\mathfrak{g}}$ ($r \in I$, $s \geq 1$).

Let $p = (p_1, p_2, \ldots)$ be a composition, and

$$W^p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots, \quad \lambda = \omega_{p_1} + \omega_{p_2} + \ldots.$$
Kirillov-Reshetikhin (KR) modules

$\mathcal{W}^{r,s}$: finite dimensional modules for $\hat{\mathfrak{g}}$ ($r \in I$, $s \geq 1$).

Let $p = (p_1, p_2, \ldots)$ be a composition, and

$$\mathcal{W}^{\otimes p} = \mathcal{W}^{p_1,1} \otimes \mathcal{W}^{p_2,1} \otimes \ldots , \quad \lambda = \omega_{p_1} + \omega_{p_2} + \ldots .$$

$X_\lambda(x; q)$: the (graded) character of $\mathcal{W}^{\otimes p}$.
Kirillov-Reshetikhin (KR) modules

\(W^{r,s}\): finite dimensional modules for \(\hat{\mathfrak{g}}\) \((r \in I, s \geq 1)\).

Let \(p = (p_1, p_2, \ldots)\) be a composition, and

\[W^{\otimes p} = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots, \quad \lambda = \omega_{p_1} + \omega_{p_2} + \ldots.\]

\(X_\lambda(x; q)\): the (graded) character of \(W^{\otimes p}\).

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

For all untwisted affine root systems \(A^{(1)}_{n-1} - G^{(1)}_2\), we have

\[P_\lambda(x; q, 0) = X_\lambda(x; q).\]
Kirillov-Reshetikhin (KR) modules

$W^{r,s}$: finite dimensional modules for $\widehat{\mathfrak{g}}$ ($r \in I$, $s \geq 1$).

Let $\mathbf{p} = (p_1, p_2, \ldots)$ be a composition, and

$W^\otimes \mathbf{p} = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots$, $\lambda = \omega_{p_1} + \omega_{p_2} + \ldots$.

$X_\lambda(x; q)$: the (graded) character of $W^\otimes \mathbf{p}$.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

For all untwisted affine root systems $A_{n-1}^{(1)} - G_2^{(1)}$, we have

$P_\lambda(x; q, 0) = X_\lambda(x; q)$.

Remarks. (1) The result is believed to extend to the twisted types.
Kirillov-Reshetikhin (KR) modules

$W^{r,s}$: finite dimensional modules for \hat{g} ($r \in I$, $s \geq 1$).

Let $p = (p_1, p_2, \ldots)$ be a composition, and

$$W^\otimes p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots , \quad \lambda = \omega_{p_1} + \omega_{p_2} + \ldots .$$

$X_\lambda(x; q)$: the (graded) character of $W^\otimes p$.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

For all untwisted affine root systems $A^{(1)}_{n-1}$–$G^{(1)}_2$, we have

$$P_\lambda(x; q, 0) = X_\lambda(x; q) .$$

Remarks. (1) The result is believed to extend to the twisted types.

(2) In simply-laced types, certain affine Demazure characters were identified with $P_\lambda(x; q, 0)$ (Ion), and $X_\lambda(x; q)$ (Fourier-Littelmann).
The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the mentioned structures:
The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the mentioned structures:

- the specialized Macdonald polynomials $P_\lambda(x; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),
The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the mentioned structures:

- the specialized Macdonald polynomials $P_\lambda(x; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),

- the quantum K-theory of G/B (conjecture by L.-Postnikov; evidence by L.-Maeno),
The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the mentioned structures:

- the specialized Macdonald polynomials $P_{\lambda}(x; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),
- the quantum K-theory of G/B (conjecture by L.-Postnikov; evidence by L.-Maeno),
- the tensor products of one-column KR modules (LNSSS).
The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the mentioned structures:

- the specialized Macdonald polynomials $P_\lambda(x; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),
- the quantum K-theory of G/B (conjecture by L.-Postnikov; evidence by L.-Maeno),
- the tensor products of one-column KR modules (LNSSS).

The model is uniform for all Lie types $A_{n-1} - G_2$.
Finite root systems $\Phi \subset \mathfrak{h}^*_R$

Reflections s_α, $\alpha \in \Phi$.
Finite root systems $\Phi \subset \mathfrak{h}_R^*$

Reflections s_α, $\alpha \in \Phi$.

The Weyl group $W = \langle s_\alpha : \alpha \in \Phi^+ \rangle$.
Finite root systems $\Phi \subset h^*_R$

Reflections s_α, $\alpha \in \Phi$.

The Weyl group $W = \langle s_\alpha : \alpha \in \Phi^+ \rangle$.

Length function: $\ell(w)$.

Comes from the multiplication of Schubert classes in the quantum cohomology of flag varieties $QH^*(G/B)$ (Fulton and Woodward).
Finite root systems $\Phi \subset \mathfrak{h}^*_\mathbb{R}$

Reflections s_α, $\alpha \in \Phi$.

The Weyl group $W = \langle s_\alpha : \alpha \in \Phi^+ \rangle$.

Length function: $\ell(w)$.

The quantum Bruhat graph $\text{QBG}(W)$ on W is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_\alpha,$$

where

$$\ell(ws_\alpha) = \ell(w) + 1 \quad (\text{covers of the Bruhat order}),$$

or

$$\ell(ws_\alpha) = \ell(w) - 2\text{ht}(\alpha^\vee) + 1 \quad (\text{ht}(\alpha^\vee) = \langle \rho, \alpha^\vee \rangle).$$
Finite root systems $\Phi \subset \mathfrak{h}_R^*$

Reflections s_α, $\alpha \in \Phi$.

The Weyl group $W = \langle s_\alpha : \alpha \in \Phi^+ \rangle$.

Length function: $\ell(w)$.

The quantum Bruhat graph $\text{QBG}(W)$ on W is the directed graph with labeled edges

$$w \overset{\alpha}{\rightarrow} ws_\alpha,$$

where

$$\ell(ws_\alpha) = \ell(w) + 1 \text{ (covers of the Bruhat order), or}$$

$$\ell(ws_\alpha) = \ell(w) - 2\text{ht}(\alpha^\vee) + 1 \quad (\text{ht}(\alpha^\vee) = \langle \rho, \alpha^\vee \rangle).$$

 Comes from the multiplication of Schubert classes in the quantum cohomology of flag varieties $QH^*(G/B)$ (Fulton and Woodward).
Bruhat graph for S_3:
Quantum Bruhat graph for S_3:

\[
\begin{align*}
321 & \rightarrow 312 & \alpha_{12} & \rightarrow & \alpha_{13} & \rightarrow & 231 & \rightarrow & \alpha_{23} & \rightarrow & 213 & \rightarrow & \alpha_{13} & \rightarrow & 132 \\
312 & \rightarrow 321 & \alpha_{23} & \rightarrow & \alpha_{12} & \rightarrow & 231 & \rightarrow & \alpha_{13} & \rightarrow & 213 & \rightarrow & \alpha_{13} & \rightarrow & 132 \\
231 & \rightarrow 213 & \alpha_{13} & \rightarrow & \alpha_{12} & \rightarrow & 123 & \rightarrow & \alpha_{23} & \rightarrow & 132 & \rightarrow & \alpha_{23} & \rightarrow & 312 \\
213 & \rightarrow 123 & \alpha_{12} & \rightarrow & \alpha_{23} & \rightarrow & 132 & \rightarrow & \alpha_{13} & \rightarrow & 312 & \rightarrow & \alpha_{13} & \rightarrow & 231 \\
132 & \rightarrow 123 & \alpha_{23} & \rightarrow & \alpha_{12} & \rightarrow & 231 & \rightarrow & \alpha_{13} & \rightarrow & 213 & \rightarrow & \alpha_{13} & \rightarrow & 321 \\
123 & \rightarrow 132 & \alpha_{13} & \rightarrow & \alpha_{12} & \rightarrow & 312 & \rightarrow & \alpha_{23} & \rightarrow & 213 & \rightarrow & \alpha_{23} & \rightarrow & 321
\end{align*}
\]
The quantum alcove model

Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$
The quantum alcove model

Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

Fact. The construction of a λ-chain is based on a reduced decomposition of the affine Weyl group element corresponding to $A_\circ - \lambda$. This gives a sequence of alcoves from A_\circ to $A_\circ - \lambda$.
The quantum alcove model (cont.)

Given $\Gamma = (\beta_1, \ldots, \beta_m)$, let $r_i := s_{\beta_i}$.
The quantum alcove model (cont.)

Given $\Gamma = (\beta_1, \ldots, \beta_m)$, let $r_i := s_{\beta_i}$.

The objects of the model: subsets of positions in Γ

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$
The quantum alcove model (cont.)

Given $\Gamma = (\beta_1, \ldots, \beta_m)$, let $r_i := s_{\beta_i}$.

The objects of the model: subsets of positions in Γ

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and J, construct the chain $\pi(w, J)$ of elements in W:

$$w_0 = w, \ldots, w_i := wr_{j_1} \ldots r_{j_i}, \ldots, w_s = \text{end}(w, J).$$
The quantum alcove model (cont.)

Given $\Gamma = (\beta_1, \ldots, \beta_m)$, let $r_i := s_{\beta_i}$.

The objects of the model: subsets of positions in Γ

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and J, construct the chain $\pi(w, J)$ of elements in W:

$$w_0 = w, \ldots, \ w_i := wr_{j_1} \ldots r_{j_i}, \ldots, \ w_s = \text{end}(w, J).$$

Important structures:

$$\mathcal{A}_q(\Gamma, w) := \{J : \pi(w, J) \text{ path in } \text{QBG}(W)\},$$
$$\mathcal{A}_<(\Gamma, w) := \{J : \pi(w, J) \text{ saturated chain in } (W, <)\}.$$
Given $\Gamma = (\beta_1, \ldots, \beta_m)$, let $r_i := s_{\beta_i}$.

The objects of the model: subsets of positions in Γ

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and J, construct the chain $\pi(w, J)$ of elements in W:

$$w_0 = w, \ldots, w_i := wr_{j_1} \ldots r_{j_i}, \ldots, w_s = \text{end}(w, J).$$

Important structures:

$$\mathcal{A}_q(\Gamma, w) := \{ J : \pi(w, J) \text{ path in } \text{QBG}(W) \},$$

$$\mathcal{A}_< (\Gamma, w) := \{ J : \pi(w, J) \text{ saturated chain in } (W, <) \}.$$

Let $\mathcal{A}_q(\Gamma) := \mathcal{A}_q(\Gamma, 1_W)$ and $\mathcal{A}_< (\Gamma) := \mathcal{A}_<(\Gamma, 1_W)$.

Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma := (\beta_1, \ldots, \beta_m)$.

Theorem (Ram-Yip, L.)

$$P_\lambda(X; q, 0) = \sum_{J \in A_q(\Gamma)} q^{\text{height}(J)} x^{\text{weight}(J)}.$$

Remark. For $q = 0$, we retrieve the alcove model (L. and Postnikov, cf. Gaussent and Littelmann, Littelmann):

$$P_\lambda(X; 0, 0) = \chi(V_\lambda) = \sum_{J \in A_\nless(\Gamma)} x^{\text{weight}(J)}.$$
Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma := (\beta_1, \ldots, \beta_m)$.

Given $J \in \mathcal{A}_q(\Gamma)$, we associate with it

- a weight $\text{weight}(J)$,
Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma := (\beta_1, \ldots, \beta_m)$.

Given $J \in A_q(\Gamma)$, we associate with it

- a weight $\text{weight}(J)$,
- a statistic $\text{height}(J)$, which "measures" the down steps $w_{i-1} > w_i$ in the path $\pi(w, J)$ in $\text{QBG}(W)$.

Theorem (Ram-Yip, L.)

\[P^{\lambda}(X; q, 0) = \sum_{J \in A_q(\Gamma)} q^{\text{height}(J)} x^{\text{weight}(J)}. \]

Remark. For $q = 0$, we retrieve the alcove model (L. and Postnikov, cf. Gaussent and Littelmann, Littelmann):

\[P^{\lambda}(X; 0, 0) = \text{ch}(V^{\lambda}) = \sum_{J \in \mathcal{A}(\Gamma)} x^{\text{weight}(J)}. \]
Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma := (\beta_1, \ldots, \beta_m)$.

Given $J \in A_q(\Gamma)$, we associate with it

\triangleright a weight $\text{weight}(J)$,

\triangleright a statistic $\text{height}(J)$, which "measures" the down steps $w_{i-1} > w_i$ in the path $\pi(w, J)$ in $\text{QBG}(W)$.

Theorem (Ram-Yip, L.)

$$P_\lambda(X; q, 0) = \sum_{J \in A_q(\Gamma)} q^{\text{height}(J)} \chi^{\text{weight}(J)}.$$
Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma := (\beta_1, \ldots, \beta_m)$.

Given $J \in A_q(\Gamma)$, we associate with it

- a weight $\text{weight}(J)$,
- a statistic $\text{height}(J)$, which “measures” the down steps $w_{i-1} > w_i$ in the path $\pi(w, J)$ in $QBG(W)$.

Theorem (Ram-Yip, L.)

$$P_\lambda(X; q, 0) = \sum_{J \in A_q(\Gamma)} q^{\text{height}(J)} \chi^{\text{weight}(J)}.$$

Remark. For $q = 0$, we retrieve the alcove model (L. and Postnikov, cf. Gaussent and Littelmann, Littelmann):

$$P_\lambda(X; 0, 0) = \text{ch}(V_\lambda) = \sum_{J \in A_<(\Gamma)} \chi^{\text{weight}(J)}.$$
$K(G/B)$ and $QK(G/B)$: Chevalley formulas

Recall: $K(G/B)$ and $QK(G/B)$ have bases of Schubert classes $[\mathcal{O}_{\chi_w}] = [\mathcal{O}_w], \ w \in W$.

Theorem (L.-Postnikov, L.-Shimozono)

In $K(G/B)$ (finite-type or Kac-Moody), we have

$[\mathcal{O}_w] \cdot [\mathcal{O}_{s_k}] = \sum_{J \in A \prec (\Gamma_{\text{rev}}, w)} \{\emptyset\} (-1)^{|J|-1}[\mathcal{O}_{\text{end}}(w, J)]$.

Conjecture (L.-Postnikov)

In $QK(G/B)$ (finite-type), we have:

$[\mathcal{O}_w] \ast [\mathcal{O}_{s_k}] = \sum_{J \in A} q_{(\Gamma_{\text{rev}}, w)} \{\emptyset\} (-1)^{|J|-1} q^{|J| - 1} \ldots q^{|J| - |\Gamma_{\text{rev}}| - 1}[\mathcal{O}_{\text{end}}(w, J)]$.

Remark. Restricting the RHS, we retrieve the Chevalley formula in $QH^*(G/B)$ (Fulton-Woodward).
K(G/B) and QK(G/B): Chevalley formulas

Recall: \(K(G/B) \) and \(QK(G/B) \) have bases of Schubert classes \([\mathcal{O}_{\chi_w}] = [\mathcal{O}_w], \ w \in W.\)

Let \(\Gamma_{\text{rev}} \) = reverse of an \(\omega_k \)-chain (\(\omega_k \) a fundamental weight).
$K(G/B)$ and $QK(G/B)$: Chevalley formulas

Recall: $K(G/B)$ and $QK(G/B)$ have bases of Schubert classes $[O_{\chi_w}] = [O_w]$, $w \in W$.

Let $\Gamma_{\text{rev}} =$ reverse of an ω_k-chain (ω_k a fundamental weight).

Theorem (L.-Postnikov, L.-Shimozono)

*In $K(G/B)$ (finite-type or Kac-Moody), we have

$$[O_w] \cdot [O_{s_k}] = \sum_{J \in A_{\prec}(\Gamma_{\text{rev}}, w) \setminus \{\emptyset\}} (-1)^{|J|-1} [O_{\text{end}(w, J)}].$$

Conjecture (L.-Postnikov)

*In $QK(G/B)$ (finite-type), we have:

$$[O_w] \ast [O_{s_k}] = \sum_{J \in A_{\prec}(\Gamma_{\text{rev}}, w) \setminus \{\emptyset\}} (-1)^{|J|-1} q^{\ast 1} \cdots q^{\ast r} [O_{\text{end}(w, J)}].$$

Remark. Restricting the RHS, we retrieve the Chevalley formula in $QH^\ast(G/B)$ (Fulton-Woodward).
$K(G/B)$ and $QK(G/B)$: Chevalley formulas

Recall: $K(G/B)$ and $QK(G/B)$ have bases of Schubert classes $[O_{x_w}] = [O_w]$, $w \in W$.

Let Γ_{rev} = reverse of an ω_k-chain (ω_k a fundamental weight).

Theorem (L.-Postnikov, L.-Shimozono)

In $K(G/B)$ (finite-type or Kac-Moody), we have

\[[O_w] \cdot [O_{s_k}] = \sum_{J \in A_<(\Gamma_{\text{rev}}, w) \setminus \{\emptyset\}} (-1)^{|J| - 1} [O_{\text{end}(w, J)}]. \]

Conjecture (L.-Postnikov)

In $QK(G/B)$ (finite-type), we have:

\[[O_w] \ast [O_{s_k}] = \sum_{J \in A_q(\Gamma_{\text{rev}}, w) \setminus \{\emptyset\}} (-1)^{|J| - 1} q_1^* \cdots q_r^* [O_{\text{end}(w, J)}]. \]
$K(G/B)$ and $QK(G/B)$: Chevalley formulas

Recall: $K(G/B)$ and $QK(G/B)$ have bases of Schubert classes $[O_{\chi_w}] = [O_w]$, $w \in W$.

Let $\Gamma_{rev} =$ reverse of an ω_k-chain (ω_k a fundamental weight).

Theorem (L.-Postnikov, L.-Shimozono)

In $K(G/B)$ (finite-type or Kac-Moody), we have

$$[O_w] \cdot [O_{s_k}] = \sum_{J \in A_<(\Gamma_{rev}, w) \setminus \{\emptyset\}} \left(-1 \right)^{|J| - 1} [O_{\text{end}(w, J)}].$$

Conjecture (L.-Postnikov)

In $QK(G/B)$ (finite-type), we have:

$$[O_w] \ast [O_{s_k}] = \sum_{J \in A_q(\Gamma_{rev}, w) \setminus \{\emptyset\}} \left(-1 \right)^{|J| - 1} q_1^{*} \cdots q_{r}^{*} [O_{\text{end}(w, J)}].$$

Remark. Restricting the RHS, we retrieve the Chevalley formula in $QH^*(G/B)$ (Fulton-Woodward).
Evidence for the conjectured formula in $QK(G/B)$

- Computer experiments (A. Buch).

• Based on some relations in $QK(SL_n/B)$ discovered by Kirillov-Maeno, we constructed polynomials $G_w(x; q)$, called quantum Grothendieck polynomials.

- They specialize to the usual polynomial representatives in $K(SL_n/B)$ and $QH^*(SL_n/B)$.

- They multiply as in the conjectured Chevalley formula.

- They are conjectured to represent Schubert classes $[O_w]$ in $QK(SL_n/B)$.
Evidence for the conjectured formula in $QK(G/B)$

- Computer experiments (A. Buch).
- The work of Braverman-Finkelberg connecting $QK(G/B)$ to specialized Macdonald polynomials.
Evidence for the conjectured formula in $QK(G/B)$

- Computer experiments (A. Buch).

- The work of Braverman-Finkelberg connecting $QK(G/B)$ to specialized Macdonald polynomials.

- (L.-Maeno) Based on some relations in $QK(SL_n/B)$ discovered by Kirillov-Maeno, we constructed polynomials $\mathfrak{G}_w(x; q)$, called quantum Grothendieck polynomials.
Evidence for the conjectured formula in $QK(G/B)$

- Computer experiments (A. Buch).
- The work of Braverman-Finkelberg connecting $QK(G/B)$ to specialized Macdonald polynomials.
- (L.-Maeno) Based on some relations in $QK(SL_n/B)$ discovered by Kirillov-Maeno, we constructed polynomials $G_w(x; q)$, called quantum Grothendieck polynomials.
 - They specialize to the usual polynomial representatives in $K(SL_n/B)$ and $QH^*(SL_n/B)$.
Evidence for the conjectured formula in $\text{QK}(G/B)$

- Computer experiments (A. Buch).
- The work of Braverman-Finkelberg connecting $\text{QK}(G/B)$ to specialized Macdonald polynomials.
- (L.-Maeno) Based on some relations in $\text{QK}(SL_n/B)$ discovered by Kirillov-Maeno, we constructed polynomials $\mathcal{G}_w(x; q)$, called quantum Grothendieck polynomials.
 - They specialize to the usual polynomial representatives in $K(SL_n/B)$ and $QH^*(SL_n/B)$.
 - They multiply as in the conjectured Chevalley formula.
Evidence for the conjectured formula in $QK(G/B)$

- Computer experiments (A. Buch).

- The work of Braverman-Finkelberg connecting $QK(G/B)$ to specialized Macdonald polynomials.

- (L.-Maeno) Based on some relations in $QK(SL_n/B)$ discovered by Kirillov-Maeno, we constructed polynomials $\mathcal{G}_w(x; q)$, called quantum Grothendieck polynomials.

 - They specialize to the usual polynomial representatives in $K(SL_n/B)$ and $QH^*(SL_n/B)$.

 - They multiply as in the conjectured Chevalley formula.

 - They are conjectured to represent Schubert classes $[\mathcal{O}_w]$ in $QK(SL_n/B)$.
Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_q(\hat{g})$: $W^{r,s}$ and

$$W \otimes^p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots .$$
Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_q(\hat{\mathfrak{g}})$: $W^{r,s}$ and

$$W \otimes p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots .$$

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\tilde{f}_0, \ldots, \tilde{f}_r$.

Fact. The crystal structure on $B \otimes p$ is defined by a tensor product rule:

$$B \otimes p = B^{p_1,1} \otimes B^{p_2,1} \otimes \ldots .$$
Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_q(\hat{g})$: $W^{r,s}$ and

$$W \otimes p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots .$$

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\tilde{f}_0, \ldots, \tilde{f}_r$.

Fact. $W \otimes p$ has a basis (crystal basis) $B = B \otimes p$ such that in the limit $q \to 0$ we have

$$\tilde{f}_i : B \to B \sqcup \{0\}, \quad \tilde{f}_i b = b' \iff b \overset{i}{\longrightarrow} b'.$$
Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_q(\hat{g})$: $W^{r,s}$ and

$$W^\otimes p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots .$$

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\tilde{f}_0, \ldots, \tilde{f}_r$.

Fact. $W^\otimes p$ has a basis (crystal basis) $B = B^\otimes p$ such that in the limit $q \to 0$ we have

$$\tilde{f}_i : B \to B \sqcup \{0\}, \quad \tilde{f}_i b = b' \iff b \xrightarrow{i} b'.$$

So $B^\otimes p$ is a colored directed graph (connected).
Recall the KR modules, as modules for $U_q(\hat{g})$: $W^{r,s}$ and

$$W^p = W^{p_1,1} \otimes W^{p_2,1} \otimes \ldots.$$

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\tilde{f}_0, \ldots, \tilde{f}_r$.

Fact. W^p has a basis (crystal basis) $B = B^p$ such that in the limit $q \to 0$ we have

$$\tilde{f}_i : B \to B \sqcup \{0\}, \quad \tilde{f}_i b = b' \iff b \xrightarrow{i} b'.$$

So B^p is a colored directed graph (connected).

Fact. The crystal structure on B^p is defined by a tensor product rule: $B^p = B^{p_1,1} \otimes B^{p_2,1} \otimes \ldots$.

Models for KR crystals

Fact. In the classical types $A - D$ there are tableau models (the usual column-strict fillings in type $A_{n-1}^{(1)}$, but more involved in the other types, particularly for $B_n^{(1)}$ and $D_n^{(1)}$).
Fact. In the classical types $A - D$ there are tableau models (the usual column-strict fillings in type $A_{n-1}^{(1)}$, but more involved in the other types, particularly for $B_n^{(1)}$ and $D_n^{(1)}$).

Goal. Uniform model for all types $A_{n-1}^{(1)} - G_2^{(1)}$, based on the quantum alcove model.
The quantum alcove model for KR crystals

Given \(\mathbf{p} = (p_1, p_2, \ldots) \) and an arbitrary Lie type, let

\[
\lambda = \omega_{p_1} + \omega_{p_2} + \ldots.
\]

Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann)

Crystal operators \(\tilde{f}_1, \ldots, \tilde{f}_r \) and \(\tilde{f}_0 \) on \(A_q(\Gamma) \).

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

The (combinatorial) crystal \(A_q(\Gamma) \) is isomorphic to the tensor product of KR crystals \(B \otimes \mathbf{p} \).
The quantum alcove model for KR crystals

Given \(p = (p_1, p_2, \ldots) \) and an arbitrary Lie type, let
\[
\lambda = \omega_{p_1} + \omega_{p_2} + \ldots.
\]
Let \(\Gamma \) be a \(\lambda \)-chain, and consider \(A_q(\Gamma) \).
The quantum alcove model for KR crystals

Given $p = (p_1, p_2, \ldots)$ and an arbitrary Lie type, let
$$\lambda = \omega_{p_1} + \omega_{p_2} + \ldots.$$ Let Γ be a λ-chain, and consider $A_q(\Gamma)$.

Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann) *Crystal operators* $\tilde{f}_1, \ldots, \tilde{f}_r$ and \tilde{f}_0 on $A_q(\Gamma)$.
Given $p = (p_1, p_2, \ldots)$ and an arbitrary Lie type, let
$$\lambda = \omega_{p_1} + \omega_{p_2} + \ldots.$$
Let Γ be a λ-chain, and consider $A_q(\Gamma)$.

Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann) **Crystal operators** $\tilde{f}_1, \ldots, \tilde{f}_r$ and \tilde{f}_0 on $A_q(\Gamma)$.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

The (combinatorial) crystal $A_q(\Gamma)$ is isomorphic to the tensor product of KR crystals $B^\otimes p$.
The energy function

It originates in the theory of exactly solvable lattice models.
The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^\otimes p$ (Schilling and Tingley).
The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^\otimes p$ (Schilling and Tingley).

More precisely, $D_B : B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^\otimes p$ (Schilling and Tingley).

More precisely, $D_B : B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:
- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0-arrows.
The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B \otimes p$ (Schilling and Tingley).

More precisely, $D_B : B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

▶ it is constant on classical components (0-arrows removed);
▶ it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex
The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^\otimes p$ (Schilling and Tingley).

More precisely, $D_B : B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

► it is constant on classical components (0-arrows removed);
► it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex (type A: Lascoux–Schützenberger charge statistic).
The energy via the quantum alcove model

Consider \(J = \{j_1 < j_2 < \ldots < j_s\} \) in \(\mathcal{A}_q(\Gamma) \) for \(\Gamma = (\beta_1, \ldots, \beta_m) \), i.e., we have a path in the quantum Bruhat graph

\[
1_W = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \cdots \xrightarrow{\beta_{j_s}} w_s.
\]
Consider $J = \{j_1 < j_2 < \ldots < j_s\}$ in $A_q(\Gamma)$ for $\Gamma = (\beta_1, \ldots, \beta_m)$, i.e., we have a path in the quantum Bruhat graph

$$1_W = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \ldots \xrightarrow{\beta_{j_s}} w_s.$$

Recall that $\text{height}(J)$ measures the down steps in the above path.
The energy via the quantum alcove model

Consider \(J = \{ j_1 < j_2 < \ldots < j_s \} \) in \(A_q(\Gamma) \) for \(\Gamma = (\beta_1, \ldots, \beta_m) \), i.e., we have a path in the quantum Bruhat graph

\[
1_W = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \ldots \xrightarrow{\beta_{j_s}} w_s .
\]

Recall that \(\text{height}(J) \) measures the down steps in the above path.

Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

Given \(J \in A_q(\Gamma) \), which is identified with \(B^\otimes p \), we have

\[
D_B(J) = -\text{height}(J) .
\]
The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B \otimes p$
The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B \otimes p$ (the swap $a \otimes b \mapsto b \otimes a$ is \textit{not} a crystal isomorphism!).
This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B \otimes q$ (the swap $a \otimes b \mapsto b \otimes a$ is not a crystal isomorphism!).

In type A, it is realized by Schützenberger’s jeu de taquin (sliding algorithm) on two columns, but already in type C it is hard.
The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B \otimes p$ (the swap $a \otimes b \mapsto b \otimes a$ is not a crystal isomorphism!).

In type A, it is realized by Schützenberger’s jeu de taquin (sliding algorithm) on two columns, but already in type C it is hard.

Theorem (L.-Lubovsky)

We give a uniform realization, based on the quantum alcove model, of the combinatorial R-matrix.
The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B \otimes p$ (the swap $a \otimes b \mapsto b \otimes a$ is not a crystal isomorphism!).

In type A, it is realized by Schützenberger's jeu de taquin (sliding algorithm) on two columns, but already in type C it is hard.

Theorem (L.-Lubovsky)

We give a uniform realization, based on the quantum alcove model, of the combinatorial R-matrix.

We use combinatorial moves based on certain operators on W defined by $\text{QBG}(W)$, which satisfy the Yang-Baxter equation (Brenti-Fomin-Postnikov).
Example in type A_2.

\[\mathbf{p} = (1, 2, 2, 1) = \begin{array}{cccc} & & & \\
& & & \\
& & & \\
& & & \\
\end{array} \;; \quad \lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1 = (4, 2, 0). \]
Example in type A_2.

$$\mathbf{p} = (1, 2, 2, 1) = \begin{array}{cccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}; \quad \lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1 = (4, 2, 0).$$

A λ-chain as a concatenation of ω_1-, ω_2-, ω_2-, and ω_1-chains:

$$\Gamma = ((1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3)).$$
Example. Let $J = \{1, 2, 3, 6, 7, 8\}$.

\[
\left((1,2), (1,3) | (2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3) \right).
\]
Example. Let $J = \{1, 2, 3, 6, 7, 8\}$.

\[
((1, 2), (1, 3) \mid (2, 3), (1, 3) \mid (2, 3), (1, 3) \mid (1, 2), (1, 3)) .
\]

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

\[
\begin{align*}
&1 \quad 2 \quad 3 \\
&2 \quad 1 \quad 3 \\
&3 \quad 2 \quad 1 \\
&1 \quad 2 \quad 3
\end{align*}
\]

\[
\begin{align*}
&1 \quad 2 \quad 3 \\
&2 \quad 1 \quad 3 \\
&3 \quad 2 \quad 1 \\
&1 \quad 2 \quad 3
\end{align*}
\]

\[
\begin{align*}
&1 \quad 2 \quad 3 \\
&2 \quad 1 \quad 3 \\
&3 \quad 2 \quad 1 \\
&1 \quad 2 \quad 3
\end{align*}
\]
Example. Let $J = \{1, 2, 3, 6, 7, 8\}$.

\[
((1, 2), (1, 3) \mid (2, 3), (1, 3) \mid (2, 3), (1, 3) \mid (1, 2), (1, 3)).
\]

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

\[
\begin{array}{ccccccc}
& 1 & > & 2 & < & 3 & > \\
2 & \downarrow & 1 & \downarrow & 1 & \downarrow & 3 \\
3 & 1 & 2 & 2 & 1 & 3 & 2
\end{array}
\]

The corresponding element in $B^\otimes p = B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ represented via column-strict fillings:

\[
\begin{array}{ccc}
3 & \otimes & 2 \\
3 & \otimes & 1 \\
2 & \otimes & 3
\end{array}
\]
The energy calculation

Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1$ in type A_2.

The energy calculation

Example. Consider the running example: \(\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1 \) in type \(A_2 \).
We considered the \(\lambda \)-chain \(\Gamma \) and \(J = \{1, 2, 3, 6, 7, 8\} \in \mathcal{A}(\Gamma) \):

\[
\Gamma = ((1, 2), (1, 3) \mid (2, 3), (1, 3) \mid (2, 3), (1, 3) \mid (1, 2), (1, 3)),
\]

\[
(h_i) = (2, 4 \mid 2, 3 \mid 1, 2 \mid 1, 1).
\]
Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1$ in type A_2.

We considered the λ-chain Γ and $J = \{1, 2, 3, 6, 7, 8\} \in \mathcal{A}(\Gamma)$:

$$\Gamma = \begin{pmatrix} (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), \underline{(1, 3)} | (1, 2), (1, 3) \end{pmatrix},$$

$$\left(h_i \right) = \begin{pmatrix} 2, & 4 | 2, & 3 | 1, & 2 | 1, \end{pmatrix}.$$

We have

$$\text{height}(J) = 2.$$