Lower bounds for width-restricted clause learning

Jan Johannsen

Institut für Informatik
LMU München

Banff, 23. 01. 2014

partially based on joint work with
Sam Buss, Jan Hoffmann & Eli Ben-Sasson
Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.
Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $C_{\text{root}} = \Box$

- if v has 2 children u and u', then $C_v = \text{Res}(C_u, C_{u'})$ for some variable x

- if v has 1 child u, then $C_v \supseteq C_u$

- if v is a leaf, then $C_v \in F$ or $C_v = C_u$ for some $u \prec v$ (lemma)

\prec is the post-order on trees.
Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $\mathcal{C}_{\text{root}} = \Box$

- if v has 2 children u and u', then
 $$\mathcal{C}_v = \text{Res}_x(\mathcal{C}_u, \mathcal{C}_{u'})$$
 for some variable x

- if v has 1 child u, then
 $$\mathcal{C}_v \supseteq \mathcal{C}_u$$

- if v is a leaf, then
 $$\mathcal{C}_v \in F \lor \mathcal{C}_v = \mathcal{C}_u$$ for some $u \prec v$ (lemma)

\prec is the post-order on trees.
Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $C_{\text{root}} = \Box$

- if v has 2 children u and u', then

 $C_v = \text{Res}_x(C_u, C_{u'})$ for some variable x

- if v has 1 child u, then

 $C_v \supseteq C_u$
Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $C_{\text{root}} = \square$
- if v has 2 children u and u', then
 \[C_v = \text{Res}_x(C_u, C_{u'}) \text{ for some variable } x \]
- if v has 1 child u, then
 \[C_v \supseteq C_u \]
- if v is a leaf, then
 \[C_v \in F \]
A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $C_{\text{root}} = \Box$

- if v has 2 children u and u', then
 \[C_v = \text{Res}_x(C_u, C_{u'}) \]
 for some variable x

- if v has 1 child u, then
 \[C_v \supseteq C_u \]

- if v is a leaf, then
 \[C_v \in F \quad \text{or} \quad C_v = C_u \quad \text{for some } u \prec v \quad \text{(lemma)} \]

\prec is the post-order on trees.
Clause learning and \textit{RTL}

Theorem (Buss, Hoffmann, JJ)

If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$.
Clause learning and RTL

Theorem (Buss, Hoffmann, JJ)

If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$.

Moreover, the lemmas used in R are among the clauses learned by the algorithm.
Clause learning and \textit{RTL}

\textbf{Theorem (Buss, Hoffmann, JJ)}

\textit{If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$.}

\textit{Moreover, the lemmas used in R are among the clauses learned by the algorithm.}

In fact, the paper defines a subsystem $WRTI < RTL$ for which also the converse holds.
Clause learning and RTL

Theorem (Buss, Hoffmann, JJ)

If unsatisfiable formula F is refuted by $DPLL+CL$ in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$. Moreover, the lemmas used in R are among the clauses learned by the algorithm.

In fact, the paper defines a subsystem $WRTI < RTL$ for which also the converse holds.

Here: lower bounds for $RTL(k)$:

A refutation R in RTL is in $RTL(k)$, if every lemma C used in R is of width $w(C) \leq k$.

Complexity of the Pigeonhole Principle

Theorem (Haken 1985)

Resolution proofs of PHP$_n$ require size $2^{\Omega(n)}$.

Complexity of the Pigeonhole Principle

Theorem (Haken 1985)

Resolution proofs of PHP_n require size $2^{\Omega(n)}$.

Theorem (Buss, Pitassi 1997)

There are regular resolution proofs of PHP_n of size n^32^n.
Complexity of the Pigeonhole Principle

Theorem (Haken 1985)

Resolution proofs of PHPₙ require size $2^{\Omega(n)}$.

Theorem (Buss, Pitassi 1997)

There are regular resolution proofs of PHPₙ of size n^32^n.

Theorem (Iwama, Miyazaki 1999)

Tree-like resolution proofs of PHPₙ require size $2^{\Omega(n \log n)}$.

Proof of the lower bound

Theorem

Every RTL(n/2)-refutation of PHP\(_n\) is of size \(2^{\Omega(n \log n)}\).
Proof of the lower bound

Theorem

Every RTL(n/2)*-refutation of PHP*\textsubscript{n} *is of size* \(2^{\Omega(n \log n)}\).

- Let \(R\) be a refutation of \(PHP_n\)
Proof of the lower bound

Theorem

\[\text{Every RTL}(n/2)\text{-refutation of } PHP_n \text{ is of size } 2^{\Omega(n \log n)}. \]

- Let \(R \) be a refutation of \(PHP_n \)
- Find first \(C \) with \(w(C) \leq k \)
Proof of the lower bound

Theorem

Every RTL\((n/2)\)-refutation of PHP\(_n\) is of size \(2^{\Omega(n \log n)}\).

- Let \(R\) be a refutation of PHP\(_n\)
- Find first \(C\) with \(w(C) \leq k\)
- Subtree \(R_C\) is tree-like derivation of \(C\)
Proof of the lower bound

Theorem

Every RTL($n/2$)-refutation of PHP_n is of size $2^\Omega(n \log n)$.

- Let R be a refutation of PHP_n
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick ρ with $C[\rho] = 0$
Proof of the lower bound

Theorem

Every RTL\((n/2)\)-refutation of \(\text{PHP}_n\) is of size \(2^{\Omega(n \log n)}\).

- Let \(R\) be a refutation of \(\text{PHP}_n\)
- Find first \(C\) with \(w(C) \leq k\)
- Subtree \(R_C\) is tree-like derivation of \(C\)
- Pick \(\rho\) with \(C[\rho] = 0\)
- \(R_C[\rho]\) is refutation of \(\text{PHP}_n[\rho]\)
Proof of the lower bound

Theorem
Every RTL($n/2$)-refutation of PHP_n is of size $2^{\Omega(n \log n)}$.

- Let R be a refutation of PHP_n
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick ρ with $C \models \rho = 0$
- $R_C \models \rho$ is refutation of $PHP_n \models \rho$
- ρ matching restriction \rightarrow
 \[PHP_n \models \rho = PHP_{n-|\rho|} \]
Proof of the lower bound

Theorem

Every $RTL(n/2)$-refutation of PHP_n is of size $2^{\Omega(n \log n)}$.

- Let R be a refutation of PHP_n
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick ρ with $C \models \rho = 0$
- $R_C \models \rho$ is refutation of $PHP_n \models \rho$
- ρ matching restriction \rightarrow

 $PHP_n \models \rho = PHP_{n-|\rho|}$
- lower bound by **Iwama/Miyazaki**
Proof of the lower bound

Theorem

Every RTL($n/2$)-refutation of PHP$_n$ is of size $2^\Omega(n \log n)$.

- Let R be a refutation of PHP$_n$
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick ρ with $C \rho = 0$
- $R_C \rho$ is refutation of PHP$_n \rho$
- ρ matching restriction \rightarrow

 \[
 PHP_n \rho = PHP_{n-|\rho|}
 \]
- lower bound by Iwama/Miyazaki

Main Lemma: For C in R with $w(C) \leq k$, there is a matching restriction ρ with $C \rho = 0$ and $|\rho| \leq k$
The Ordering Principle

...says: An ordering of \([n]\) has a maximum
The Ordering Principle

... says: An ordering of \([n]\) has a maximum

The formula \(\text{Ord}_n\):

- variables \(x_{i,j}\) for \(i, j \leq n\) and \(i \neq j\)
The Ordering Principle

... says: An ordering of \([n]\) has a maximum

The formula \(Ord_n\):

- **variables** \(x_{i,j}\) for \(i, j \leq n\) and \(i \neq j\)

- **totality clauses** \(x_{i,j} \lor x_{j,i}\) for all \(i, j\)

- **asymmetry clauses** \(\overline{x}_{i,j} \lor \overline{x}_{j,i}\)

- **transitivity clauses** \(\overline{x}_{i,j} \lor \overline{x}_{j,k} \lor \overline{x}_{k,i}\)

- **maximum clauses** \(\lor j \neq i x_{i,j}\) for all \(i\)
The Ordering Principle

... says: An ordering of \([n]\) has a maximum

The formula \(\text{Ord}_n\):

- variables \(x_{i,j}\) for \(i, j \leq n\) and \(i \neq j\)

- totality clauses \(x_{i,j} \lor x_{j,i}\) for all \(i, j\)

- asymmetry clauses \(\bar{x}_{i,j} \lor \bar{x}_{j,i}\) for all \(i, j\)
The Ordering Principle

... says: An ordering of $[n]$ has a maximum

The formula Ord_n:

- **variables** $x_{i,j}$ for $i, j \leq n$ and $i \neq j$

- **totality clauses** $x_{i,j} \lor x_{j,i}$ for all i, j

- **asymmetry clauses** $\bar{x}_{i,j} \lor \bar{x}_{j,i}$ for all i, j

- **transitivity clauses** $\bar{x}_{i,j} \lor \bar{x}_{j,k} \lor \bar{x}_{k,i}$ for all i, j, k
The Ordering Principle

... says: An ordering of \([n]\) has a maximum

The formula \(\text{Ord}_n\):

- **variables** \(x_{i,j}\) for \(i, j \leq n\) and \(i \neq j\)

- **totality clauses** \(x_{i,j} \lor x_{j,i}\) for all \(i, j\)

- **asymmetry clauses** \(\bar{x}_{i,j} \lor \bar{x}_{j,i}\) for all \(i, j\)

- **transitivity clauses** \(\bar{x}_{i,j} \lor \bar{x}_{j,k} \lor \bar{x}_{k,i}\) for all \(i, j, k\)

- **maximum clauses** \(\lor_{j \neq i} x_{i,j}\) for all \(i\)
Complexity of the Ordering Principle

Theorem (Stålmarck 1997)

There are regular resolution proofs of Ord_n of size $O(n^3)$.
Complexity of the Ordering Principle

Theorem (Stålmarck 1997)

There are regular resolution proofs of Ord_n of size $O(n^3)$.

Theorem (Bonet, Galesi 1999)

Tree-like resolution proofs of Ord_n require size $2^{\Omega(n)}$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \text{ for } \overline{x}_{i,j} \in C \text{ and } (j, i) \text{ for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$ (i, j) \quad \text{for } \bar{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C $$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \text{ for } \bar{x}_{i,j} \in C \quad \text{and} \quad (j, i) \text{ for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is *cyclic*, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \bar{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is cyclic, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \text{ for } \bar{x}_{i,j} \in C \quad \text{and} \quad (j, i) \text{ for } x_{i,j} \in C$$

Definition: C is *cyclic*, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
Cyclic clauses

For clause C, the graph $G(C)$ has edges

$$(i, j) \quad \text{for } \overline{x}_{i,j} \in C \quad \text{and} \quad (j, i) \quad \text{for } x_{i,j} \in C$$

Definition: C is **cyclic**, if $G(C)$ contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size $O(w(C))$.
The main lemmas

Lemma

If there is an $RTL(k)$-refutation of Ord_n of size s, then there is another one using no cyclic lemmas of size $O(sk)$.

Proof: Replace each cyclic lemma by its derivation of size $O(k)$.

Lemma

If C is acyclic with $w(C) \leq k$, then there is an ordering restriction σ with $|\sigma| \leq 2^k$ such that $C |\sigma| = 0$.

Proof: For C acyclic $G(C)$ is a dag; obtain σ as a topological ordering of $G(C)$.
The main lemmas

Lemma

If there is an $RTL(k)$-refutation of Ord_n of size s, then there is another one using no cyclic lemmas of size $O(sk)$.

Proof: Replace each cyclic lemma by its derivation of size $O(k)$.
The main lemmas

Lemma

If there is an RTL\(_k\)*-refutation of* \(\text{Ord}_n\) *of size* \(s\), *then there is another one using no cyclic lemmas of size* \(O(sk)\).

Proof: Replace each cyclic lemma by its derivation of size \(O(k)\).

Lemma

If \(C\) *is acyclic with* \(w(C) \leq k\), *then there is an ordering restriction* \(\sigma\) *with* \(|\sigma| \leq 2k\) *such that* \(C|\sigma = 0\).
The main lemmas

Lemma

If there is an RTL(k)-refutation of Ord_n of size s, then there is another one using no cyclic lemmas of size $O(sk)$.

Proof: Replace each cyclic lemma by its derivation of size $O(k)$.

Lemma

If C is acyclic with $w(C) \leq k$, then there is an ordering restriction σ with $|\sigma| \leq 2k$ such that $C \models \sigma = 0$.

Proof: For C acyclic $G(C)$ is a dag

\leadsto obtain σ as a topological ordering of $G(C)$.
The lower bound

Theorem

For $k < n/4$, every $RTL(k)$-refutation of Ord_n is of size $2^{\Omega(n)}$.
The lower bound

Theorem

For $k < n/4$, every RTL(k)-refutation of Ord_n is of size $2^{\Omega(n)}$.

Let R be a refutation of Ord_n.
The lower bound

Theorem

For $k < n/4$, every $RTL(k)$-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
The lower bound

Theorem

For $k < n/4$, every $RTL(k)$-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
- Find first C with $w(C) \leq k$
The lower bound

Theorem

For $k < n/4$, every RTL(k)-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
The lower bound

Theorem

For $k < n/4$, every $RTL(k)$-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick σ with $C[\sigma] = 0$
The lower bound

Theorem

For $k < n/4$, every RTL(k)-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick σ with $C \models \sigma = 0$
- $R_C \models \sigma$ is refutation of $\text{Ord}_n \models \sigma$
The lower bound

Theorem

For \(k < n/4 \), every RTL\((k)\)-refutation of Ord\(_n\) is of size \(2^{\Omega(n)} \).

- Let \(R \) be a refutation of Ord\(_n\)
- Remove cyclic lemmas
- Find first \(C \) with \(w(C) \leq k \)
- Subtree \(R_C \) is tree-like derivation of \(C \)
- Pick \(\sigma \) with \(C \models \sigma = 0 \)
- \(R_C \models \sigma \) is refutation of Ord\(_n\)\(\models \sigma \)
- \(\text{Ord}_n \models \sigma = \text{Ord}_n - |\sigma| + 1 \)
The lower bound

Theorem

For $k < n/4$, every $RTL(k)$-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick σ with $C \models \sigma = 0$
- $R_C \models \sigma$ is refutation of $Ord_n \models \sigma$
- $Ord_n \models \sigma = Ord_{n-|\sigma|+1}$
- lower bound by Bonet/Galesi
A Game

Let X be a set of variables, and $w \leq |X|$.
A Game

Let X be a set of variables, and $w \leq |X|$.

A \textit{w-system of restrictions} over X is $\mathcal{H} \neq \emptyset$ with
A Game

Let X be a set of variables, and $w \leq |X|$. A w-system of restrictions over X is $\mathcal{H} \neq \emptyset$ with

- $|\rho| \leq w$ for $\rho \in \mathcal{H}$,
A Game

Let X be a set of variables, and $w \leq |X|$.

A w-system of restrictions over X is $\mathcal{H} \neq \emptyset$ with

- $|\rho| \leq w$ for $\rho \in \mathcal{H}$,
- downward closure:
 if $\rho' \subseteq \rho \in \mathcal{H}$, then $\rho' \in \mathcal{H}$
A Game

Let X be a set of variables, and $w \leq |X|$.

A w-system of restrictions over X is $\mathcal{H} \neq \emptyset$ with

- $|\rho| \leq w$ for $\rho \in \mathcal{H}$,
- downward closure: if $\rho' \subseteq \rho \in \mathcal{H}$, then $\rho' \in \mathcal{H}$
- extension property: if $\rho \in \mathcal{H}$ with $|\rho| < w$, and $v \in X \setminus \text{dom} \rho$, then there is $\rho' \supseteq \rho$ in \mathcal{H} that sets v.
A Game

Let X be a set of variables, and $w \leq |X|$.

A w-system of restrictions over X is $\mathcal{H} \neq \emptyset$ with

- $|\rho| \leq w$ for $\rho \in \mathcal{H}$,
- downward closure: if $\rho' \subseteq \rho \in \mathcal{H}$, then $\rho' \in \mathcal{H}$
- extension property: if $\rho \in \mathcal{H}$ with $|\rho| < w$, and $v \in X \setminus \text{dom} \rho$, then there is $\rho' \supseteq \rho$ in \mathcal{H} that sets v.

\mathcal{H} avoids C if $C[\rho] \neq 0$ for all $\rho \in \mathcal{H}$.
A Game

Let X be a set of variables, and $w \leq |X|$.

A w-system of restrictions over X is $\mathcal{H} \neq \emptyset$ with

- $|\rho| \leq w$ for $\rho \in \mathcal{H}$,
- downward closure: if $\rho' \subseteq \rho \in \mathcal{H}$, then $\rho' \in \mathcal{H}$
- extension property: if $\rho \in \mathcal{H}$ with $|\rho| < w$, and $v \in X \setminus \text{dom} \, \rho$, then there is $\rho' \supseteq \rho$ in \mathcal{H} that sets v.

\mathcal{H} avoids C if $C| \rho \neq 0$ for all $\rho \in \mathcal{H}$

\mathcal{H} avoids F if \mathcal{H} avoids all $C \in F$
Resolution width and systems of restrictions

Theorem (Atserias & Dalmau)

\(F \) requires resolution width \(w \) iff there is a \(w \)-system of restrictions that avoids \(F \).
Resolution width and systems of restrictions

Theorem (Atserias & Dalmau)

F requires resolution width w iff there is a w-system of restrictions that avoids F.

Theorem (Ben-Sasson & Wigderson)

If a d-CNF formula F requires resolution width w, then tree-like resolution proofs of F require size 2^{w-d}.
Restricted systems

Lemma

Let \mathcal{H} be a w-system of restrictions over X, and $\rho \in \mathcal{H}$.

$$\mathcal{H}[\rho] := \{ \sigma ; \text{dom} \sigma \subseteq X \setminus \text{dom} \rho \text{ and } \sigma \cup \rho \in \mathcal{H} \text{ and } |\sigma| \leq w - |\rho| \}$$

is a $w - |\rho|$ system of restrictions over $X \setminus \text{dom} \rho$
Restricted systems

Lemma
Let \mathcal{H} be a w-system of restrictions over X, and $\rho \in \mathcal{H}$.

$$\mathcal{H}\mid \rho := \{ \sigma ; \text{dom} \sigma \subseteq X \setminus \text{dom} \rho \text{ and } \sigma \cup \rho \in \mathcal{H} \text{ and } |\sigma| \leq w - |\rho| \}$$

is a $w - |\rho|$ system of restrictions over $X \setminus \text{dom} \rho$

Lemma
If \mathcal{H} avoids F, then $\mathcal{H}\mid \rho$ avoids $F\mid \rho$.
The general lower bound

Theorem

If F requires resolution width w, then every $RTL(k)$-refutation of F is of size $2^w - 2^k$.
The general lower bound

Theorem

If F requires resolution width w, then every $RTL(k)$-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
The general lower bound

Theorem

If F requires resolution width w, then every RTL(k)-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
- Find first C with $w(C) \leq k$ not avoided by \mathcal{H}
The general lower bound

Theorem

If F requires resolution width w, then every $RTL(k)$-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
- Find first C with $w(C) \leq k$ not avoided by \mathcal{H}
- Let $G := \text{lemmas in subtree } R_C$. Note that \mathcal{H} avoids G, and $w(G) \leq k$
The general lower bound

Theorem
If F requires resolution width w, then every $RTL(k)$-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
- Find first C with $w(C) \leq k$ not avoided by H.
- Let $G :=$ lemmas in subtree R_C. Note that H avoids G, and $w(G) \leq k$.
- Pick $\rho \in H$ with $C[\rho = 0$ and $|\rho| \leq k$.

References:
- Ben-Sasson & Wigderson
The general lower bound

Theorem
If F requires resolution width w, then every $RTL(k)$-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
- Find first C with $w(C) \leq k$ not avoided by \mathcal{H}.
- Let $G :=$ lemmas in subtree R_C. Note that \mathcal{H} avoids G, and $w(G) \leq k$.
- Pick $\rho \in \mathcal{H}$ with $C\rho = 0$ and $|\rho| \leq k$.
- $R_C\rho$ is refutation of $F' := (F \land G)\rho$.
The general lower bound

Theorem

If F requires resolution width w, then every RTL(k)-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
- Find first C with $w(C) \leq k$ not avoided by \mathcal{H}
- Let $G :=$ lemmas in subtree R_C. Note that \mathcal{H} avoids G, and $w(G) \leq k$
- Pick $\rho \in \mathcal{H}$ with $C\frown \rho = 0$ and $|\rho| \leq k$
- $R_C\frown \rho$ is refutation of $F' := (F \land G)\frown \rho$
- $\mathcal{H}\frown \rho$ avoids F', thus F' requires width $w - k$
The general lower bound

Theorem

If F requires resolution width w, then every RTL(k)-refutation of F is of size 2^{w-2k}.

- Let R be a refutation of F.
- Find first C with $w(C) \leq k$ not avoided by \mathcal{H}
- Let $G :=$ lemmas in subtree R_C. Note that \mathcal{H} avoids G, and $w(G) \leq k$
- Pick $\rho \in \mathcal{H}$ with $C[\rho] = 0$ and $|\rho| \leq k$
- $R_C[\rho]$ is refutation of $F' := (F \land G)[\rho]$
- $\mathcal{H}[\rho]$ avoids F', thus F' requires width $w - k$
- $R_C[\rho]$ is of size 2^{w-2k} by Ben-Sasson & Wigderson
Application

\[E_3(F) := \text{3-CNF expansion of } F \]

Theorem (Bonet, Galesi)

\[E_3(\text{Ord}_n) \text{ requires resolution width } n/6. \]
Application

\[E_3(F) := \text{3-CNF expansion of } F \]

Theorem (Bonet, Galesi, JJ)

\[E_3(\text{Ord}_n) \text{ requires resolution width } n/2. \]
Application

\[E_3(F) := \text{3-CNF expansion of } F \]

Theorem (Bonet, Galesi, JJ)

\[E_3(\text{Ord}_n) \text{ requires resolution width } n/2. \]

Corollary

Every RTL\((n/6)\)-refutation of \(E_3(\text{Ord}_n)\) is of size \(2^{n/6}\).
Application

$E_3(F) := 3$-CNF expansion of F

Theorem (Bonet, Galesi, JJ)
$E_3(\text{Ord}_n)$ requires resolution width $n/2$.

Corollary
Every RTL$(n/6)$-refutation of $E_3(\text{Ord}_n)$ is of size $2^{n/6}$.

Corollary
Every RTL$(n/6)$-refutation of Ord_n is of size $2^{n/6-\log n}$.
Theorem

For every k, there is a family of formulas $F_n^{(k)}$ such that
A Hierarchy

Theorem
For every \(k \), there is a family of formulas \(F_n^{(k)} \) such that

\[F_n^{(k)} \text{ have RTL}(k + 1)-refutations of size } n^{O(1)}. \]

Even regular, without weakening.
A Hierarchy

Theorem
For every k, there is a family of formulas $F_n^{(k)}$ such that

- $F_n^{(k)}$ have $RTL(k + 1)$-refutations of size $n^{O(1)}$.

 Even regular, without weakening.

- $F_n^{(k)}$ requires $RTL(k)$-refutations of size $2^{\Omega(n \log n)}$.

A Hierarchy

Theorem

For every k, there is a family of formulas $F_n^{(k)}$ such that

- $F_n^{(k)}$ have $RTL(k + 1)$-refutations of size $n^{O(1)}$. Even regular, without weakening.

- $F_n^{(k)}$ requires $RTL(k)$-refutations of size $2^{\Omega(n/\log n)}$. This even holds for $k = k(n)$ when $k(n) = O(\log n)$.