Some ideas on bubbly markets

Martin Schweizer

Department of Mathematics, ETH Zürich,
and Swiss Finance Institute

Workshop on Mathematical Finance:
Arbitrage and Portfolio Optimization
May 12–16, 2014
BIRS, Banff, Canada
16.05.2014

based on joint work with Martin Herdegen
Motivation
So far, in *incomplete* financial markets, no convincing definition of financial bubbles.

Strong connections in mathematical finance to *strict local* martingales.
So far, in **incomplete** financial markets, no convincing definition of financial bubbles.

Strong connections in mathematical finance to **strict local martingales**.

Can we make this precise, without putting it into the definition?

How can we avoid the dependence on an a priori choice of numéraire and/or risk-neutral measure?

How can one adjust or define valuation principles to account for the presence of bubbles? [→ work in progress]
Main goals

- Introduce a framework to define what it means that a financial market contains a bubble.
Main goals

- Introduce a framework to define what it means that a financial market contains a bubble.
- Deduce from the economic/financial definition a connection to strict local martingales.
Main goals

- Introduce a framework to define what it means that a financial market contains a bubble.
- Deduce from the economic/financial definition a connection to strict local martingales.
- Construct an economically sound valuation principle for financial markets with bubbles. [→ work in progress]
Main goals

- Introduce a framework to define what it means that a financial market contains a bubble.
- Deduce from the economic/financial definition a connection to strict local martingales.
- Construct an economically sound valuation principle for financial markets with bubbles. \(\rightarrow\) work in progress
- Keep everything general, and avoid unnecessary assumptions on the financial market.
- Clarify connections to existing ideas and approaches.
Model
Basic setup

- Starting point is an \mathbb{R}_+^N-valued adapted RCLL process $\tilde{S} = (\tilde{S}_t)_{t \in [0, T]}$ for a fixed time horizon $T \in (0, \infty)$.

- Vector process $\tilde{S} = (\tilde{S}^1, \ldots, \tilde{S}^N)$ on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ describes the prices of N basic assets in a financial market.

- Assets are denominated in some abstract non-specified currency unit — and we want a ("numéraire-independent") formulation which does not depend on the choice of that unit.
Starting point is an \mathbb{R}_+^N-valued adapted RCLL process
$\tilde{S} = (\tilde{S}_t)_{t \in [0, T]}$ for a fixed time horizon $T \in (0, \infty)$.

Vector process $\tilde{S} = (\tilde{S}^1, \ldots, \tilde{S}^N)$ on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ describes the prices of N basic assets in a financial market.

Assets are denominated in some abstract non-specified currency unit — and we want a ("numérale-independent") formulation which does not depend on the choice of that unit.

In particular, there is no extra bank account with discounted price 1 — this would be a loss of generality!
We only assume that the sum of all assets never hits 0, and that $S := \tilde{D}\tilde{S}$ is a semimartingale for some strictly positive \tilde{D}.
We only assume that the sum of all assets never hits 0, and that $S := \tilde{D}\tilde{S}$ is a semimartingale for some strictly positive \tilde{D}.

Market S is given by all semimartingales of the form $S' = DS$ with $D > 0$ a semimartingale. Each element of S describes asset prices in one possible currency unit.

We want all concepts and results "numéraire-independent" in the sense that they hold for all elements of S.
Self-financing strategies ϑ are N-dimensional predictable S-integrable processes and must satisfy (at stopping times σ)

$$V(\vartheta)(S) := \vartheta^T S = \vartheta_0^T S_0 + \int \vartheta \, dS.$$
Trading strategies — general and good

- **Self-financing strategies** \(\vartheta \) are \(N \)-dimensional predictable \(S \)-integrable processes and must satisfy (at stopping times \(\sigma \))

\[
V(\vartheta)(S) := \vartheta^\top S = \vartheta_0^\top S_0 + \int \vartheta \, dS.
\]

- **Allowed** strategies must be self-financing and **undefaultable**, meaning \(V(\vartheta)(S) \geq 0 \). (This is "numéraire-independent".)
Trading strategies — general and good

- **Self-financing strategies** ϑ are N-dimensional predictable S-integrable processes and must satisfy (at stopping times σ)

 \[
 V(\vartheta)(S) := \vartheta^\top S = \vartheta_0^\top S_0 + \int \vartheta \, dS.
 \]

- **Allowed** strategies must be self-financing and **undefaultable**, meaning $V(\vartheta)(S) \geq 0$. (This is “numéraire-independent”.)

 (Small point to check: integrability of ϑ for S plus self-financing property implies integrability of ϑ for $S' = DS$.)
A strategy ϑ is **maximal** in a class Γ if it cannot be improved:

- $\bar{\vartheta} \in \Gamma$ on $[\sigma, T]$ with $V_T(\bar{\vartheta})(S) \geq V_T(\vartheta)(S)$ implies also $V_\sigma(\bar{\vartheta})(S) \geq V_\sigma(\vartheta)(S)$, for stopping time $\sigma \leq T$.

17 / 72

Martin Schweizer

Some ideas on bubbly markets 9 / 25
Maximality

- A strategy ϑ is **maximal** in a class Γ if it cannot be improved:
 - $\bar{\vartheta} \in \Gamma$ on $[\sigma, T]$ with $V_T(\bar{\vartheta})(S) \geq V_T(\vartheta)(S)$ implies also $V_\sigma(\bar{\vartheta})(S) \geq V_\sigma(\vartheta)(S)$, for stopping time $\sigma \leq T$.
 - More precisely: **strong maximality** at σ means that
 \[\forall f \in L^0(\mathcal{F}_T) \setminus \{0\} \text{ such that } \forall \epsilon > 0 \exists \bar{\vartheta} \in \Gamma \text{ with } V_T(\bar{\vartheta})(S) \geq V_T(\vartheta)(S) + f \text{ and } V_\sigma(\bar{\vartheta})(S) \leq V_\sigma(\vartheta)(S) + \epsilon. \]
A strategy ϑ is **maximal** in a class Γ if it cannot be improved:

- $\bar{\vartheta} \in \Gamma$ on $[\sigma, T]$ with $V_T(\bar{\vartheta})(S) \geq V_T(\vartheta)(S)$ implies also $V_\sigma(\bar{\vartheta})(S) \geq V_\sigma(\vartheta)(S)$, for stopping time $\sigma \leq T$.

- More precisely: **strong maximality** at σ means that
 \[\not\exists f \in L^0(F_T) \setminus \{0\} \text{ such that } \forall \epsilon > 0 \exists \bar{\vartheta} \in \Gamma \text{ with } V_T(\bar{\vartheta})(S) \geq V_T(\vartheta)(S) + f \text{ and } V_\sigma(\bar{\vartheta})(S) \leq V_\sigma(\vartheta)(S) + \epsilon. \]

- (For completeness: **weak maximality** at σ means that
 \[\not\exists f \in L^0(F_T) \setminus \{0\} \text{ such that } \exists \bar{\vartheta} \in \Gamma \text{ with } \forall \epsilon > 0, V_T(\bar{\vartheta})(S) \geq V_T(\vartheta)(S) + f \text{ and } V_\sigma(\bar{\vartheta})(S) \leq V_\sigma(\vartheta)(S) + \epsilon. \]
The classic setup

- Classic setup of mathematical finance is a special case:
• **Classic setup of mathematical finance** is a special case:

 • *d* risky assets, **one riskless bank account** — so \(N = d + 1 \).
 • Bank account is always 1, risky assets are in units of bank account given by \(X \) — so \(S = (1, X) \). (Maybe \(\bar{D} = (\bar{S}^0)^{-1} \).)
The classic setup

- **Classic setup of mathematical finance** is a special case:
 - d risky assets, **one riskless bank account** — so $N = d + 1$.
 - Bank account is always 1, risky assets are in units of bank account given by X — so $S = (1, X)$. (Maybe $\tilde{D} = (\tilde{S}^0)^{-1}$.)
 - Self-financing strategies are parametrisable by initial wealth $v_0 = \vartheta_0^T S_0$ and d-dimensional predictable process ψ — then bank account holdings ψ^0 in $\vartheta = (\psi^0, \psi)$ are determined from v_0 and ψ by self-financing condition via

$$
\psi^0 = v_0 + \int \psi \, dX - \psi^T X.
$$
The classic setup

- **Classic setup of mathematical finance** is a special case:
 - d risky assets, **one riskless bank account** — so $N = d + 1$.
 - Bank account is always 1, risky assets are in units of bank account given by X — so $S = (1, X)$. (Maybe $\tilde{D} = (\tilde{S}^0)^{-1}$.)
 - Self-financing strategies are parametrisable by initial wealth $v_0 = \vartheta_0^T S_0$ and d-dimensional predictable process ψ — then bank account holdings ψ^0 in $\vartheta = (\psi^0, \psi)$ are determined from v_0 and ψ by self-financing condition via
 \[
 \psi^0 = v_0 + \int \psi \, dX - \psi^T X.
 \]
 - Note that **a-admissible**, i.e. $V(v_0, \psi) = v_0 + \int \psi \, dX \geq -a$, is **numéraire-dependent** concept — lower bound is in **units of bank account** $\equiv 1$. Using different units causes problems!
Absence of arbitrage conditions:

- **Static viability:** zero strategy 0 is strongly maximal among all allowed **buy-and-hold** strategies.
- **Dynamic viability:** zero strategy 0 is strongly maximal among all allowed strategies.

Note that all these notions are indeed numéraire-independent.
Absence of arbitrage conditions:

- **Static viability:** zero strategy 0 is strongly maximal among all allowed buy-and-hold strategies.
- **Dynamic viability:** zero strategy 0 is strongly maximal among all allowed strategies.

Stronger forms:

- **Static efficiency:** every allowed buy-and-hold strategy is strongly maximal among all allowed buy-and-hold strategies.
- **Dynamic efficiency:** every allowed buy-and-hold strategy is strongly maximal among all allowed strategies.
Absence of arbitrage conditions:

- **Static viability**: zero strategy 0 is strongly maximal among all allowed buy-and-hold strategies.
- **Dynamic viability**: zero strategy 0 is strongly maximal among all allowed strategies.

Stronger forms:

- **Static efficiency**: every allowed buy-and-hold strategy is strongly maximal among all allowed buy-and-hold strategies.
- **Dynamic efficiency**: every allowed buy-and-hold strategy is strongly maximal among all allowed strategies.

Note that all these notions are indeed *numéraire-independent*.
Examples I

- Example of market which lies outside classic setup
Examples I

- Example of market which lies outside classic setup
- Example of non-maximal strategy
Examples I

• Example of market which lies outside classic setup

• Example of non-maximal strategy

• Example of single jump process where every strategy is weakly maximal, but not strongly maximal
Examples I

- Example of market which lies outside classic setup
- Example of non-maximal strategy
- Example of single jump process where every strategy is weakly maximal, but not strongly maximal
- Example of event tree which is statically viable, but not dynamically viable
Numéraire strategy: self-financing strategy η whose wealth process $V(\eta)(S)$ never hits 0 (this is *numéraire-independent*).
Numéraire strategy: self-financing strategy η whose wealth process $V(\eta)(S)$ never hits 0 (this is *numéraire-independent*).

- By our assumption that the sum of all assets never hits 0, the market portfolio $\eta^S := (1, \ldots, 1)$ is a numéraire strategy.
Numéraire strategy: self-financing strategy \(\eta \) whose wealth process \(V(\eta)(S) \) never hits 0 (this is *numéraire-independent*).

- By our assumption that the sum of all assets never hits 0, the market portfolio \(\eta^S := (1, \ldots, 1) \) is a numéraire strategy.

Finite discrete time: equivalence between

- dynamic viability
- NA (for undefaultable strategies)

for each numéraire strategy \(\eta \), discounted prices \(S(\eta) = \frac{S}{V(\eta)(S)} \) admit a true EMM.
Results
Numéraire-independent FTAP: (Herdegen)

The market S is dynamically viable (dynamic trading cannot improve upon inactivity/smart traders cannot beat zero) if and only if
Numéraire-independent FTAP: (Herdegen)

- The market S is **dynamically viable** (dynamic trading cannot improve upon inactivity/smart traders cannot beat zero) if and only if
- there exists a **pair** (η, Q) such that η is a numéraire strategy and Q is an equivalent local martingale measure for $V(\eta)$-discounted prices $S^{(\eta)}$ given by $S^{(\eta)} := \frac{S}{V(\eta)(S)}$
Numéraire-independent FTAP: (\rightarrow Herdegen)

- The market S is *dynamically viable* (dynamic trading cannot improve upon inactivity/smart traders cannot beat zero) if and only if
- there exists a pair (η, Q) such that η is a *numéraire strategy* and Q is an *equivalent local martingale measure* for $V(\eta)$-discounted prices $S^{(\eta)}$ given by $S^{(\eta)} := \frac{S}{V(\eta)(S)}$ if and only if
- there exists some Q equivalent to P such that some representative $S^{(\eta)} = \frac{S}{V(\eta)(S)}$ is a Q-local martingale.
Numéraire-independent FTAP: \((\longrightarrow \text{Herdegen})\)

- The market \(S\) is *dynamically viable* (*dynamic trading cannot improve upon inactivity/smart traders cannot beat zero*) if and only if
- there exists a pair \((\eta, Q)\) such that \(\eta\) is a *numéraire strategy* and \(Q\) is an *equivalent local martingale measure* for \(V(\eta)\)-discounted prices \(S^{(\eta)}\) given by \(S^{(\eta)} := \frac{S}{V(\eta)(S)}\)
- if and only if
- there exists some \(Q\) equivalent to \(P\) such that some representative \(S^{(\eta)} = \frac{S}{V(\eta)(S)}\) is a \(Q\)-local martingale.

- \(S\) satisfies *NINA* (*numéraire-independent no-arbitrage*).
Key aspects:

- All the concepts and results are *numéraire-independent*.
Key aspects:

- All the concepts and results are *numéraire-independent*.

- Dual characterisation of NINA is existence of a pair \((\eta, Q)\), consisting of *numéraire* (or currency unit) and corresponding risk-neutral measure.
Key aspects:

- All the concepts and results are *numéraire-independent*.
- Dual characterisation of NINA is existence of a pair \((\eta, Q)\), consisting of *numéraire* (or currency unit) and corresponding *risk-neutral measure*.
- Market \(S\) is described by one (semimartingale) representative \(S\) — but this plays no special role.
Key aspects:

- All the concepts and results are \textit{numéraire-independent}.

- Dual characterisation of NINA is existence of a \textit{pair} \((\eta, Q)\), consisting of \textit{numéraire} (or currency unit) and corresponding \textit{risk-neutral measure}.

- Market \(S\) is described by one (semimartingale) representative \(S\) — but this plays no special role.

- \(S\) itself need not admit an \textit{ELMM}.
Key aspects:

- All the concepts and results are *numéraire-independent*.

- Dual characterisation of NINA is existence of a pair $((\eta, Q)$, consisting of *numéraire* (or currency unit) and corresponding *risk-neutral measure*.

- Market S is described by one (semimartingale) representative S — but this plays no special role.

- *S itself need not admit an ELMM*.

- There is some representative $S' \in S$ which admits an ELMM.
Recall: **viable** means zero cannot be improved, **efficient** that any buy-and-hold cannot be improved. Connection?
Recall: **viable** means zero cannot be improved, **efficient** that any buy-and-hold cannot be improved. Connection?

No dominance: for each asset $i = 1, \ldots, N$, look at the buy-and-hold strategy $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ of holding one unit of asset i. Sum is market portfolio $\eta^S = (1, \ldots, 1)$.

- **Static no dominance:** for each stopping time σ, η^S is weakly maximal on $[\sigma, T]$ among all allowed **buy-and-hold** strategies.
Recall: **viable** means zero cannot be improved, **efficient** that any buy-and-hold cannot be improved. Connection?

No dominance: for each asset $i = 1, \ldots, N$, look at the buy-and-hold strategy $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ of holding one unit of asset i. Sum is market portfolio $\eta^S = (1, \ldots, 1)$.

- **Static no dominance:** for each stopping time σ, η^S is weakly maximal on $[\sigma, T]$ among all allowed **buy-and-hold** strategies.
- **Dynamic no dominance:** for each stopping time σ, η^S is weakly maximal on $[\sigma, T]$ among all allowed strategies.
Efficiency and no dominance

- Equivalent to **dynamic no dominance**: for each asset $i = 1, \ldots, N$, e_i is weakly maximal on $[0, T]$ among all allowed strategies.
 - Precise and minimal formulation for original idea of Merton.
Efficiency and no dominance

- Equivalent to **dynamic no dominance**: for each asset $i = 1, \ldots, N$, e_i is weakly maximal on $[0, T]$ among all allowed strategies.
 - Precise and minimal formulation for original idea of Merton.

- **Connection** (for both static and dynamic versions):
 - S is **efficient** if and only if
 - S is **viable plus** satisfies **no dominance**.
Efficiency and no dominance

- Equivalent to **dynamic no dominance**: for each asset $i = 1, \ldots, N$, e_i is weakly maximal on $[0, T]$ among all allowed strategies.
 - Precise and minimal formulation for original idea of Merton.

- **Connection** (for both static and dynamic versions):
 - S is **efficient** if and only if
 - S is **viable plus** satisfies **no dominance**.

- Put differently, for dynamic case: If 0 and market portfolio η^S cannot be improved by dynamic trading, then (\rightarrow Merton)
Efficiency and no dominance

- Equivalent to **dynamic no dominance**: for each asset $i = 1, \ldots, N$, e_i is weakly maximal on $[0, T]$ among all allowed strategies.
 - Precise and minimal formulation for original idea of Merton.

- **Connection** (for both static and dynamic versions):
 - S is **efficient** if and only if
 - S is **viable plus** satisfies **no dominance**.

- Put differently, for dynamic case: If 0 and market portfolio η^S cannot be improved by dynamic trading, then (\(\rightarrow\) Merton)
 - **no buy-and-hold** strategy can be improved.
Efficiency and no dominance

- Equivalent to **dynamic no dominance**: for each asset $i = 1, \ldots, N$, e_i is weakly maximal on $[0, T]$ among all allowed strategies.
 - Precise and minimal formulation for original idea of Merton.

- **Connection** (for both static and dynamic versions):
 - S is **efficient**
 - if and only if
 - S is **viable** plus satisfies **no dominance**.

- Put differently, for dynamic case: If 0 and market portfolio η^S cannot be improved by dynamic trading, then (→ Merton)
 - **no buy-and-hold** strategy can be improved.
 - **not even any bounded dynamic** strategy can be improved.
FTAP, no dominance and efficiency:

- FTAP, no dominance and efficiency:
 - S satisfies **NINA** (numéraire-independent no-arbitrage)
 - plus dynamic no dominance
 - if and only if

FTAP and numéraires
Efficiency and no dominance
Bubbly markets
Examples II
FTAP, no dominance and efficiency:

- S satisfies **NINA** (numéraire-independent no-arbitrage)
 plus dynamic no dominance
 if and only if
- there exists a pair (η, Q) such that η is a numéraire strategy
 and Q is an equivalent true martingale measure for
 $V(\eta)$-discounted prices $S^{(\eta)}$ given by $S^{(\eta)} := \frac{S}{V(\eta)(S)}$.
FTAP, no dominance and efficiency:

- S satisfies **NINA** (numéraire-independent no-arbitrage) plus dynamic no dominance if and only if there exists a pair (η, Q) such that η is a numéraire strategy and Q is an equivalent true martingale measure for $V(\eta)$-discounted prices $S^{(\eta)}$ given by $S^{(\eta)} := \frac{S}{V(\eta)(S)}$ if and only if
- S is dynamically efficient.
FTAP, no dominance and efficiency:

- **FTAP, no dominance and efficiency:**
 - \(S \) satisfies **NINA (numéraire-independent no-arbitrage)**
 - plus dynamic no dominance
 - if and only if
 - there exists a **pair** \((\eta, Q)\) such that \(\eta \) is a **numéraire strategy**
 - and \(Q \) is an **equivalent true martingale measure** for
 - \(V(\eta) \)-discounted prices \(S(\eta) \) given by \(S(\eta) := \frac{S}{V(\eta)(S)} \)
 - if and only if
 - \(S \) is dynamically efficient.

(Proofs rest on dual characterisations via martingale properties.)
Bubbly market: S is **not dynamically efficient** (*dynamic trading can be used to improve upon buy-and-hold*).
Bubbly market: S is **not dynamically efficient** (dynamic trading **can be used to improve upon buy-and-hold**).

- Smart traders can do better than static traders.
Bubbly market: S is not dynamically efficient (dynamic trading can be used to improve upon buy-and-hold).

Smart traders can do better than static traders.

Nontrivial bubbly market: in addition dynamically viable (dynamic trading will not improve inactivity) and statically efficient (buy-and-hold cannot be improved by buy-and-hold).
Bubbly market: S is not dynamically efficient (*dynamic trading can be used to improve upon buy-and-hold*).

- Smart traders can do better than static traders.

Nontrivial bubbly market: in addition dynamically viable (*dynamic trading will not improve inactivity*) and statically efficient (*buy-and-hold cannot be improved by buy-and-hold*).

- Smart traders cannot beat inactivity.
- Static traders cannot beat other static traders.
- But — smart traders can do better than static traders.
Bubbly markets:

- **Bubbly markets:**
 - S is a **bubbly market** (*not dynamically efficient*)
 - if and only if
Bubbly markets:

- S is a **bubbly market** *(not dynamically efficient)*

 if and only if

- either S admits **some numéraire-independent arbitrage** *(is not dynamically viable)*

(Based on rewriting definitions and using their connection.)
Bubbly markets:

- **Bubbly markets:**
 - S is a **bubbly market** \((not\ dynamically\ efficient)\)
 if and only if
 - either S admits **some numéraire-independent arbitrage** \((is\ not\ dynamically\ viable)\)
 - or for **some** asset $i \in \{1, \ldots, N\}$, the **buy-and-hold strategy** e_i in asset i is **not maximal** among all allowed strategies \((S\ fails\ to\ satisfy\ dynamic\ no\ dominance)\).
Bubbly markets:

- **S** is a **bubbly market** (*not dynamically efficient*) if and only if
 - either **S** admits **some numéraire-independent arbitrage** (*is not dynamically viable*)
 - or for **some** asset $i \in \{1, \ldots, N\}$, the **buy-and-hold strategy** e_i in asset i **is not maximal** among all allowed strategies (**S** fails to satisfy **dynamic no dominance**).

(This is just rewriting the definitions and using their connection.)
Suppose that \(S \) is a **nontrivial bubbly market**. Then:
Suppose that S is a nontrivial bubbly market. Then:

- There exists a pair (η, Q) such that η is a numéraire strategy and $V(\eta)$-discounted prices $S(\eta)$ given by $S(\eta) := \frac{S}{V(\eta)(S)}$ are a strict local martingale under Q.
Suppose that S is a **nontrivial bubbly market**. Then:

- There exists a pair (η, Q) such that η is a **numéraire strategy** and $V(\eta)$-discounted prices $S^{(\eta)}$ given by
 $$S^{(\eta)} := \frac{S}{\epsilon(\eta)(S)}$$
 are a **strict local martingale** under Q.

- For **every** Q equivalent to P, and for **every** numéraire strategy η such that $V(\eta)$-discounted prices $S^{(\eta)}$ are a local martingale under Q, $S^{(\eta)}$ is a **strict local martingale** under Q.
Suppose that S is a **nontrivial bubbly market**. Then:

- There exists a pair (η, Q) such that η is a **numéraire strategy** and $V(\eta)$-discounted prices $S^{(\eta)}$ given by
 $$S^{(\eta)} := \frac{S}{V(\eta)(S)}$$
 are a **strict local martingale** under Q.

- For every Q equivalent to P, and for every numéraire strategy η such that $V(\eta)$-discounted prices $S^{(\eta)}$ are a local martingale under Q, $S^{(\eta)}$ is a **strict local martingale** under Q.

- In that sense, a nontrivial bubbly market is a **robust model of a bubble market**.
Simple example of a nontrivial bubbly market:

- $(1, S^{(2)})$ where $Y := 1/S^{(2)}$ is a local P-martingale
- Y has predictable representation property
- Y is strict local P-martingale
Examples II

- Simple example of a nontrivial bubbly market:
 - \((1, S^{(2)})\) where \(Y := 1/S^{(2)}\) is a local \(P\)-martingale
 - \(Y\) has predictable representation property
 - \(Y\) is strict local \(P\)-martingale

- Concrete example of a nontrivial bubbly market which is incomplete (CEV model with suitable stochastic volatility)
Examples II

- Simple example of a nontrivial bubbly market:
 - \((1, S^{(2)})\) where \(Y := 1/S^{(2)}\) is a local \(P\)-martingale
 - \(Y\) has predictable representation property
 - \(Y\) is strict local \(P\)-martingale

- Concrete example of a nontrivial bubbly market which is incomplete (CEV model with suitable stochastic volatility)

- Concrete example of a market where \(S\) is a strict local martingale under some \(Q\), and a true martingale under another \(Q'\) (non-robust bubble market)
... still remain to be worked out in detail ...
The end

Thank you for your attention

http://www.math.ethz.ch/~mschweiz

or google “Martin Schweizer”