The Limits of Leverage

Paolo Guasoni1,2 Eberhard Mayerhofer2

Boston University1

Dublin City University2

Mathematical Finance: Arbitrage and Portfolio Optimization
Banff International Research Station, May 14th, 2014
The Limits of Leverage

Efficient Frontier

- Average Return (y) against volatility (x) as benchmarks’ multiples.
- No transaction costs at zero (0,0) or full investment (1,1).
- Higher Leverage = Lower Sharpe Ratio.
- Maximum return at around 9x leverage. More leverage decreases return.

$\mu = 8\%, \sigma = 16\%, \varepsilon = 1\%$
The Limits of Leverage

• Average Return (y) against volatility (x) as benchmarks’ multiples.
• No transaction costs at zero (0,0) or full investment (1,1).
• Higher Leverage = Lower Sharpe Ratio.
• Maximum return at around 9x leverage. More leverage decreases return.

$$\mu = 8\%, \sigma = 16\%, \varepsilon = 1\%$$
The Limits of Leverage

Efficient Frontier

- Average Return (y) against volatility (x) as benchmarks’ multiples.
- No transaction costs at zero (0,0) or full investment (1,1).
- Higher Leverage = Lower Sharpe Ratio.
- Maximum return at around 9x leverage. More leverage decreases return.
• Average Return (y) against volatility (x) as benchmarks’ multiples.
• No transaction costs at zero (0,0) or full investment (1,1).
• Higher Leverage = Lower Sharpe Ratio.
• Maximum return at around 9x leverage. More leverage decreases return.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- **Implications:**
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- **Applications:**
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- **Limitations:**
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- Implications:
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- Applications:
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- Limitations:
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion \(k \) invested in a risky portfolio and \(1 - k \) in the riskless asset will have an expected excess return of \(k \) and a standard deviation equal to \(k \) times the standard deviation of the risky portfolio.” — Sharpe (2011)

- **Implications:**
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- **Applications:**
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- **Limitations:**
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

• Implications:
 • Efficient frontier linear. One Sharpe ratio.
 • Any efficient portfolio spans all the others.
 • Portfolio choice meaningless for risk-neutral investors.

• Applications:
 • Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 • Leverage to increase returns from small mispricings.
 • Capital ratios as regulatory leverage constraints.

• Limitations:
 • Constant leverage needs constant trading. Rebalancing costs?
 • Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 • Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

• Implications:
 • Efficient frontier linear. One Sharpe ratio.
 • Any efficient portfolio spans all the others.
 • Portfolio choice meaningless for risk-neutral investors.

• Applications:
 • Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 • Leverage to increase returns from small mispricings.
 • Capital ratios as regulatory leverage constraints.

• Limitations:
 • Constant leverage needs constant trading. Rebalancing costs?
 • Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 • Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

• Implications:
 • Efficient frontier linear. One Sharpe ratio.
 • Any efficient portfolio spans all the others.
 • Portfolio choice meaningless for risk-neutral investors.

• Applications:
 • Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 • Leverage to increase returns from small mispricings.
 • Capital ratios as regulatory leverage constraints.

• Limitations:
 • Constant leverage needs constant trading. Rebalancing costs?
 • Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 • Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- Implications:
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- Applications:
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- Limitations:
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- **Implications:**
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- **Applications:**
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- **Limitations:**
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- Implications:
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- Applications:
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- Limitations:
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- **Implications:**
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- **Applications:**
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- **Limitations:**
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion \(k \) invested in a risky portfolio and \(1 - k \) in the riskless asset will have an expected excess return of \(k \) and a standard deviation equal to \(k \) times the standard deviation of the risky portfolio.” — Sharpe (2011)

- Implications:
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- Applications:
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- Limitations:
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- Implications:
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- Applications:
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- Limitations:
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
Unlimited Leverage?

“If an investor can borrow or lend as desired, any portfolio can be levered up or down. A combination with a proportion k invested in a risky portfolio and $1 - k$ in the riskless asset will have an expected excess return of k and a standard deviation equal to k times the standard deviation of the risky portfolio.” — Sharpe (2011)

- Implications:
 - Efficient frontier linear. One Sharpe ratio.
 - Any efficient portfolio spans all the others.
 - Portfolio choice meaningless for risk-neutral investors.

- Applications:
 - Levered and inverse ETFs: up to 3x and -3x leverage. A 10x ETF?
 - Leverage to increase returns from small mispricings.
 - Capital ratios as regulatory leverage constraints.

- Limitations:
 - Constant leverage needs constant trading. Rebalancing costs?
 - Higher beta with lower alpha (Frazzini and Pedersen, 2013).
 - Levered ETFs on illiquid indexes have substantial tracking error.
What We Do

● Model
 ● Maximize long-term return given average volatility.
 ● Constant proportional bid-ask spread.
 ● IID returns. Geometric Brownian motion.
 ● Continuous trading allowed. No constraints.

● Results
 ● Sharpe ratio declines as leverage increases.
 ● Limits of leverage.
 ▪ Beyond a certain threshold, even expected return declines.
 ● Leverage Multiplier.
 ▪ Maximum factor by which the asset return can be increased:
 \[
 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2}
 \]
 \[\varepsilon\] bid-ask spread, \[\mu\] excess return, \[\sigma\] volatility.
 ● Optimal tradeoff between alpha and tracking error.
What We Do

• Model
 • Maximize long-term return given average volatility.
 • Constant proportional bid-ask spread.
 • IID returns. Geometric Brownian motion.
 • Continuous trading allowed. No constraints.

• Results
 • Sharpe ratio declines as leverage increases.
 • Limits of leverage. Beyond a certain threshold, even expected return declines.
 • Leverage Multiplier. Maximum factor by which the asset return can be increased:

 \[0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2} \]

 \(\varepsilon \) bid-ask spread, \(\mu \) excess return, \(\sigma \) volatility.
 • Optimal tradeoff between alpha and tracking error.
What We Do

- **Model**
 - Maximize long-term return given average volatility.
 - **Constant proportional bid-ask spread.**
 - IID returns. Geometric Brownian motion.
 - Continuous trading allowed. No constraints.

- **Results**
 - Sharpe ratio declines as leverage increases.
 - **Limits of leverage.**
 - Beyond a certain threshold, even expected return declines.
 - **Leverage Multiplier.**
 - Maximum factor by which the asset return can be increased:
 \[
 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2}
 \]
 where \(\varepsilon\) is bid-ask spread, \(\mu\) excess return, and \(\sigma\) volatility.
 - Optimal tradeoff between alpha and tracking error.
The Limits of Leverage

What We Do

- **Model**
 - Maximize long-term return given average volatility.
 - **Constant proportional bid-ask spread.**
 - IID returns. Geometric Brownian motion.
 - Continuous trading allowed. No constraints.

- **Results**
 - Sharpe ratio declines as leverage increases.
 - Limits of leverage.
 - Beyond a certain threshold, even expected return declines.
 - **Leverage Multiplier.**
 - Maximum factor by which the asset return can be increased:
 \[
 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \epsilon^{-1/2}
 \]
 \(\epsilon\) bid-ask spread, \(\mu\) excess return, \(\sigma\) volatility.
 - Optimal tradeoff between alpha and tracking error.
What We Do

• Model
 • Maximize long-term return given average volatility.
 • **Constant proportional bid-ask spread.**
 • IID returns. Geometric Brownian motion.
 • Continuous trading allowed. No constraints.

• Results
 • Sharpe ratio declines as leverage increases.
 • Limits of leverage.
 Beyond a a certain threshold, even expected return declines.
 • Leverage Multiplier.
 Maximum factor by which the asset return can be increased:

 \[0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \epsilon^{-1/2} \]

 \(\epsilon \) bid-ask spread, \(\mu \) excess return, \(\sigma \) volatility.
 • Optimal tradeoff between alpha and tracking error.
What We Do

- **Model**
 - Maximize long-term return given average volatility.
 - **Constant proportional bid-ask spread.**
 - IID returns. Geometric Brownian motion.
 - Continuous trading allowed. No constraints.

- **Results**
 - Sharpe ratio declines as leverage increases.
 - **Limits of leverage.**
 Beyond a certain threshold, even expected return declines.
 - **Leverage Multiplier.**
 Maximum factor by which the asset return can be increased:
 \[0.3815 \left(\frac{\mu}{\sigma^2}\right)^{1/2} \varepsilon^{-1/2}\]
 \(\varepsilon\) bid-ask spread, \(\mu\) excess return, \(\sigma\) volatility.
 - Optimal tradeoff between alpha and tracking error.
What We Do

- **Model**
 - Maximize long-term return given average volatility.
 - **Constant proportional bid-ask spread.**
 - IID returns. Geometric Brownian motion.
 - Continuous trading allowed. No constraints.

- **Results**
 - Sharpe ratio declines as leverage increases.
 - **Limits of leverage.**
 Beyond a a certain threshold, even expected return declines.
 - **Leverage Multiplier.**
 Maximum factor by which the asset return can be increased:
 \[0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2} \]
 \(\varepsilon \) bid-ask spread, \(\mu \) excess return, \(\sigma \) volatility.
 - Optimal tradeoff between alpha and tracking error.
What We Do

• Model
 • Maximize long-term return given average volatility.
 • **Constant proportional bid-ask spread.**
 • IID returns. Geometric Brownian motion.
 • Continuous trading allowed. No constraints.

• Results
 • Sharpe ratio declines as leverage increases.
 • **Limits of leverage.**
 Beyond a certain threshold, even expected return declines.
 • **Leverage Multiplier.**
 Maximum factor by which the asset return can be increased:
 \[
 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2}
 \]
 \(\varepsilon\) bid-ask spread, \(\mu\) excess return, \(\sigma\) volatility.
 • Optimal tradeoff between alpha and tracking error.
What We Do

• Model
 • Maximize long-term return given average volatility.
 • **Constant proportional bid-ask spread.**
 • IID returns. Geometric Brownian motion.
 • Continuous trading allowed. No constraints.

• Results
 • Sharpe ratio declines as leverage increases.
 • **Limits of leverage.**
 Beyond a a certain threshold, even expected return declines.
 • **Leverage Multiplier.**
 Maximum factor by which the asset return can be increased:
 \[
 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2}
 \]
 \(\varepsilon\) bid-ask spread, \(\mu\) excess return, \(\sigma\) volatility.
 • Optimal tradeoff between alpha and tracking error.
What We Do

- **Model**
 - Maximize long-term return given average volatility.
 - **Constant proportional bid-ask spread.**
 - IID returns. Geometric Brownian motion.
 - Continuous trading allowed. No constraints.

- **Results**
 - Sharpe ratio declines as leverage increases.
 - **Limits of leverage.**
 Beyond a a certain threshold, even expected return declines.
 - **Leverage Multiplier.**
 Maximum factor by which the asset return can be increased:
 \[
 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{1/2}
 \]
 \(\varepsilon\) bid-ask spread, \(\mu\) excess return, \(\sigma\) volatility.
 - Optimal tradeoff between alpha and tracking error.
The Limits of Leverage

More Volatility = Cheaper Leverage

- Average Return (y) against volatility (x), annualized.
- Frontier of asset with 10% return with 20% volatility superior to that of asset with 5% return and 10% volatility.
- More asset volatility = less rebalancing costs for same portfolio volatility.

\[\mu / \sigma = 0.5, \varepsilon = 1\%, \sigma = 10\%(bottom), 20\%, 50\%(top) \]
More Volatility = Cheaper Leverage

- Average Return (y) against volatility (x), annualized.
- Frontier of asset with 10% return with 20% volatility superior to that of asset with 5% return and 10% volatility.
- More asset volatility = less rebalancing costs for same portfolio volatility.

\[
\mu/\sigma = 0.5, \varepsilon = 1\%, \sigma = 10\% (\text{bottom}), 20\%, 50\% (\text{top})
\]
More Volatility = Cheaper Leverage

- Average Return (y) against volatility (x), annualized.
- Frontier of asset with 10% return with 20% volatility superior to that of asset with 5% return and 10% volatility.
- More asset volatility = less rebalancing costs for same portfolio volatility.
Leverage Multiplier

<table>
<thead>
<tr>
<th>Volatility (σ)</th>
<th>0.01%</th>
<th>0.10%</th>
<th>1.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>71.85</td>
<td>23.15</td>
<td>7.72</td>
</tr>
<tr>
<td>20%</td>
<td>50.88</td>
<td>16.45</td>
<td>5.56</td>
</tr>
<tr>
<td>50%</td>
<td>32.30</td>
<td>10.54</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Sharpe ratio $\mu/\sigma = 0.5$

- Approximate value $\approx 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2}$
- Increases with return, decreases with volatility and spread
- Always lower than solvency level ε^{-1}. Endogenous limit.
Leverage Multiplier

\[\text{Volatility (} \sigma \text{)} \quad 0.01\% \quad 0.10\% \quad 1.00\% \]

<table>
<thead>
<tr>
<th>Bid-Ask Spread ((\varepsilon))</th>
<th>10%</th>
<th>20%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01%</td>
<td>71.85</td>
<td>50.88</td>
<td>32.30</td>
</tr>
<tr>
<td>0.10%</td>
<td>23.15</td>
<td>16.45</td>
<td>10.54</td>
</tr>
<tr>
<td>1.00%</td>
<td>7.72</td>
<td>5.56</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Sharpe ratio \(\mu / \sigma = 0.5 \)

- Approximate value \(\approx 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2} \)
- Increases with return, decreases with volatility and spread
- Always lower than solvency level \(\varepsilon^{-1} \). Endogenous limit.
Leverage Multiplier

<table>
<thead>
<tr>
<th>Volatility (σ)</th>
<th>0.01%</th>
<th>0.10%</th>
<th>1.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>71.85</td>
<td>23.15</td>
<td>7.72</td>
</tr>
<tr>
<td>20%</td>
<td>50.88</td>
<td>16.45</td>
<td>5.56</td>
</tr>
<tr>
<td>50%</td>
<td>32.30</td>
<td>10.54</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Sharpe ratio \(\frac{\mu}{\sigma} = 0.5 \)

- Approximate value \(\approx 0.3815 \left(\frac{\mu}{\sigma^2} \right)^{1/2} \varepsilon^{-1/2} \)
- Increases with return, decreases with volatility and spread
- Always lower than solvency level \(\varepsilon^{-1} \). Endogenous limit.
The Limits of Leverage

Market

- Safe rate r. Geometric Brownian motion for ask price S_t. Bid Price =
 \[(1 - \varepsilon)S_t\]
 \[
 \frac{dS_t}{S_t} = (\mu + r)dt + \sigma dB_t, \quad S_0, \sigma, \mu > 0,
 \]

- $\varphi_t = \varphi_t^\uparrow - \varphi_t^\downarrow$ number of shares at time t as purchases minus sales.

- Fund value at ask prices:
 \[
 dw_t = rw_t dt + \varphi_t dS_t - \varepsilon d\varphi_t^\downarrow
 \]

- Solvency constraint $w_t - \varepsilon(\varphi_t)^+ S_t \geq 0$ a.s. for all $t \geq 0$.
Market

- Safe rate r. Geometric Brownian motion for ask price S_t. Bid Price = $(1 - \varepsilon)S_t$

$$\frac{dS_t}{S_t} = (\mu + r)dt + \sigma dB_t, \quad S_0, \sigma, \mu > 0,$$

- $\varphi_t = \varphi^\uparrow_t - \varphi^\downarrow_t$ number of shares at time t as purchases minus sales.
- Fund value at ask prices:

$$dw_t = rw_t dt + \varphi_t dS_t - \varepsilon d\varphi^\downarrow_t$$

- Solvency constraint $w_t - \varepsilon(\varphi_t)^+ S_t \geq 0$ a.s. for all $t \geq 0$.
Market

- Safe rate r. Geometric Brownian motion for ask price S_t. Bid Price = $(1 - \varepsilon)S_t$
 \[\frac{dS_t}{S_t} = (\mu + r)dt + \sigma dB_t, \quad S_0, \sigma, \mu > 0, \]

- $\varphi_t = \varphi_t^\uparrow - \varphi_t^\downarrow$ number of shares at time t as purchases minus sales.

- Fund value at ask prices:
 \[dw_t = rw_t dt + \varphi_t dS_t - \varepsilon d\varphi_t^\downarrow \]

- Solvency constraint $w_t - \varepsilon (\varphi_t)^+ S_t \geq 0$ a.s. for all $t \geq 0$.
Market

- Safe rate r. Geometric Brownian motion for ask price S_t. Bid Price = $(1 - \varepsilon)S_t$

$$\frac{dS_t}{S_t} = (\mu + r)dt + \sigma dB_t, \quad S_0, \sigma, \mu > 0,$$

- $\varphi_t = \varphi_t^\uparrow - \varphi_t^\downarrow$ number of shares at time t as purchases minus sales.
- Fund value at ask prices:

$$dw_t = rw_t dt + \varphi_t dS_t - \varepsilon d\varphi_t^\downarrow$$

- Solvency constraint $w_t - \varepsilon(\varphi_t)^+ S_t \geq 0$ a.s. for all $t \geq 0$.
Return and Volatility

• Usual fund performance statistics in terms of returns \(r_t = \frac{w_t - w_{t-\Delta t}}{w_{t-\Delta t}} \)

• Average return on \([0, T]\)

\[
\bar{r}_T = \frac{1}{T} \sum_{t=k\Delta t}^{0 \leq t \leq T} r_t \approx \frac{1}{T} \int_0^T \frac{dw_t}{w_t}
\]

Without trading costs, \(\frac{1}{T} \int_0^T \frac{dw_t}{w_t} = \frac{1}{T} \int_0^T \mu\pi_t dt + \frac{1}{T} \int_0^T \sigma\pi_t dW_t \), with \(\pi_t \) portfolio weight.

• Average volatility on \([0, T]\)

\[
\frac{1}{T} \sum_{t=k\Delta t}^{0 \leq t \leq T} (r_t - \bar{r}_T \Delta t)^2 \approx \frac{1}{T} \int_0^T \frac{d\langle w\rangle_t}{w_t^2}
\]

Without trading costs, \(\frac{1}{T} \int_0^T \frac{d\langle w\rangle_t}{w_t^2} = \frac{\sigma^2}{T} \int_0^T \pi_t^2 dt \).
Return and Volatility

- Usual fund performance statistics in terms of returns \(r_t = \frac{w_t - w_{t-\Delta t}}{w_{t-\Delta t}} \)
- Average return on \([0, T]\)

\[
\bar{r}_T = \frac{1}{T} \sum_{t=k\Delta t}^{0 \leq t \leq T} r_t \approx \frac{1}{T} \int_0^T \frac{d w_t}{w_t}
\]

Without trading costs, \(\frac{1}{T} \int_0^T \frac{d w_t}{w_t} = \frac{1}{T} \int_0^T \mu \pi_t dt + \frac{1}{T} \int_0^T \sigma \pi_t dW_t \), with \(\pi_t \) portfolio weight.

- Average volatility on \([0, T]\)

\[
\frac{1}{T} \sum_{t=k\Delta t}^{0 \leq t \leq T} (r_t - \bar{r}_T \Delta t)^2 \approx \frac{1}{T} \int_0^T \frac{d \langle w \rangle_t}{w_t^2}
\]

Without trading costs, \(\frac{1}{T} \int_0^T \frac{d \langle w \rangle_t}{w_t^2} = \frac{\sigma^2}{T} \int_0^T \pi_t^2 dt \).
Return and Volatility

• Usual fund performance statistics in terms of returns $r_t = \frac{w_t - w_{t-\Delta t}}{w_t - \Delta t}$

• Average return on $[0, T]$

$$\bar{r}_T = \frac{1}{T} \sum_{t=k\Delta t}^{0\leq t \leq T} r_t \approx \frac{1}{T} \int_0^T dw_t \frac{w_t}{w_t}$$

Without trading costs, $\frac{1}{T} \int_0^T dw_t \frac{w_t}{w_t} = \frac{1}{T} \int_0^T \mu \pi_t dt + \frac{1}{T} \int_0^T \sigma \pi_t dW_t$, with π_t portfolio weight.

• Average volatility on $[0, T]$

$$\frac{1}{T} \sum_{t=k\Delta t}^{0\leq t \leq T} (r_t - \bar{r}_T \Delta t)^2 \approx \frac{1}{T} \int_0^T \frac{d\langle w \rangle_t}{w_t^2}$$

Without trading costs, $\frac{1}{T} \int_0^T \frac{d\langle w \rangle_t}{w_t^2} = \frac{\sigma^2}{T} \int_0^T \pi_t^2 dt$.
Objective

- Maximize return-volatility tradeoff for large T

$$E \left[\frac{1}{T} \left(\int_0^T \frac{dw_t}{w_t} - \frac{\gamma}{2} \int_0^T \frac{d\langle w \rangle_t}{w_t^2} \right) \right]$$

- Equals to

$$r + \frac{1}{T} E \left[\int_0^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t}{\varphi_t} \right]$$

- Without trading costs, usual mean-variance portfolio $\pi_t = \frac{\mu}{\gamma \sigma^2}$ optimal. Infinite rebalancing costs.
- $\gamma = 0$: maximize return, forget volatility. Ill-posed without trading costs.
- $\gamma = 1$: logarithmic utility. Taksar et al. (1988), Gerhold et al. (2012).

- Tradeoff between high leverage and high trading costs. Well-posed even without risk.
Objective

• Maximize return-volatility tradeoff for large T

$$E \left[\frac{1}{T} \left(\int_0^T \frac{d\pi_t}{\pi_t} - \frac{\gamma}{2} \int_0^T \frac{d\langle w \rangle_t}{w_t^2} \right) \right]$$

• Equals to

$$r + \frac{1}{T} E \left[\int_0^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t^{\uparrow}}{\varphi_t} \right]$$

• Without trading costs, usual mean-variance portfolio $\pi_t = \frac{\mu}{\gamma \sigma^2}$ optimal. Infinite rebalancing costs.

• $\gamma = 0$: maximize return, forget volatility. Ill-posed without trading costs.

• $\gamma = 1$: logarithmic utility. Taksar et al. (1988), Gerhold et al. (2012).

• Tradeoff between high leverage and high trading costs. Well-posed even without risk.
Objective

- Maximize return-volatility tradeoff for large T

$$E \left[\frac{1}{T} \left(\int_0^T \frac{dw_t}{w_t} - \frac{\gamma}{2} \int_0^T \frac{d\langle w \rangle_t}{w_t^2} \right) \right]$$

- Equals to

$$r + \frac{1}{T} E \left[\int_0^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t}{\varphi_t} \right]$$

- Without trading costs, usual mean-variance portfolio $\pi_t = \frac{\mu}{\gamma \sigma^2}$ optimal. Infinite rebalancing costs.

- $\gamma = 0$: maximize return, forget volatility. Ill-posed without trading costs.
- $\gamma = 1$: logarithmic utility. Taksar et al. (1988), Gerhold et al. (2012).

- Tradeoff between high leverage and high trading costs. Well-posed even without risk.
Objective

- Maximize return-volatility tradeoff for large T

$$E \left[\frac{1}{T} \left(\int_0^T \frac{dW_t}{W_t} - \frac{\gamma}{2} \int_0^T \frac{d\langle W \rangle_t}{W_t^2} \right) \right]$$

- Equals to

$$r + \frac{1}{T} E \left[\int_0^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t^\dagger}{\varphi_t} \right]$$

- Without trading costs, usual mean-variance portfolio $\pi_t = \frac{\mu}{\gamma \sigma^2}$ optimal. Infinite rebalancing costs.

- $\gamma = 0$: maximize return, forget volatility. Ill-posed without trading costs.

- $\gamma = 1$: logarithmic utility. Taksar et al. (1988), Gerhold et al. (2012).

- Tradeoff between high leverage and high trading costs. Well-posed even without risk.
Objective

- Maximize return-volatility tradeoff for large T

$$E \left[\frac{1}{T} \left(\int_0^T \frac{dw_t}{w_t} - \frac{\gamma}{2} \int_0^T \frac{d\langle w \rangle_t}{w_t^2} \right) \right]$$

- Equals to

$$r + \frac{1}{T} E \left[\int_0^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t}{\varphi_t} \right]$$

- Without trading costs, usual mean-variance portfolio $\pi_t = \frac{\mu}{\gamma \sigma^2}$ optimal. Infinite rebalancing costs.

- $\gamma = 0$: maximize return, forget volatility. Ill-posed without trading costs.
- $\gamma = 1$: logarithmic utility. Taksar et al. (1988), Gerhold et al. (2012).

- Tradeoff between high leverage and high trading costs. Well-posed even without risk.
The Limits of Leverage

Efficient Frontier ($\gamma > 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$\pi_\pm = \frac{\zeta_\pm}{1 + \zeta_\pm} = \pi_* \pm \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2\right)^{1/3} \varepsilon^{1/3} - (\gamma - 1) \left(\frac{\pi_* (1 - \pi_*)}{6\gamma^2}\right)^{2/3} \varepsilon^{2/3} + O(\varepsilon)$$

where $\pi_* = \mu/(\gamma \sigma^2)$ and ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

$$\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1+\zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1+\zeta}\right) = 0,$$

$W(\zeta_-) = 0, \quad W(\zeta_+) = \frac{\varepsilon}{(1+\zeta_+)(1+(1-\varepsilon)\zeta_+)}$,

$W'(\zeta_-) = 0, \quad W'(\zeta_+) = \frac{\varepsilon((1-\varepsilon)\zeta_+^2 - 1)}{(1+\zeta_+)^2(1+(1-\varepsilon)\zeta_+)^2}$

- Solution similar to utility maximization. Same first-order approximation.
- No-trade region around the frictionless portfolio.
- Result valid for ε small enough.
Efficient Frontier \((\gamma > 0)\)

Theorem

Trade to keep portfolio weight \(\pi_t\) within boundaries \(\pi_-\) (buy) and \(\pi_+\) (sell)

\[
\pi_\pm = \frac{\zeta_\pm}{1 + \zeta_\pm} = \pi_* \pm \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2\right)^{1/3} \varepsilon^{1/3} - (\gamma - 1) \left(\frac{\pi_* (1 - \pi_*)}{6\gamma^2}\right)^{2/3} \varepsilon^{2/3} + O(\varepsilon)
\]

where \(\pi_* = \mu / (\gamma \sigma^2)\) and \(\zeta_\pm\) solve the free-boundary problem \((W, \zeta_-, \zeta_+)\)

\[
\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta}\right) = 0,
\]

\[
W(\zeta_-) = 0, \quad W(\zeta_+) = \frac{\varepsilon}{(1 + \zeta_+)(1 + (1 - \varepsilon) \zeta_+)},
\]

\[
W'(\zeta_-) = 0, \quad W'(\zeta_+) = \frac{\varepsilon((1 - \varepsilon) \zeta_+^2 - 1)}{(1 + \zeta_+)^2 (1 + (1 - \varepsilon) \zeta_+)^2}
\]

- Solution similar to utility maximization. Same first-order approximation.
- No-trade region around the frictionless portfolio.
- Result valid for \(\varepsilon\) small enough.
Efficient Frontier ($\gamma > 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$\pi_\pm = \frac{\zeta_\pm}{1 + \zeta_\pm} = \pi_* \pm \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{1/3} \varepsilon^{1/3} - (\gamma - 1) \left(\frac{\pi_* (1 - \pi_*)}{6\gamma^2} \right)^{2/3} \varepsilon^{2/3} + O(\varepsilon)$$

where $\pi_* = \mu / (\gamma \sigma^2)$ and ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

\[
\begin{align*}
\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1+\zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1+\zeta} \right) &= 0, \\
W(\zeta_-) &= 0, \quad W(\zeta_+) = \frac{\varepsilon}{(1+\zeta_+)(1+(1-\varepsilon)\zeta_+)} , \\
W'(\zeta_-) &= 0, \quad W'(\zeta_+) = \frac{\varepsilon((1-\varepsilon)\zeta_+^2 - 1)}{(1+\zeta_+)^2(1+(1-\varepsilon)\zeta_+)^2}
\end{align*}
\]

- Solution similar to utility maximization. Same first-order approximation.
- No-trade region around the frictionless portfolio.
- Result valid for ε small enough.
Efficient Frontier ($\gamma > 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$\pi_\pm = \frac{\zeta_\pm}{1 + \zeta_\pm} = \pi_* \pm \left(\frac{3}{4\gamma} \pi_*^2 (1 - \pi_*)^2 \right)^{1/3} \varepsilon^{1/3} - (\gamma - 1) \left(\frac{\pi_* (1 - \pi_*)}{6\gamma^2} \right)^{2/3} \varepsilon^{2/3} + O(\varepsilon)$$

where $\pi_* = \mu / (\gamma \sigma^2)$ and ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

$$\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0,$$

$W(\zeta_-) = 0$, $W(\zeta_+) = \frac{\varepsilon}{(1 + \zeta_+)(1 + (1 - \varepsilon) \zeta_+)}$, $W'(\zeta_-) = 0$, $W'(\zeta_+) = \frac{\varepsilon((1 - \varepsilon) \zeta_+^2 - 1)}{(1 + \zeta_+)^2(1 + (1 - \varepsilon) \zeta_+)^2}$

- Solution similar to utility maximization. Same first-order approximation.
- No-trade region around the frictionless portfolio.
- Result valid for ε small enough.
Limits of Leverage ($\gamma = 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$
\pi_\pm = \frac{\zeta_\pm}{1 + \zeta_\pm} = B_\pm \kappa^{1/2} (\mu/\sigma^2)^{1/2} \varepsilon^{-1/2} + 1 + O(\varepsilon^{1/2}),
$$

where $B_- = (1 - \kappa)$, $B_+ = 1$ and $\kappa \approx 0.5828$ is the root of $\frac{3}{2}\kappa + \log(1 - \kappa) = 0$. ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

$$
\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{\mu}{(1 + \zeta)^2} = 0,
$$

$W(\zeta_-) = 0$, $W(\zeta_+) = \frac{\varepsilon}{(1 + \zeta_+)(1 + (1 - \varepsilon)\zeta_+)}$,

$W'(\zeta_-) = 0$, $W'(\zeta_+) = \frac{\varepsilon((1 - \varepsilon)\zeta_+^2 - 1)}{(1 + \zeta_+)^2(1 + (1 - \varepsilon)\zeta_+)^2}$

- Frictionless problem meaningless. Infinite leverage.
- Pure tradeoff between leverage and rebalancing costs.
- π_- is the **multiplier**. Maximum return is $\mu \pi_-$.
- Approximate relation $\frac{\pi_-}{\pi_+} \approx 0.4172$.
The Limits of Leverage

Limits of Leverage ($\gamma = 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$\pi_\pm = \frac{\zeta_\pm}{1+\zeta_\pm} = B_\pm \kappa^{1/2} (\mu/\sigma^2)^{1/2} \varepsilon^{-1/2} + 1 + O(\varepsilon^{1/2}),$$

where $B_- = (1 - \kappa)$, $B_+ = 1$ and $\kappa \approx 0.5828$ is the root of $\frac{3}{2} \kappa + \log(1 - \kappa) = 0$. ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

$$\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{\mu}{(1+\zeta)^2} = 0,$$

$$W(\zeta_-) = 0, \quad W(\zeta_+) = \frac{\varepsilon}{(1+\zeta_+)(1+(1-\varepsilon)\zeta_+)} ,$$

$$W'(\zeta_-) = 0, \quad W'(\zeta_+) = \frac{\varepsilon((1-\varepsilon)\zeta_+^2-1)}{(1+\zeta_+)^2(1+(1-\varepsilon)\zeta_+)^2}$$

- Frictionless problem meaningless. Infinite leverage.
- Pure tradeoff between leverage and rebalancing costs.
- π_- is the multiplier. Maximum return is $\mu \pi_-$.
- Approximate relation $\frac{\pi_-}{\pi_+} \approx 0.4172$.

Limits of Leverage ($\gamma = 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

\[
\pi_\pm = \frac{\zeta_\pm}{1+\zeta_\pm} = B\pm \kappa^{1/2}(\mu/\sigma^2)^{1/2} \varepsilon^{-1/2} + 1 + O(\varepsilon^{1/2}),
\]

where $B_- = (1 - \kappa)$, $B_+ = 1$ and $\kappa \approx 0.5828$ is the root of $\frac{3}{2}\kappa + \log(1 - \kappa) = 0$. \(\zeta_\pm\) solve the free-boundary problem \((W, \zeta_-, \zeta_+))\)

\[
\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu)\zeta W'(\zeta) + \mu W(\zeta) - \frac{\mu}{(1+\zeta)^2} = 0,
\]

\[
W(\zeta_-) = 0, \quad W(\zeta_+) = \frac{\varepsilon}{(1+\zeta_+)(1+(1-\varepsilon)\zeta_+)},
\]

\[
W'(\zeta_-) = 0, \quad W'(\zeta_+) = \frac{\varepsilon((1-\varepsilon)\zeta_+^2 - 1)}{(1+\zeta_+)^2(1+(1-\varepsilon)\zeta_+)^2}
\]

- Frictionless problem meaningless. Infinite leverage.
- Pure tradeoff between leverage and rebalancing costs.
- π_- is the **multiplier**. Maximum return is $\mu \pi_-$.
- Approximate relation $\frac{\pi_-}{\pi_+} \approx 0.4172$.

The Limits of Leverage

Limits of Leverage ($\gamma = 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$\pi_\pm = \frac{\zeta_\pm}{1+\zeta_\pm} = B_\pm \kappa^{1/2} (\mu/\sigma^2)^{1/2} \varepsilon^{-1/2} + 1 + O(\varepsilon^{1/2}),$$

where $B_- = (1 - \kappa)$, $B_+ = 1$ and $\kappa \approx 0.5828$ is the root of $\frac{3}{2} \kappa + \log(1 - \kappa) = 0$. ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

$$\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{\mu}{(1+\zeta)^2} = 0,$$

$$W(\zeta_-) = 0, \quad W(\zeta_+) = \frac{\varepsilon}{(1+\zeta_+)(1+(1-\varepsilon)\zeta_+)};$$

$$W'(\zeta_-) = 0, \quad W'(\zeta_+) = \frac{\varepsilon((1-\varepsilon)\zeta_+^2 - 1)}{(1+\zeta_+)^2(1+(1-\varepsilon)\zeta_+)^2}.$$

- Frictionless problem meaningless. Infinite leverage.
- Pure tradeoff between leverage and rebalancing costs.
- π_- is the multiplier. Maximum return is $\mu \pi_-$. Approximate relation $\frac{\pi_-}{\pi_+} \approx 0.4172.$
The Limits of Leverage

Limits of Leverage ($\gamma = 0$)

Theorem

Trade to keep portfolio weight π_t within boundaries π_- (buy) and π_+ (sell)

$$\pi_\pm = \frac{\zeta_\pm}{1 + \zeta_\pm} = B_\pm \kappa^{1/2} (\mu/\sigma^2)^{1/2} \epsilon^{-1/2} + 1 + O(\epsilon^{1/2}),$$

where $B_- = (1 - \kappa)$, $B_+ = 1$ and $\kappa \approx 0.5828$ is the root of $\frac{3}{2} \kappa + \log(1 - \kappa) = 0$. ζ_\pm solve the free-boundary problem (W, ζ_-, ζ_+)

$$\frac{1}{2} \sigma^2 \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{\mu}{(1+\zeta)^2} = 0,$$

$W(\zeta_-) = 0$, $W(\zeta_+) = \frac{\epsilon}{(1+\zeta_+)(1+(1-\epsilon)\zeta_+)}$,

$W'(\zeta_-) = 0$, $W'(\zeta_+) = \frac{\epsilon((1-\epsilon)\zeta_+^2 - 1)}{(1+\zeta_+)^2(1+(1-\epsilon)\zeta_+)^2}$

- Frictionless problem meaningless. Infinite leverage.
- Pure tradeoff between leverage and rebalancing costs.
- π_- is the **multiplier**. Maximum return is $\mu \pi_-$.
- Approximate relation $\frac{\pi_-}{\pi_+} \approx 0.4172$.

Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \bar{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \bar{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \tilde{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \bar{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \tilde{\gamma}]$ and $\varepsilon = \tilde{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \tilde{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\tilde{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \bar{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \bar{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Does it make sense?

- As risk-aversion vanishes, do solutions converge to risk-neutral ones?
- Spread of ε implies maximum leverage of $1/\varepsilon$. Is this driving results?

Assumption

For any $\gamma \in [0, \tilde{\gamma}]$ and $\varepsilon = \bar{\varepsilon}$ the free boundary problem has a solution.

Lemma (Convergence)

Under the assumption, the solution for $\gamma = 0$ and $\varepsilon = \bar{\varepsilon}$ coincides with the limit for $\gamma \downarrow 0$ of the solutions for the same $\bar{\varepsilon}$.

Lemma (Interior solution)

Under the assumption, the optimal strategy is interior:

$$\pi_+ < \frac{1}{\varepsilon}.$$
Buy (bottom) and Sell (top) boundaries (y) vs. volatility (x), as multiples.
Trivial at zero (0,0) or full investment (1,1).
Boundaries finite even for $\gamma = 0$ or $\gamma < 0$.

$\mu = 8\%$, $\sigma = 16\%$, $\varepsilon = 1\%$
• Buy (bottom) and Sell (top) boundaries (y) vs. volatility (x), as multiples.
• Trivial at zero (0,0) or full investment (1,1).
• Boundaries finite even for $\gamma = 0$ or $\gamma < 0$.

$\mu = 8\%, \sigma = 16\%, \varepsilon = 1\%$
• Buy (bottom) and Sell (top) boundaries (y) vs. volatility (x), as multiples.
• Trivial at zero (0,0) or full investment (1,1).
• Boundaries finite even for $\gamma = 0$ or $\gamma < 0$.

$\mu = 8\%, \sigma = 16\%, \varepsilon = 1\%$
Tracking Levered Portfolios

- **Fund return** r_t^F, **benchmark return** r_t^B, **target exposure** π_*. w for value.
- **Realized Alpha**

$$\bar{\alpha}_T = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B) \approx \frac{1}{T} \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right)$$

- **Realized Tracking Error** \bar{s}

$$\bar{s}^2 = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B - \bar{\alpha}_T)^2 \approx \frac{1}{T} \left< \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right) \right>_T$$

- **Maximize Alpha with tracking error constraint**

$$\frac{1}{T} E \left[\int_0^T \left((\mu + \gamma \sigma^2 \pi_*) \pi_t - \frac{\gamma}{2} \sigma^2 \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t^\dagger}{\varphi_t} \right] - \mu \pi_* - \frac{\gamma}{2} \sigma^2 \pi_*^2$$

- **Equivalent to previous objective, but with** $\tilde{\mu} = \mu + \gamma \sigma^2 \pi_*$.
Tracking Levered Portfolios

- Fund return r_t^F, benchmark return r_t^B, target exposure π_*. w for value.

- Realized Alpha

$$\bar{\alpha}_T = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B) \approx \frac{1}{T} \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right)$$

- Realized Tracking Error \bar{s}

$$\bar{s}^2 = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B - \bar{\alpha}_T)^2 \approx \frac{1}{T} \left\langle \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right) \right\rangle_T$$

- Maximize Alpha with tracking error constraint

$$\frac{1}{T} E \left[\int_0^T \left((\mu + \gamma \sigma^2 \pi_*) \pi_t - \gamma \frac{\sigma^2}{2} \pi_t^2 \right) \, dt - \varepsilon \int_0^T \pi_t \frac{d\varphi^+_t}{\varphi_t} \right] - \mu \pi_* - \frac{\gamma}{2} \sigma^2 \pi_*^2$$

- Equivalent to previous objective, but with $\tilde{\mu} = \mu + \gamma \sigma^2 \pi_*$.
Tracking Levered Portfolios

- Fund return r_t^F, benchmark return r_t^B, target exposure π_*. w for value.

- Realized Alpha

$$\bar{\alpha}_T = \frac{1}{n\Delta t} \sum_{0\leq t \leq T} (r_t^F - \pi_* r_t^B) \approx \frac{1}{T} \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right)$$

- Realized Tracking Error \bar{s}

$$\bar{s}^2 = \frac{1}{n\Delta t} \sum_{0\leq t \leq T} (r_t^F - \pi_* r_t^B - \bar{\alpha}_T)^2 \approx \frac{1}{T} \left\langle \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right) \right\rangle_T$$

- Maximize Alpha with tracking error constraint

$$\frac{1}{T} \mathbb{E} \left[\int_0^T \left(\mu + \gamma \sigma^2 \pi_* \right) \pi_t - \frac{\gamma}{2} \sigma^2 \pi_t^2 \right] dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t}{\varphi_t} - \mu \pi_* - \frac{\gamma}{2} \sigma^2 \pi_*^2$$

- Equivalent to previous objective, but with $\tilde{\mu} = \mu + \gamma \sigma^2 \pi_*$.

The Limits of Leverage

• Fund return r_t^F, benchmark return r_t^B, target exposure π_*. w for value.
Tracking Levered Portfolios

- Fund return r_t^F, benchmark return r_t^B, target exposure π_*. w for value.
- Realized Alpha

$$\bar{\alpha}_T = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B) \approx \frac{1}{T} \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right)$$

- Realized Tracking Error \bar{s}^2

$$\bar{s}^2 = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B - \bar{\alpha}_T)^2 \approx \frac{1}{T} \left(\int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right) \right)_T$$

- Maximize Alpha with tracking error constraint

$$\frac{1}{T} \mathbb{E} \left[\int_0^T \left((\mu + \gamma \sigma^2 \pi_*) \pi_t - \frac{\gamma}{2} \sigma^2 \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t}{\varphi_t} \right] - \mu \pi_* - \frac{\gamma}{2} \sigma^2 \pi_*^2$$

- Equivalent to previous objective, but with $\tilde{\mu} = \mu + \gamma \sigma^2 \pi_*$.
Tracking Levered Portfolios

- Fund return r_t^F, benchmark return r_t^B, target exposure π_*. w for value.

- Realized Alpha

$$\bar{\alpha}_T = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B) \approx \frac{1}{T} \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right)$$

- Realized Tracking Error \bar{s}

$$\bar{s}^2 = \frac{1}{n\Delta t} \sum_{0 \leq t \leq T} (r_t^F - \pi_* r_t^B - \bar{\alpha}_T)^2 \approx \frac{1}{T} \left\langle \int_0^T \left(\frac{dw_t^F}{w_t^F} - \pi_* \frac{dw_t^B}{w_t^B} \right) \right\rangle_T$$

- Maximize Alpha with tracking error constraint

$$\frac{1}{T} E \left[\int_0^T \left((\mu + \gamma \sigma^2 \pi_*) \pi_t - \frac{\gamma}{2} \sigma^2 \pi_t^2 \right) dt - \varepsilon \int_0^T \pi_t \frac{d\varphi_t}{\varphi_t} \right] - \mu \pi_* - \frac{\gamma}{2} \sigma^2 \pi_*^2$$

- Equivalent to previous objective, but with $\tilde{\mu} = \mu + \gamma \sigma^2 \pi_*$.
Alpha vs. Tracking Error

Theorem

For the $R^2 = \lim_{T \to \infty} \left(\frac{1}{T} \int_0^T \pi_t dt \right)^2$ of a fund with target π^* and risk-aversion γ

$$\sqrt{1 - R^2} = \frac{\sqrt{3} |1 - \pi^*|}{6} \left(\frac{6}{\gamma \pi^* (1 - \pi^*)} \right)^{1/3} \varepsilon^{1/3} + O(\varepsilon)$$

Alpha is excess exposure minus average trading cost

$$\bar{\alpha} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\mu(\pi_t - \pi^*) dt - \varepsilon \pi_t \frac{d\varphi_t}{\varphi_t} \right) = -\frac{3\sigma^2}{\gamma} \left(\frac{\gamma \pi^* (1 - \pi^*)}{6} \right)^{4/3} \varepsilon^{2/3} + O(\varepsilon)$$

whence

$$\bar{\alpha} \approx -\frac{\sqrt{3}}{12} \sigma^2 \pi^* (1 - \pi^*)^2 \frac{\varepsilon}{\sqrt{1 - R^2}}.$$

- Optimal tradeoff between alpha and tracking error.
- With low γ lower costs (higher alpha), but more tracking error (lower R^2).
- With high γ high R^2 but also high trading costs.
Alpha vs. Tracking Error

Theorem

For the $R^2 = \lim_{T \to \infty} \left(\frac{1}{T} \int_0^T \pi_t dt \right)^2$ of a fund with target π_* and risk-aversion γ

\[
\sqrt{1 - R^2} = \frac{\sqrt{3}|1 - \pi_*|}{6} \left(\frac{6}{\gamma \pi_* (1 - \pi_*)} \right)^{1/3} \varepsilon^{1/3} + O(\varepsilon)
\]

Alpha is excess exposure minus average trading cost

\[
\tilde{\alpha} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\mu(\pi_t - \pi_*) dt - \varepsilon \pi_t \frac{d\varphi_t}{\varphi_t} \right) = -\frac{3 \sigma^2}{\gamma} \left(\frac{\gamma \pi_* (1 - \pi_*)}{6} \right)^{4/3} \varepsilon^{2/3} + O(\varepsilon)
\]

whence

\[
\tilde{\alpha} \approx -\frac{\sqrt{3}}{12} \sigma^2 \pi_* (1 - \pi_*)^2 \frac{\varepsilon}{\sqrt{1 - R^2}}.
\]

- Optimal tradeoff between alpha and tracking error.
- With low γ lower costs (higher alpha), but more tracking error (lower R^2).
- With high γ high R^2 but also high trading costs.
The Limits of Leverage

Alpha vs. Tracking Error

Theorem

For the \(R^2 = \lim_{T \to \infty} \left(\frac{1}{T} \int_0^T \pi_t dt \right)^2 \) of a fund with target \(\pi^*_t \) and risk-aversion \(\gamma \)

\[
\sqrt{1 - R^2} = \frac{\sqrt{3}|1 - \pi^*|}{6} \left(\frac{6}{\gamma \pi^*(1 - \pi^*)} \right)^{1/3} \varepsilon^{1/3} + O(\varepsilon)
\]

Alpha is excess exposure minus average trading cost

\[
\bar{\alpha} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\mu(\pi_t - \pi^*_t) dt - \varepsilon \pi_t \frac{d\varphi_t}{\varphi_t} \right) = - \frac{3\sigma^2}{\gamma} \left(\frac{\gamma \pi^*(1 - \pi^*)}{6} \right)^{4/3} \varepsilon^{2/3} + O(\varepsilon)
\]

whence

\[
\bar{\alpha} \approx - \frac{\sqrt{3}}{12} \sigma^2 \pi^*(1 - \pi^*)^2 \frac{\varepsilon}{\sqrt{1 - R^2}}.
\]

- Optimal tradeoff between alpha and tracking error.
- With low \(\gamma \) lower costs (higher alpha), but more tracking error (lower \(R^2 \)).
- With high \(\gamma \) high \(R^2 \) but also high trading costs.
The Limits of Leverage

Alpha vs. Tracking Error

Theorem

For the $R^2 = \lim_{T \to \infty} \frac{\left(\frac{1}{T} \int_0^T \pi_t dt\right)^2}{\frac{1}{T} \int_0^T \pi_t^2 dt}$ of a fund with target π_* and risk-aversion γ

\[
\sqrt{1 - R^2} = \frac{\sqrt{3}|1 - \pi_*|}{6} \left(\frac{6}{\gamma \pi_*(1 - \pi_*)}\right)^{1/3} \varepsilon^{1/3} + O(\varepsilon)
\]

Alpha is excess exposure minus average trading cost

\[
\bar{\alpha} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\mu(\pi_t - \pi_*) dt - \varepsilon \pi_t \frac{d\varphi_t}{\varphi_t}\right) = -\frac{3\sigma^2}{\gamma} \left(\frac{\gamma \pi_*(1 - \pi_*)}{6}\right)^{4/3} \varepsilon^{2/3} + O(\varepsilon)
\]

whence

\[
\bar{\alpha} \approx -\frac{\sqrt{3}}{12} \sigma^2 \pi_*(1 - \pi_*)^2 \frac{\varepsilon}{\sqrt{1 - R^2}}.
\]

- Optimal tradeoff between alpha and tracking error.
- With low γ lower costs (higher alpha), but more tracking error (lower R^2).
- With high γ high R^2 but also high trading costs.
Relative Tracking Error

- Relative tracking error $\sqrt{1 - R^2}$ (y) against leverage (x).
- Relative tracking error better than R^2 for tracking quality.
- R^2 high even beyond the leverage multiplier. Risk without return.

$\mu = 8\%, \sigma = 16\%, \varepsilon = 0.01\%(bottom), 0.1\%, 1\%(top)$
Relative Tracking Error

- Relative tracking error \(\sqrt{1 - R^2} \) (y) against leverage (x).
- Relative tracking error better than \(R^2 \) for tracking quality.
- \(R^2 \) high even beyond the leverage multiplier. Risk without return.

\[\mu = 8\%, \sigma = 16\%, \varepsilon = 0.01\% (\text{bottom}), 0.1\%, 1\% (\text{top}) \]
Relative Tracking Error

\[\mu = 8\%, \sigma = 16\%, \varepsilon = 0.01\% (\text{bottom}), 0.1\%, 1\% (\text{top}) \]

- Relative tracking error \(\sqrt{1 - R^2} \) (y) against leverage (x).
- Relative tracking error better than \(R^2 \) for tracking quality.
- \(R^2 \) high even beyond the leverage multiplier. Risk without return.
Sketch of Argument (1)

- Summarize holdings by risky/safe ratio $\zeta_t = \pi_t/(1 - \pi_t)$.
- For some λ, conjecture finite-horizon value of the form

$$E_s \left[\int_s^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t^\dagger}{\varphi_t} \right] = V(\zeta_s) + \lambda(T - s)$$

- $V(\zeta) + \lambda(T - s) + \int_s^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t^\dagger}{\varphi_t}$ supermartingale:

$$V'(\zeta_t) d\zeta_t + \frac{1}{2} V''(\zeta_t) d\langle \zeta_t \rangle_t - \lambda dt + \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \pi_t \frac{d\varphi_t^\dagger}{\varphi_t}$$

$$= \left(\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda \right) dt + V'(\zeta_t) \zeta_t \sigma dB_t$$

$$+ V'(\zeta_t) \zeta_t (1 + \zeta_t) \frac{d\varphi_t^\dagger}{\varphi_t} + \left(\varepsilon \frac{\zeta_t}{1 + \zeta_t} - V'(\zeta_t) \zeta_t (1 + (1 - \varepsilon) \zeta_t) \right) \frac{d\varphi_t^\dagger}{\varphi_t}.$$

- dt term nonpositive, and zero on $[\zeta_-, \zeta_+]$
- $d\varphi_t^\dagger, d\varphi_t^\downarrow$ terms nonpositive, and zero at ζ_-, ζ_+ respectively.
Sketch of Argument (1)

- Summarize holdings by risky/safe ratio \(\zeta_t = \pi_t / (1 - \pi_t) \).
- For some \(\lambda \), conjecture finite-horizon value of the form

\[
E_S \left[\int_s^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t}{\varphi_t} \right] = V(\zeta_S) + \lambda(T - s)
\]

- \(V(\zeta) + \lambda(T - s) + \int_s^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t}{\varphi_t} \) supermartingale:

\[
V'(\zeta_t) d\zeta_t + \frac{1}{2} V''(\zeta_t) d\langle \zeta \rangle_t - \lambda dt + \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \pi_t \frac{d\varphi_t}{\varphi_t}
\]

\[
= \left(\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \left(\frac{\zeta_t}{1+\zeta_t} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta_t}{\zeta_t+1} \right)^2 - \lambda \right) \right) dt + V'(\zeta_t) \zeta_t \sigma dB_t
\]

\[
+ V'(\zeta_t) \zeta_t (1 + \zeta_t) \frac{d\varphi_t}{\varphi_t} + \left(\varepsilon \left(\frac{\zeta_t}{1+\zeta_t} - V'(\zeta_t) \zeta_t (1 + (1 - \varepsilon) \zeta_t) \right) \right) \frac{d\varphi_t}{\varphi_t}
\]

- \(dt \) term nonpositive, and zero on \([\zeta_-, \zeta_+]\)
- \(d\varphi_t^\uparrow, d\varphi_t^\downarrow \) terms nonpositive, and zero at \(\zeta_-, \zeta_+ \) respectively.
Sketch of Argument (1)

- Summarize holdings by risky/safe ratio \(\zeta_t = \pi_t / (1 - \pi_t) \).
- For some \(\lambda \), conjecture finite-horizon value of the form

\[
E_s \left[\int_s^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t^\downarrow}{\varphi_t} \right] = V(\zeta_s) + \lambda(T - s)
\]

- \(V(\zeta) + \lambda(T - s) + \int_s^T \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t^\downarrow}{\varphi_t} \) supermartingale:

\[
V'(\zeta_t) d\zeta_t + \frac{1}{2} V''(\zeta_t) d\langle \zeta_t \rangle_t - \lambda dt + \left(\mu \pi_t - \frac{\gamma \sigma^2}{2} \pi_t^2 \right) dt - \varepsilon \pi_t \frac{d\varphi_t^\downarrow}{\varphi_t}
\]

\[
= \left(\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda \right) dt + V'(\zeta_t) \zeta_t \sigma dB_t
\]

\[
+ V'(\zeta_t) \zeta_t (1 + \zeta_t) \frac{d\varphi_t^\downarrow}{\varphi_t} + \left(\varepsilon \frac{\zeta_t}{1 + \zeta_t} - V'(\zeta_t) \zeta_t (1 + (1 - \varepsilon) \zeta_t) \right) \frac{d\varphi_t^\uparrow}{\varphi_t}.
\]

- \(dt \) term nonpositive, and zero on \([\zeta_-, \zeta_+]\).

\(d\varphi_t^\uparrow, d\varphi_t^\downarrow \) terms nonpositive, and zero at \(\zeta_- \), \(\zeta_+ \) respectively.
Sketch of Argument (1)

- Summarize holdings by risky/safe ratio $\zeta_t = \pi_t/(1 - \pi_t)$.
- For some λ, conjecture finite-horizon value of the form
 \[E_s \left[\int_s^T \left(\mu\pi_t - \frac{\gamma\sigma^2}{2}\pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t^\downarrow}{\varphi_t} \right] = V(\zeta_s) + \lambda(T - s) \]

- $V(\zeta) + \lambda(T - s) + \int_s^T \left(\mu\pi_t - \frac{\gamma\sigma^2}{2}\pi_t^2 \right) dt - \varepsilon \int_s^T \pi_t \frac{d\varphi_t^\downarrow}{\varphi_t}$ supermartingale:
 \[
 V'(\zeta_t)d\zeta_t + \frac{1}{2}V''(\zeta_t)d\langle\zeta\rangle_t - \lambda dt + \left(\mu\pi_t - \frac{\gamma\sigma^2}{2}\pi_t^2 \right) dt - \varepsilon\pi_t \frac{d\varphi_t^\downarrow}{\varphi_t}
 \]
 \[
 = \left(\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1+\zeta} - \frac{\gamma\sigma^2}{2} \left(\frac{\zeta}{\zeta+1} \right)^2 - \lambda \right) dt + V'(\zeta_t)\zeta_t \sigma d\zeta_t
 \]
 \[
 + V'(\zeta_t)\zeta_t (1 + \zeta_t) \frac{d\varphi_t^\uparrow}{\varphi_t} + \left(\varepsilon \frac{\zeta_t}{1+\zeta_t} - V'(\zeta_t)\zeta_t (1 + (1 - \varepsilon)\zeta_t) \right) \frac{d\varphi_t^\downarrow}{\varphi_t}.
 \]
- dt term nonpositive, and zero on $[\zeta_-, \zeta_+]$
- $d\varphi_t^\uparrow, d\varphi_t^\downarrow$ terms nonpositive, and zero at ζ_-, ζ_+ respectively.
Sketch of Argument (2)

- Hamilton-Jacobi-Bellman equation

\[
\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda = 0
\]

- Take derivative: second-order equation for \(W = -V' \). No \(\lambda \).

\[
\frac{\sigma^2}{2} \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0
\]

- Four unknowns \((c_1, c_2, \zeta_-, \zeta_+)\), two boundary conditions.
- Smooth pasting conditions at \(\zeta_- \) and \(\zeta_+ \).
- Now four equations and four unknowns. One solution.
- Recover \(\lambda \) from first equation.
Sketch of Argument (2)

- Hamilton-Jacobi-Bellman equation

\[
\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda = 0
\]

- Take derivative: second-order equation for \(W = -V' \). No \(\lambda \).

\[
\frac{\sigma^2}{2} \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0
\]

- Four unknowns \((c_1, c_2, \zeta_-, \zeta_+) \), two boundary conditions.
- Smooth pasting conditions at \(\zeta_- \) and \(\zeta_+ \).
- Now four equations and four unknowns. One solution.
- Recover \(\lambda \) from first equation.
Sketch of Argument (2)

- Hamilton-Jacobi-Bellman equation
 \[
 \frac{\sigma^2}{2} \zeta^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda = 0
 \]

- Take derivative: second-order equation for \(W = -V' \). No \(\lambda \).
 \[
 \frac{\sigma^2}{2} \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0
 \]

- Four unknowns \((c_1, c_2, \zeta_-, \zeta_+)\), two boundary conditions.
 - Smooth pasting conditions at \(\zeta_- \) and \(\zeta_+ \).
 - Now four equations and four unknowns. One solution.
 - Recover \(\lambda \) from first equation.
Sketch of Argument (2)

- Hamilton-Jacobi-Bellman equation

\[
\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda = 0
\]

- Take derivative: second-order equation for \(W = -V' \). No \(\lambda \).

\[
\frac{\sigma^2}{2} \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0
\]

- Four unknowns \((c_1, c_2, \zeta_-, \zeta_+)\), two boundary conditions.
- Smooth pasting conditions at \(\zeta_- \) and \(\zeta_+ \).
- Now four equations and four unknowns. One solution.
- Recover \(\lambda \) from first equation.
Sketch of Argument (2)

- Hamilton-Jacobi-Bellman equation

\[
\frac{\sigma^2}{2} \zeta_t^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda = 0
\]

- Take derivative: second-order equation for \(\mathcal{W} = -V' \). No \(\lambda \).

\[
\frac{\sigma^2}{2} \zeta^2 \mathcal{W}''(\zeta) + (\sigma^2 + \mu) \zeta \mathcal{W}'(\zeta) + \mu \mathcal{W}(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0
\]

- Four unknowns \((c_1, c_2, \zeta_-, \zeta_+)\), two boundary conditions.
- Smooth pasting conditions at \(\zeta_- \) and \(\zeta_+ \).
- Now four equations and four unknowns. One solution.
- Recover \(\lambda \) from first equation.
Sketch of Argument (2)

- Hamilton-Jacobi-Bellman equation

\[
\frac{\sigma^2}{2} \zeta^2 V''(\zeta_t) + \mu \zeta_t V'(\zeta_t) + \mu \frac{\zeta}{1 + \zeta} - \frac{\gamma \sigma^2}{2} \left(\frac{\zeta}{\zeta + 1} \right)^2 - \lambda = 0
\]

- Take derivative: second-order equation for \(W = -V' \). No \(\lambda \).

\[
\frac{\sigma^2}{2} \zeta^2 W''(\zeta) + (\sigma^2 + \mu) \zeta W'(\zeta) + \mu W(\zeta) - \frac{1}{(1 + \zeta)^2} \left(\mu - \frac{\gamma \sigma^2 \zeta}{1 + \zeta} \right) = 0
\]

- Four unknowns \((c_1, c_2, \zeta_-, \zeta_+)\), two boundary conditions.
- Smooth pasting conditions at \(\zeta_- \) and \(\zeta_+ \).
- Now four equations and four unknowns. One solution.
- Recover \(\lambda \) from first equation.
Conclusion

• Maximize average return for fixed volatility. Without frictions, usual frontier.

• Trading costs!

• Leverage cannot increase expected returns indefinitely. Maximum leverage multiplier finite.

• Multiplier increases with liquidity and returns. Decreases with volatility.

• Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.

• Embedded leverage without constraints, but with trading costs.

• Optimal tradeoff between alpha and tracking error.
Conclusion

- Maximize average return for fixed volatility. Without frictions, usual frontier.
- **Trading costs!**
 - Leverage cannot increase expected returns indefinitely. Maximum leverage multiplier finite.
 - Multiplier increases with liquidity and returns. Decreases with volatility.
 - Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.
- Embedded leverage without constraints, but with trading costs.
- Optimal tradeoff between alpha and tracking error.
Conclusion

- Maximize average return for fixed volatility. Without frictions, usual frontier.
- **Trading costs!**
- Leverage cannot increase expected returns indefinitely. Maximum leverage multiplier finite.
 - Multiplier increases with liquidity and returns. Decreases with volatility.
 - Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.
- Embedded leverage without constraints, but with trading costs.
- Optimal tradeoff between alpha and tracking error.
Conclusion

- Maximize average return for fixed volatility. Without frictions, usual frontier.
- **Trading costs!**
- Leverage cannot increase expected returns indefinitely. Maximum **leverage multiplier** finite.
- Multiplier increases with liquidity and returns. Decreases with volatility.
- Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.
- Embedded leverage without constraints, but with trading costs.
- Optimal tradeoff between alpha and tracking error.
Conclusion

• Maximize average return for fixed volatility. Without frictions, usual frontier.

• **Trading costs!**

• Leverage cannot increase expected returns indefinitely. Maximum **leverage multiplier** finite.

• Multiplier increases with liquidity and returns. Decreases with volatility.

• Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.

• Embedded leverage without constraints, but with trading costs.

• Optimal tradeoff between alpha and tracking error.
Conclusion

- Maximize average return for fixed volatility. Without frictions, usual frontier.
- **Trading costs!**
- Leverage cannot increase expected returns indefinitely. Maximum *leverage multiplier* finite.
- Multiplier increases with liquidity and returns. Decreases with volatility.
- Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.
- Embedded leverage without constraints, but with trading costs.
- Optimal tradeoff between alpha and tracking error.
Conclusion

- Maximize average return for fixed volatility. Without frictions, usual frontier.
- **Trading costs!**
- Leverage cannot increase expected returns indefinitely. Maximum **leverage multiplier** finite.
- Multiplier increases with liquidity and returns. Decreases with volatility.
- Between two assets with equal Sharpe ratio, more volatility better. Superior frontier.
- Embedded leverage without constraints, but with trading costs.
- Optimal tradeoff between alpha and tracking error.
Thank You!

Questions?