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The Constraint Satisfaction Problem CSP(B) takes as input a
primitive positive (pp) sentence Φ, i.e. of the form

∃v1 . . . vj φ(v1, . . . , vj),

where φ is a conjunction of atoms, and asks whether B |= Φ.

This is equivalent to the Homomorphism Problem – has A a
homomorphism to B?

The structure B is known as the template...



All natural finite CSPs have been classified for complexity.

It is conjectured that finite CSPs are all either in P or are
NP-complete. Great swathes are classified – undirected graphs,
smooth digraphs, 2-domains, 3-domains, conservative languages...
Some pathological boundary cases remain unclassified – of interest
only to those who are attempting to classify them.

There is a myriad of interesting infinite-domain CSPs whose
complexity is unknown – of interest to all in Computer Science.



Classifications for infinite CSPs

P versus NP-complete dichotomies for

I Allen’s Interval Algebra (Jeavons-Jonsson-Krokhin).

I fo-definitions in (Q;<) (Bodirsky-Kára).

I fo-definitions in RG (Bodirsky-Pinsker).

I fo-expansions of (R; +, 1,≤) (Bodirsky-Jonsson-von Oertzen).

I fo-expansions of (R; +, 1) using ≤ (Jonsson-Thapper).

I bounded-degree fo-definitions in (Z; succ)
(Bodirsky-Dalmau-M.-Pinsker).

I fo-definitions in (Z; succ) (Bodirsky-M.-Mottet).



Classifications for infinite CSPs

ω-categorical and/ or using algebraic method?
√

Allen’s Interval Algebra (Jeavons-Jonsson-Krokhin).
√

fo-definitions in (Q;<) (Bodirsky-Kára).
√

fo-definitions in RG (Bodirsky-Pinsker).

× fo-expansions of (R; +, 1,≤) (Bodirsky-Jonsson-von Oertzen).

× fo-expansions of (R; +, 1) using ≤ (Jonsson-Thapper).

? bounded Gaifman-degree fo-definitions in (Z; succ)
(Bodirsky-Dalmau-M.-Pinsker).

? fo-definitions in (Z; succ) (Bodirsky-M.-Mottet).



Theorem (Bodirsky, Hils and M. 2010)

Let B be a saturated structure of cardinality ≥ 2ω. Then

Inv(Polω(B)) ∩ 〈B〉fo = 〈B〉pp.

Furthermore, we can show that each of

I B being big and saturated,

I using Polω instead of Pol, and

I taking intersection with 〈B〉fo
is necessary.

There is no simple characterisation to the Galois converse here.



Distance CSPs have a template fo-definable in (Z; succ).

I We should have called these Successor CSPs!

Theorem (Bodirsky-Dalmau-M.-Pinsker 2010)

Let B be fo-definable (Z; succ) with finite-degree Gaifman graph.
Then either

I B is homomorphically equivalent to a finite transitive core, or

I B has a modular median poly and CSP(B) is in P, or

I CSP(B) is NP-complete.

Although this result uses endos, it is combinatorial, not algebraic,
in flavour.



(Z; succ) is not ω-categorical, but it is 2ω-categorical.

I Its big models are simple!

· · · // • // • // • // • // • // • // · · ·

becomes

· · · // • // • // • // • // • // • // · · ·

· · · // • // • // • // • // • // • // · · ·
... · · ·

... · · ·
...

and it admits quantifier elimination in its functional form. E.g.

∃z y = succ(z) ∧ z = succ(x)

becomes y = succ2(x).



Finite signature and finite-degree Gaifman mean finite

distance-degree := max{|x − y | : x , y appear in a relation tuple}

For example,
√

y = succ(x) ∨ y = succ2(x).

× 6=.

× y = succ(w) ∨ y = succ(x).

Distance CSPs with bounded distance-degree represent a tiny
subclass of distance CSPs in general.

But bounded distance-degree is so useful!



Outline bounded distance-degree case

??? NP-hard P

bounded distance-degree //

))

finite range endo

OO

sym-succk pp-def

OO

majority pol

OO

core all endos autos //

55

succk pp-def //

66

Ra,b, Ra,c pp-def

��
NP-hard

This provides a first step to the general case.



Recette

How to get a handle on the general case???

I We already met another type of degree!

For R fo-definable in (Z; succ), the qe-degree is the minimal
nesting of functional succ in its qf-definition.

Key ingredients:
old classification

bounded qe-degree
the ω-saturated model
Bodirsky et al. tricks

new classification!



Outline general case

finite range endo

��

see Bodirsky & Kára P

??? NP-hard mod med pol

OO

P

bounded qe-degree

<<

''

// equality language

<<

sym-succk pp-def

OO

sqr-iso pol in
saturated model

//
similar

Bodirsky &
Dalmau

OO

ep-equiv to
cor all endos autos

//

77

succk pp-def //

;;

88

Ra,b, Ra,c pp-def // NP-hard



Theorem (Petrus)

Let Γ be a reduct of (Z; succ) with fin sig and no endo of finite
range. TFAE:

I there exists a reduct ∆ of (Z; =) such that CSP(∆) equals
CSP(Γ);

I ω.Γ has an endo whose range induces a struct iso to a reduct
of (Z; =);

I for all t ≥ 1, there is an e ∈ End(Γ), z ∈ Z, so that
|e(z + t)− e(z)| > t;

I all binary R ∈ 〈Γ〉pp are either = or have unbounded dist
degree;

I there exists an e ∈ End(ω.Γ) with inf range s.t.
e(x)− e(y) = ω or e(x) = e(y) for any two distinct
e(x), e(y) ∈ ω.Γ.



Hauptsatz

Theorem (Bodirsky-M.-Mottet 2013)

Let B be fo-definable (Z; succ) with finite signature. Then either

I B is hom equivalent to a finite transitive core, or

I B is hom equivalent to an equality language, or

I equiv B has a modular median poly and CSP(B) is in P, or

I equiv ωB has special binary poly and CSP(B) is in P, or

I CSP(B) is NP-complete.



We need finite signature for finite distance-degree but we even say,
for relations coded in DNF:

Theorem (Bodirsky-M.-Mottet 2013)

Let B be fo-definable (Z; succ). Then either

I B is hom equivalent to a finite transitive core, or

I B is hom equivalent to an equality language, or

I equiv B has a modular median poly and CSP(B) is in P, or

I equiv ωB has special binary poly and CSP(B) is in P, or

I CSP(B) is NP-complete.



Open questions

Fo-definitions in (Z; succ , 0) embed all finite CSPs.
I Does fo-definitions in (Z; succ , 0) have a non-dichotomy?

I finite signature?
I infinite signature, relations in DNF?

I fo-definitions in (Z;≤, succ)?
I finite signature?
I infinite signature, relations in DNF?

I fo-definitions in (Z;≤,+, 0)?

∗∗ CSP(Z; succ , succ2, . . . , x ≥ y ∨ z ≥ y) is Max Atoms. ∗∗
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