Distance Constraint Satisfaction Problems Beyond the ω -categorical...

M. Bodirsky, B. Martin, A. Mottet M. Bodirsky, V. Dalmau, B. Martin and M. Pinsker (P. Jonsson and T. Lööw)

Foundations of Computing, Middlesex University, London

Banff International Research Station, 27th Nov 2014

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The Constraint Satisfaction Problem CSP(B) takes as input a *primitive positive* (pp) sentence Φ , i.e. of the form

$$\exists v_1 \ldots v_j \ \phi(v_1, \ldots, v_j),$$

where ϕ is a conjunction of atoms, and asks whether $\mathcal{B} \models \Phi$.

This is equivalent to the Homomorphism Problem – has \mathcal{A} a homomorphism to \mathcal{B} ?

The structure \mathcal{B} is known as the template...

All natural finite CSPs have been classified for complexity.

It is conjectured that finite CSPs are all either in P or are NP-complete. Great swathes are classified – undirected graphs, smooth digraphs, 2-domains, 3-domains, conservative languages... Some pathological boundary cases remain unclassified – of interest only to those who are attempting to classify them.

There is a myriad of interesting infinite-domain CSPs whose complexity is unknown – of interest to all in Computer Science.

Classifications for infinite CSPs

P versus NP-complete dichotomies for

- Allen's Interval Algebra (Jeavons-Jonsson-Krokhin).
- ▶ fo-definitions in (Q; <) (Bodirsky-Kára).</p>
- ► fo-definitions in *RG* (Bodirsky-Pinsker).
- ▶ fo-expansions of (R; +, 1, ≤) (Bodirsky-Jonsson-von Oertzen).
- fo-expansions of $(\mathcal{R}; +, 1)$ using \leq (Jonsson-Thapper).
- ▶ bounded-degree fo-definitions in (ℤ; succ) (Bodirsky-Dalmau-M.-Pinsker).
- ▶ fo-definitions in (ℤ; *succ*) (Bodirsky-M.-Mottet).

・ロト ・ 雪 ト ・ ヨ ト ・

Classifications for infinite CSPs

 $\omega\text{-}\mathsf{categorical}$ and/ or using algebraic method?

- $\sqrt{}$ Allen's Interval Algebra (Jeavons-Jonsson-Krokhin).
- $\sqrt{}$ fo-definitions in (\mathbb{Q} ; <) (Bodirsky-Kára).
- $\sqrt{}$ fo-definitions in \mathcal{RG} (Bodirsky-Pinsker).
- imes fo-expansions of $(\mathcal{R};+,1,\leq)$ (Bodirsky-Jonsson-von Oertzen).
- imes fo-expansions of $(\mathcal{R};+,1)$ using \leq (Jonsson-Thapper).
- ? bounded Gaifman-degree fo-definitions in (ℤ; succ) (Bodirsky-Dalmau-M.-Pinsker).
- ? fo-definitions in (\mathbb{Z} ; succ) (Bodirsky-M.-Mottet).

Theorem (Bodirsky, Hils and M. 2010)

Let $\mathcal B$ be a saturated structure of cardinality $\geq 2^{\omega}$. Then

 $\mathsf{Inv}(\mathsf{Pol}^\omega(\mathcal{B})) \cap \langle \mathcal{B}
angle_{\mathrm{fo}} = \langle \mathcal{B}
angle_{\mathrm{pp}}.$

Furthermore, we can show that each of

- B being big and saturated,
- ▶ using Pol^ω instead of Pol, and
- \blacktriangleright taking intersection with $\langle {\cal B} \rangle_{\rm fo}$

is necessary.

There is no simple characterisation to the Galois converse here.

Distance CSPs have a template fo-definable in $(\mathbb{Z}; succ)$.

We should have called these Successor CSPs!

Theorem (Bodirsky-Dalmau-M.-Pinsker 2010) Let \mathcal{B} be fo-definable (\mathbb{Z} ; succ) with finite-degree Gaifman graph. Then either

- B is homomorphically equivalent to a finite transitive core, or
- ▶ B has a modular median poly and CSP(B) is in P, or
- ▶ CSP(B) is NP-complete.

Although this result uses endos, it is combinatorial, not algebraic, in flavour.

and it admits quantifier elimination in its functional form. E.g.

$$\exists z \ y = succ(z) \land z = succ(x)$$

becomes $y = succ^2(x)$.

Finite signature and finite-degree Gaifman mean finite

distance-degree := max{|x - y| : x, y appear in a relation tuple}

For example,

$$\sqrt{y} = succ(x) \lor y = succ^{2}(x).$$

$$\times \neq .$$

$$\times y = succ(w) \lor y = succ(x).$$

Distance CSPs with bounded distance-degree represent a tiny subclass of distance CSPs in general.

But bounded distance-degree is so useful!

Outline bounded distance-degree case

This provides a first step to the general case.

Recette

How to get a handle on the general case???

We already met another type of degree!

For *R* fo-definable in (\mathbb{Z} ; *succ*), the qe-degree is the minimal nesting of functional *succ* in its qf-definition.

Key ingredients: old classification bounded qe-degree the ω -saturated model Bodirsky et al. tricks new classification!

э

(日)、

Outline general case

・ロト ・四ト ・ヨト ・ヨト

Theorem (Petrus)

Let Γ be a reduct of (\mathbb{Z} ; succ) with fin sig and no endo of finite range. TFAE:

- ► there exists a reduct Δ of (ℤ; =) such that CSP(Δ) equals CSP(Γ);
- ω.Γ has an endo whose range induces a struct iso to a reduct of (Z;=);
- ► for all $t \ge 1$, there is an $e \in End(\Gamma)$, $z \in \mathbb{Z}$, so that |e(z+t) e(z)| > t;
- all binary R ∈ ⟨Γ⟩_{pp} are either = or have unbounded dist degree;
- there exists an e ∈ End(ω.Γ) with inf range s.t. e(x) − e(y) = ω or e(x) = e(y) for any two distinct e(x), e(y) ∈ ω.Γ.

Hauptsatz

Theorem (Bodirsky-M.-Mottet 2013)

Let \mathcal{B} be fo-definable (\mathbb{Z} ; succ) with finite signature. Then either

- B is hom equivalent to a finite transitive core, or
- B is hom equivalent to an equality language, or
- equiv \mathcal{B} has a modular median poly and $CSP(\mathcal{B})$ is in P, or
- equiv $\omega \mathcal{B}$ has special binary poly and $CSP(\mathcal{B})$ is in P, or
- CSP(B) is NP-complete.

(日)、

We need finite signature for finite distance-degree but we even say, for relations coded in DNF:

Theorem (Bodirsky-M.-Mottet 2013)

Let \mathcal{B} be fo-definable (\mathbb{Z} ; succ). Then either

- ▶ B is hom equivalent to a finite transitive core, or
- \mathcal{B} is hom equivalent to an equality language, or
- equiv \mathcal{B} has a modular median poly and $CSP(\mathcal{B})$ is in P, or
- equiv $\omega \mathcal{B}$ has special binary poly and CSP(\mathcal{B}) is in P, or
- ▶ CSP(B) is NP-complete.

・ロト ・ 雪 ト ・ ヨ ト

Open questions

Fo-definitions in $(\mathbb{Z}; succ, 0)$ embed all finite CSPs.

- ▶ Does fo-definitions in (ℤ; *succ*, 0) have a non-dichotomy?
 - finite signature?
 - infinite signature, relations in DNF?
- ▶ fo-definitions in (ℤ; ≤, succ)?
 - finite signature?
 - infinite signature, relations in DNF?
- fo-definitions in $(\mathbb{Z}; \leq, +, 0)$?

Open questions

Fo-definitions in $(\mathbb{Z}; succ, 0)$ embed all finite CSPs.

- ▶ Does fo-definitions in (ℤ; *succ*, 0) have a non-dichotomy?
 - finite signature?
 - infinite signature, relations in DNF?
- ▶ fo-definitions in (ℤ; ≤, succ)?
 - finite signature?
 - infinite signature, relations in DNF?
- fo-definitions in $(\mathbb{Z}; \leq, +, 0)$?

** $\mathsf{CSP}(\mathbb{Z}; succ, succ^2, \ldots, x \ge y \lor z \ge y)$ is MAX Atoms. **

