
Endomorphisms and synchronization, 1:
Synchronization

Peter J. Cameron

BIRS, November 2014

Thanks . . .

Many people have been involved in the synchronization
project. For the material I am talking about here, thanks
specially to João Araújo, Wolfram Bentz, James Mitchell Peter
Neumann, Gordon Royle, Artur Schaefer.

Thanks also to the developers of the software (GAP and its
graphs and semigroups share packages for algebraic
computing, MINION for constraint satisfaction problems).

Thanks . . .

Many people have been involved in the synchronization
project. For the material I am talking about here, thanks
specially to João Araújo, Wolfram Bentz, James Mitchell Peter
Neumann, Gordon Royle, Artur Schaefer.
Thanks also to the developers of the software (GAP and its
graphs and semigroups share packages for algebraic
computing, MINION for constraint satisfaction problems).

The dungeon
You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to instant death. You have a schematic
map of the dungeon, but you do not know where you are.

←

←

�
�

�
�
�
�

�
�
�

�
��

↗
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↘

↓

↑
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↖
↘

u u

u u1 2

34

You can check that (Blue, Red, Blue) takes you to room 1, no
matter where you start.

The dungeon
You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to instant death. You have a schematic
map of the dungeon, but you do not know where you are.

←

←

�
�
�
�
�
�
�
�
�
�
��

↗
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↘

↓

↑
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↖
↘

u u

u u1 2

34

You can check that (Blue, Red, Blue) takes you to room 1, no
matter where you start.

The dungeon
You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to instant death. You have a schematic
map of the dungeon, but you do not know where you are.

←

←

�
�
�
�
�
�
�
�
�
�
��

↗
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↘

↓

↑
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↖
↘

u u

u u1 2

34

You can check that (Blue, Red, Blue) takes you to room 1, no
matter where you start.

Definitions

A (finite deterministic) automaton consists of a finite set Ω of
states, with a finite set S of transitions, maps from Ω to Ω. (This
is the simplest kind of automaton: it does not write symbols,
and it does not have an accepting state, so there is no associated
language.)

The automaton is synchronizing if there is a word in the
transitions which evaluates to a map of rank 1.
Combinatorially, an automaton is an edge-coloured directed
graph on Ω such that every vertex is the source of a unique arc
of each colour. The elements of Ω are the states, and the colours
index the transitions.
The digraph is strongly connected if and only if, for any pair of
states, there is a sequence of transitions which carries the first
to the second.

Definitions

A (finite deterministic) automaton consists of a finite set Ω of
states, with a finite set S of transitions, maps from Ω to Ω. (This
is the simplest kind of automaton: it does not write symbols,
and it does not have an accepting state, so there is no associated
language.)
The automaton is synchronizing if there is a word in the
transitions which evaluates to a map of rank 1.

Combinatorially, an automaton is an edge-coloured directed
graph on Ω such that every vertex is the source of a unique arc
of each colour. The elements of Ω are the states, and the colours
index the transitions.
The digraph is strongly connected if and only if, for any pair of
states, there is a sequence of transitions which carries the first
to the second.

Definitions

A (finite deterministic) automaton consists of a finite set Ω of
states, with a finite set S of transitions, maps from Ω to Ω. (This
is the simplest kind of automaton: it does not write symbols,
and it does not have an accepting state, so there is no associated
language.)
The automaton is synchronizing if there is a word in the
transitions which evaluates to a map of rank 1.
Combinatorially, an automaton is an edge-coloured directed
graph on Ω such that every vertex is the source of a unique arc
of each colour. The elements of Ω are the states, and the colours
index the transitions.

The digraph is strongly connected if and only if, for any pair of
states, there is a sequence of transitions which carries the first
to the second.

Definitions

A (finite deterministic) automaton consists of a finite set Ω of
states, with a finite set S of transitions, maps from Ω to Ω. (This
is the simplest kind of automaton: it does not write symbols,
and it does not have an accepting state, so there is no associated
language.)
The automaton is synchronizing if there is a word in the
transitions which evaluates to a map of rank 1.
Combinatorially, an automaton is an edge-coloured directed
graph on Ω such that every vertex is the source of a unique arc
of each colour. The elements of Ω are the states, and the colours
index the transitions.
The digraph is strongly connected if and only if, for any pair of
states, there is a sequence of transitions which carries the first
to the second.

Transformation monoids

We are interested in composing the transitions. So algebraically,
an automaton is a set of transformations of Ω (maps from Ω to
itself) which is closed under composition and contains the
identity map (corresponding to the empty word).

In other words, an automaton is a transformation monoid on
Ω, with a prescribed set of generators.
If all the transformations are permutations, then we have
instead a permutation group.

Transformation monoids

We are interested in composing the transitions. So algebraically,
an automaton is a set of transformations of Ω (maps from Ω to
itself) which is closed under composition and contains the
identity map (corresponding to the empty word).
In other words, an automaton is a transformation monoid on
Ω, with a prescribed set of generators.

If all the transformations are permutations, then we have
instead a permutation group.

Transformation monoids

We are interested in composing the transitions. So algebraically,
an automaton is a set of transformations of Ω (maps from Ω to
itself) which is closed under composition and contains the
identity map (corresponding to the empty word).
In other words, an automaton is a transformation monoid on
Ω, with a prescribed set of generators.
If all the transformations are permutations, then we have
instead a permutation group.

Synchronizing monoids

An automaton is synchronizing if and only if the
corresponding transformation monoid contains an element of
rank 1, that is, a transformation whose image has cardinality 1.

We will call such a transformation monoid synchronizing.
Note that a permutation group is never synchronizing (unless
|Ω| = 1). Later, we will re-define synchronization for a
permutation group.

Synchronizing monoids

An automaton is synchronizing if and only if the
corresponding transformation monoid contains an element of
rank 1, that is, a transformation whose image has cardinality 1.
We will call such a transformation monoid synchronizing.

Note that a permutation group is never synchronizing (unless
|Ω| = 1). Later, we will re-define synchronization for a
permutation group.

Synchronizing monoids

An automaton is synchronizing if and only if the
corresponding transformation monoid contains an element of
rank 1, that is, a transformation whose image has cardinality 1.
We will call such a transformation monoid synchronizing.
Note that a permutation group is never synchronizing (unless
|Ω| = 1). Later, we will re-define synchronization for a
permutation group.

Industrial robotics

Here is an application of synchronization.

Pieces arrive to be assembled by a robot. The orientation is
critical. You could equip the robot with vision sensors and
manipulators so that it can rotate the pieces into the correct
orientation. But it is much cheaper and less error-prone to
regard the possible orientations of the pieces as states of an
automaton on which transitions can be performed by simple
machinery, and apply a reset word before the pieces arrive at
the robot.
For a simple example, consider a square plate with a projection
on one side, as shown on the next slide.

Industrial robotics

Here is an application of synchronization.
Pieces arrive to be assembled by a robot. The orientation is
critical. You could equip the robot with vision sensors and
manipulators so that it can rotate the pieces into the correct
orientation. But it is much cheaper and less error-prone to
regard the possible orientations of the pieces as states of an
automaton on which transitions can be performed by simple
machinery, and apply a reset word before the pieces arrive at
the robot.

For a simple example, consider a square plate with a projection
on one side, as shown on the next slide.

Industrial robotics

Here is an application of synchronization.
Pieces arrive to be assembled by a robot. The orientation is
critical. You could equip the robot with vision sensors and
manipulators so that it can rotate the pieces into the correct
orientation. But it is much cheaper and less error-prone to
regard the possible orientations of the pieces as states of an
automaton on which transitions can be performed by simple
machinery, and apply a reset word before the pieces arrive at
the robot.
For a simple example, consider a square plate with a projection
on one side, as shown on the next slide.

It can sit in a tray on the conveyor belt in any one of four
orientations.

The following transititions are easy to implement:
I R: rotate through 90◦ in the positive direction;
I B: rotate through 90◦ if the projection points up, otherwise

do nothing.

It can sit in a tray on the conveyor belt in any one of four
orientations.

The following transititions are easy to implement:
I R: rotate through 90◦ in the positive direction;
I B: rotate through 90◦ if the projection points up, otherwise

do nothing.

It can sit in a tray on the conveyor belt in any one of four
orientations.

The following transititions are easy to implement:

I R: rotate through 90◦ in the positive direction;
I B: rotate through 90◦ if the projection points up, otherwise

do nothing.

It can sit in a tray on the conveyor belt in any one of four
orientations.

The following transititions are easy to implement:
I R: rotate through 90◦ in the positive direction;

I B: rotate through 90◦ if the projection points up, otherwise
do nothing.

It can sit in a tray on the conveyor belt in any one of four
orientations.

The following transititions are easy to implement:
I R: rotate through 90◦ in the positive direction;
I B: rotate through 90◦ if the projection points up, otherwise

do nothing.

The effect of these transformations is shown in the following
diagram.

u

u
u u

1

2

3

4

�
�
�
��

�
�
�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

...
................

...
........
...........
.............
................

.
..

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.

The effect of these transformations is shown in the following
diagram.

u

u
u u

1

2

3

4

�
�
�
��

�
�
�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

...
................

...
........
...........
.............
................

.
..

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.

The effect of these transformations is shown in the following
diagram.

u

u
u u

1

2

3

4

�
�
�
��

�
�
�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

...
................

...
........
...........
.............
................

.
..

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.

The effect of these transformations is shown in the following
diagram.

u

u
u u

1

2

3

4

�
�
�
��

�
�
�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

...
................

...
........
...........
.............
................

.
..

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.

The Černý conjecture

Problem (The Černý conjecture)

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n− 1)2.

This problem is still open after nearly fifty years. The example
on the previous slide and the obvious generalisation (replacing
a square by a regular n-gon) show that, if true, it is best
possible.
The best reference on the Černý conjecture is the paper by
Mikhail V. Volkov, “Synchronizing automata and the Černý
conjecture”, Language and Automata Theory and Applications
Lecture Notes in Computer Science 5196 (2008), 11–27.

The Černý conjecture

Problem (The Černý conjecture)

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n− 1)2.
This problem is still open after nearly fifty years. The example
on the previous slide and the obvious generalisation (replacing
a square by a regular n-gon) show that, if true, it is best
possible.

The best reference on the Černý conjecture is the paper by
Mikhail V. Volkov, “Synchronizing automata and the Černý
conjecture”, Language and Automata Theory and Applications
Lecture Notes in Computer Science 5196 (2008), 11–27.

The Černý conjecture

Problem (The Černý conjecture)

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n− 1)2.
This problem is still open after nearly fifty years. The example
on the previous slide and the obvious generalisation (replacing
a square by a regular n-gon) show that, if true, it is best
possible.
The best reference on the Černý conjecture is the paper by
Mikhail V. Volkov, “Synchronizing automata and the Černý
conjecture”, Language and Automata Theory and Applications
Lecture Notes in Computer Science 5196 (2008), 11–27.

Some history

Volkov discusses, among other things, the history of the
problem. He points out:

I The first reference to synchronization was ten years earlier
than Černý’s paper, in Ross Ashby’s book An Introduction
to Cybernetics (Chapman and Hall, 1956). I give Ashby’s
example on the next slide.

I In his first paper, Černý gave upper and lower bounds for
the length of a reset word in the worst case, but didn’t
formulate his conjecture until a talk in Bratislava in 1969
(published in 1971).

Some history

Volkov discusses, among other things, the history of the
problem. He points out:

I The first reference to synchronization was ten years earlier
than Černý’s paper, in Ross Ashby’s book An Introduction
to Cybernetics (Chapman and Hall, 1956). I give Ashby’s
example on the next slide.

I In his first paper, Černý gave upper and lower bounds for
the length of a reset word in the worst case, but didn’t
formulate his conjecture until a talk in Bratislava in 1969
(published in 1971).

“Graveside”
Wits End

Haunts.

Dear Friend,
Some time ago I bought this old house, but found it to be haunted by two ghostly
noises—a ribald Singing and a sardonic Laughter. As a result it is hardly habitable.
There is hope, however, for by actual testing I have found that their behaviour is
subject to certain laws, obscure but infallible, and that they can be affected by my
playing the organ or burning incense.
In each minute, each noise is either sounding or silent—they show no degrees. What
each will do during the ensuing minute depends, in the following exact way, on what
has been happening during the preceding minute: The Singing, in the succeeding
minute, will go on as it was during the preceding minute (sounding or silent) unless
there was organ-playing with no Laughter, in which case it will change to the opposite
(sounding to silent, or vice versa). As for the Laughter, if there was incense burning,
then it will sound or not according as the Singing was sounding or not (so that the
Laughter copies the singing a minute later). If however there was no incense burning,
the Laughter will do the opposite of what the Singing did.
At this minute of writing, the Laughter and Singing are both sounding. Please tell me
what manipulations of incense and organ I should make to get the house quiet, and
keep it so.

Results on the Černý conjecture

The best known bound in general is cubic (of order 1
6 n3).

However, better results are known in some special cases, for
example:

I Trahtman showed in 2007 that the conjecture is true for
aperiodic automata (indeed, in this case he gave a bound
n(n− 1)/2).

I Dubuc showed in 1998 that the conjecture is true if one of
the transitions acts as a cyclic permutation.

I Kari showed in 2001 that it is true if the underlying
digraph of the automaton is Eulerian.

Results on the Černý conjecture

The best known bound in general is cubic (of order 1
6 n3).

However, better results are known in some special cases, for
example:

I Trahtman showed in 2007 that the conjecture is true for
aperiodic automata (indeed, in this case he gave a bound
n(n− 1)/2).

I Dubuc showed in 1998 that the conjecture is true if one of
the transitions acts as a cyclic permutation.

I Kari showed in 2001 that it is true if the underlying
digraph of the automaton is Eulerian.

Results on the Černý conjecture

The best known bound in general is cubic (of order 1
6 n3).

However, better results are known in some special cases, for
example:

I Trahtman showed in 2007 that the conjecture is true for
aperiodic automata (indeed, in this case he gave a bound
n(n− 1)/2).

I Dubuc showed in 1998 that the conjecture is true if one of
the transitions acts as a cyclic permutation.

I Kari showed in 2001 that it is true if the underlying
digraph of the automaton is Eulerian.

Results on the Černý conjecture

The best known bound in general is cubic (of order 1
6 n3).

However, better results are known in some special cases, for
example:

I Trahtman showed in 2007 that the conjecture is true for
aperiodic automata (indeed, in this case he gave a bound
n(n− 1)/2).

I Dubuc showed in 1998 that the conjecture is true if one of
the transitions acts as a cyclic permutation.

I Kari showed in 2001 that it is true if the underlying
digraph of the automaton is Eulerian.

Related questions

Two related computational problems. Given an automaton
(Ω, S),

I Decide whether it is synchronizing.

I If so, find the shortest reset word.
What is the computational complexity of these problems?
We’ll see that the first is easy but the second is hard.

Related questions

Two related computational problems. Given an automaton
(Ω, S),

I Decide whether it is synchronizing.
I If so, find the shortest reset word.

What is the computational complexity of these problems?
We’ll see that the first is easy but the second is hard.

Related questions

Two related computational problems. Given an automaton
(Ω, S),

I Decide whether it is synchronizing.
I If so, find the shortest reset word.

What is the computational complexity of these problems?

We’ll see that the first is easy but the second is hard.

Related questions

Two related computational problems. Given an automaton
(Ω, S),

I Decide whether it is synchronizing.
I If so, find the shortest reset word.

What is the computational complexity of these problems?
We’ll see that the first is easy but the second is hard.

Testing synchronization

Proposition

An automaton (Ω, S) is synchronizing if and only if, for any two
states a, b ∈ Ω, there is a word wa,b in the elements of S which maps a
and b to the same place.

Proof.
“Only if” is clear, so suppose that the condition holds. Let f be
an element of 〈S〉 of smallest possible rank. If the rank of S is
greater than 1, then choose two points a, b in the image; then
fwab has smaller rank than f . So f has rank 1, and the automaton
is synchronizing.
So we only have to consider all pairs of states.

Testing synchronization

Proposition

An automaton (Ω, S) is synchronizing if and only if, for any two
states a, b ∈ Ω, there is a word wa,b in the elements of S which maps a
and b to the same place.

Proof.
“Only if” is clear, so suppose that the condition holds. Let f be
an element of 〈S〉 of smallest possible rank. If the rank of S is
greater than 1, then choose two points a, b in the image; then
fwab has smaller rank than f . So f has rank 1, and the automaton
is synchronizing.

So we only have to consider all pairs of states.

Testing synchronization

Proposition

An automaton (Ω, S) is synchronizing if and only if, for any two
states a, b ∈ Ω, there is a word wa,b in the elements of S which maps a
and b to the same place.

Proof.
“Only if” is clear, so suppose that the condition holds. Let f be
an element of 〈S〉 of smallest possible rank. If the rank of S is
greater than 1, then choose two points a, b in the image; then
fwab has smaller rank than f . So f has rank 1, and the automaton
is synchronizing.
So we only have to consider all pairs of states.

The picture shows the previous example, extended to pairs of
states.

u

u
u u

1

2

3

4

u

u

u

u

u

u
12 14

23 34

13 24

�
�
�
��

�
�
�
��

@
@
@

@@
@
@

@
@@

↙

↘ ↗

↖
↓

→

↑

←

↔

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

↑

...
................

...
........
...........
.............
................

.
..

�������������

←

...
................

.
.................
.

...
.........
...........
..............
................

..................

.
..

.
...............................

....
............................

....
..........................

....
........................

...
.....................

...
....................

..
...................

.
..................

...................
.

....................
..

.....................
...

........................
...

..........................
....

............................
....

...............................
....

↓

Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.

The picture shows the previous example, extended to pairs of
states.

u

u
u u

1

2

3

4

u

u

u

u

u

u
12 14

23 34

13 24

�
�
�
��

�
�
�
��

@
@
@

@@
@
@

@
@@

↙

↘ ↗

↖
↓

→

↑

←

↔

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

↑

...
................

...
........
...........
.............
................

.
..

�������������

←

...
................

.
.................
.

...
.........
...........
..............
................

..................

.
..

.
...............................

....
............................

....
..........................

....
........................

...
.....................

...
....................

..
...................

.
..................

...................
.

....................
..

.....................
...

........................
...

..........................
....

............................
....

...............................
....

↓

Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.

The picture shows the previous example, extended to pairs of
states.

u

u
u u

1

2

3

4

u

u

u

u

u

u
12 14

23 34

13 24

�
�
�
��

�
�
�
��

@
@
@

@@
@
@

@
@@

↙

↘ ↗

↖
↓

→

↑

←

↔

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

↑

...
................

...
........
...........
.............
................

.
..

�������������

←

...
................

.
.................
.

...
.........
...........
..............
................

..................

.
..

.
...............................

....
............................

....
..........................

....
........................

...
.....................

...
....................

..
...................

.
..................

...................
.

....................
..

.....................
...

........................
...

..........................
....

............................
....

...............................
....

↓

Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.

Shortest reset word

In order to find the shortest reset word by this method, we
would have to extend the diagram to all possible sets of states,
and then find the shortest path from Ω to a singleton; the size
of the resulting digraph would be exponentially large.

In fact:

Theorem
Deciding whether an automaton is synchronizing is in P, but finding
the length of the shortest reset word is NP-hard.
The above argument gives us a cubic upper bound for the
length of a reset word. For we can collapse any given pair of

states in at most
(

n
2

)
steps, and we only need to do this n− 1

times to reset the automaton.

Shortest reset word

In order to find the shortest reset word by this method, we
would have to extend the diagram to all possible sets of states,
and then find the shortest path from Ω to a singleton; the size
of the resulting digraph would be exponentially large.
In fact:

Theorem
Deciding whether an automaton is synchronizing is in P, but finding
the length of the shortest reset word is NP-hard.
The above argument gives us a cubic upper bound for the
length of a reset word. For we can collapse any given pair of

states in at most
(

n
2

)
steps, and we only need to do this n− 1

times to reset the automaton.

Shortest reset word

In order to find the shortest reset word by this method, we
would have to extend the diagram to all possible sets of states,
and then find the shortest path from Ω to a singleton; the size
of the resulting digraph would be exponentially large.
In fact:

Theorem
Deciding whether an automaton is synchronizing is in P, but finding
the length of the shortest reset word is NP-hard.

The above argument gives us a cubic upper bound for the
length of a reset word. For we can collapse any given pair of

states in at most
(

n
2

)
steps, and we only need to do this n− 1

times to reset the automaton.

Shortest reset word

In order to find the shortest reset word by this method, we
would have to extend the diagram to all possible sets of states,
and then find the shortest path from Ω to a singleton; the size
of the resulting digraph would be exponentially large.
In fact:

Theorem
Deciding whether an automaton is synchronizing is in P, but finding
the length of the shortest reset word is NP-hard.
The above argument gives us a cubic upper bound for the
length of a reset word. For we can collapse any given pair of

states in at most
(

n
2

)
steps, and we only need to do this n− 1

times to reset the automaton.

Synchronization in the infinite case

I will not say much about the infinite.

One attempt to define synchronization for transformation
monoids on infinite sets would be to say that M is
synchronizing if for any two points v, w of the domain, there is
an element f ∈ M with vf = wf .
This is OK for maps of finite rank but doesn’t do what we want
for infinite rank (consider the monoid of all surjective maps, for
example).
We could require M to be closed, in the topology of pointwise
convergence. This potentially allows maps of infinite rank to
“generate” a constant, but is still not really satisfactory.

Synchronization in the infinite case

I will not say much about the infinite.
One attempt to define synchronization for transformation
monoids on infinite sets would be to say that M is
synchronizing if for any two points v, w of the domain, there is
an element f ∈ M with vf = wf .

This is OK for maps of finite rank but doesn’t do what we want
for infinite rank (consider the monoid of all surjective maps, for
example).
We could require M to be closed, in the topology of pointwise
convergence. This potentially allows maps of infinite rank to
“generate” a constant, but is still not really satisfactory.

Synchronization in the infinite case

I will not say much about the infinite.
One attempt to define synchronization for transformation
monoids on infinite sets would be to say that M is
synchronizing if for any two points v, w of the domain, there is
an element f ∈ M with vf = wf .
This is OK for maps of finite rank but doesn’t do what we want
for infinite rank (consider the monoid of all surjective maps, for
example).

We could require M to be closed, in the topology of pointwise
convergence. This potentially allows maps of infinite rank to
“generate” a constant, but is still not really satisfactory.

Synchronization in the infinite case

I will not say much about the infinite.
One attempt to define synchronization for transformation
monoids on infinite sets would be to say that M is
synchronizing if for any two points v, w of the domain, there is
an element f ∈ M with vf = wf .
This is OK for maps of finite rank but doesn’t do what we want
for infinite rank (consider the monoid of all surjective maps, for
example).
We could require M to be closed, in the topology of pointwise
convergence. This potentially allows maps of infinite rank to
“generate” a constant, but is still not really satisfactory.

Synchronization in the infinite case

I will not say much about the infinite.
One attempt to define synchronization for transformation
monoids on infinite sets would be to say that M is
synchronizing if for any two points v, w of the domain, there is
an element f ∈ M with vf = wf .
This is OK for maps of finite rank but doesn’t do what we want
for infinite rank (consider the monoid of all surjective maps, for
example).
We could require M to be closed, in the topology of pointwise
convergence. This potentially allows maps of infinite rank to
“generate” a constant, but is still not really satisfactory.

A problem

Problem
Let n and k be given positive integers with k < n. Find (in terms of n
and k) the smallest m such that the following is true: Given a
permutation group G = 〈S〉 of degree n, and two k-sets A and B
lying in the same G-orbit, there is a semigroup word of length at most
m which maps A to B.

This question is clearly related to questions about the diameter
of a permutation group with respect to a given set of
generators, with a couple of significant differences:

I we use semigroup words, rather than group words (that is,
we are not allowed to use inverses);

I we do not need to express an arbitrary group element in
terms of generators, but only some word in an arbitrary
coset of a subset stabiliser.

A problem

Problem
Let n and k be given positive integers with k < n. Find (in terms of n
and k) the smallest m such that the following is true: Given a
permutation group G = 〈S〉 of degree n, and two k-sets A and B
lying in the same G-orbit, there is a semigroup word of length at most
m which maps A to B.
This question is clearly related to questions about the diameter
of a permutation group with respect to a given set of
generators, with a couple of significant differences:

I we use semigroup words, rather than group words (that is,
we are not allowed to use inverses);

I we do not need to express an arbitrary group element in
terms of generators, but only some word in an arbitrary
coset of a subset stabiliser.

A problem

Problem
Let n and k be given positive integers with k < n. Find (in terms of n
and k) the smallest m such that the following is true: Given a
permutation group G = 〈S〉 of degree n, and two k-sets A and B
lying in the same G-orbit, there is a semigroup word of length at most
m which maps A to B.
This question is clearly related to questions about the diameter
of a permutation group with respect to a given set of
generators, with a couple of significant differences:

I we use semigroup words, rather than group words (that is,
we are not allowed to use inverses);

I we do not need to express an arbitrary group element in
terms of generators, but only some word in an arbitrary
coset of a subset stabiliser.

A problem

Problem
Let n and k be given positive integers with k < n. Find (in terms of n
and k) the smallest m such that the following is true: Given a
permutation group G = 〈S〉 of degree n, and two k-sets A and B
lying in the same G-orbit, there is a semigroup word of length at most
m which maps A to B.
This question is clearly related to questions about the diameter
of a permutation group with respect to a given set of
generators, with a couple of significant differences:

I we use semigroup words, rather than group words (that is,
we are not allowed to use inverses);

I we do not need to express an arbitrary group element in
terms of generators, but only some word in an arbitrary
coset of a subset stabiliser.

Discussion

For k = 1, the answer is clearly n− 1. For, if A = {a} and
B = {b} where a and b are in the same orbit, there is a path
from a to b, and so the shortest path has length at most n− 1. If
S consists of a single cyclic permutation s and b = s−1, then
n− 1 steps are required.

Using this, we get a bound of
(

n
k

)
− 1 in general, which is

probably much too large.
For k = 2, if S = {s} where s has two cycles of coprime lengths
close to n/2, the number of steps required is about n2/4. For
transitive groups G, it appears to be much smaller, maybe linear
in n.
The case k = 2 is specially relevant to synchronization . . .

Discussion

For k = 1, the answer is clearly n− 1. For, if A = {a} and
B = {b} where a and b are in the same orbit, there is a path
from a to b, and so the shortest path has length at most n− 1. If
S consists of a single cyclic permutation s and b = s−1, then
n− 1 steps are required.

Using this, we get a bound of
(

n
k

)
− 1 in general, which is

probably much too large.

For k = 2, if S = {s} where s has two cycles of coprime lengths
close to n/2, the number of steps required is about n2/4. For
transitive groups G, it appears to be much smaller, maybe linear
in n.
The case k = 2 is specially relevant to synchronization . . .

Discussion

For k = 1, the answer is clearly n− 1. For, if A = {a} and
B = {b} where a and b are in the same orbit, there is a path
from a to b, and so the shortest path has length at most n− 1. If
S consists of a single cyclic permutation s and b = s−1, then
n− 1 steps are required.

Using this, we get a bound of
(

n
k

)
− 1 in general, which is

probably much too large.
For k = 2, if S = {s} where s has two cycles of coprime lengths
close to n/2, the number of steps required is about n2/4. For
transitive groups G, it appears to be much smaller, maybe linear
in n.

The case k = 2 is specially relevant to synchronization . . .

Discussion

For k = 1, the answer is clearly n− 1. For, if A = {a} and
B = {b} where a and b are in the same orbit, there is a path
from a to b, and so the shortest path has length at most n− 1. If
S consists of a single cyclic permutation s and b = s−1, then
n− 1 steps are required.

Using this, we get a bound of
(

n
k

)
− 1 in general, which is

probably much too large.
For k = 2, if S = {s} where s has two cycles of coprime lengths
close to n/2, the number of steps required is about n2/4. For
transitive groups G, it appears to be much smaller, maybe linear
in n.
The case k = 2 is specially relevant to synchronization . . .

A quadratic bound?

Recent work by João Araújo gives some hope that, for a
synchronizing automaton in which all but one of the generators
are permutations which generate a transitive group, a
quadratic bound for the length of a reset word can be found.

In the worst case, the non-permutation f has rank n− 1. We will
require at least n− 1 applications of f to obtain a synchronizing
word, since each only reduces the size of the image by 1.
Araújo has shown that we can always find a reset word with no
more than this minimum number of occurrences of f . In other
words, we use f for reducing the rank, not for “moving things
around”.

A quadratic bound?

Recent work by João Araújo gives some hope that, for a
synchronizing automaton in which all but one of the generators
are permutations which generate a transitive group, a
quadratic bound for the length of a reset word can be found.
In the worst case, the non-permutation f has rank n− 1. We will
require at least n− 1 applications of f to obtain a synchronizing
word, since each only reduces the size of the image by 1.

Araújo has shown that we can always find a reset word with no
more than this minimum number of occurrences of f . In other
words, we use f for reducing the rank, not for “moving things
around”.

A quadratic bound?

Recent work by João Araújo gives some hope that, for a
synchronizing automaton in which all but one of the generators
are permutations which generate a transitive group, a
quadratic bound for the length of a reset word can be found.
In the worst case, the non-permutation f has rank n− 1. We will
require at least n− 1 applications of f to obtain a synchronizing
word, since each only reduces the size of the image by 1.
Araújo has shown that we can always find a reset word with no
more than this minimum number of occurrences of f . In other
words, we use f for reducing the rank, not for “moving things
around”.

Now between successive occurrences of f , we have a
semigroup word in the remaining generators which carries a
pair of points in the image of the last application of f to a pair
of points in the same kernel class of f , so that the next
occurrence of f will reduce the rank.

A positive solution to the problem above would show that this
can be done with a linear number of generators. This would
give a quadratic bound for the length of the reset word.

Now between successive occurrences of f , we have a
semigroup word in the remaining generators which carries a
pair of points in the image of the last application of f to a pair
of points in the same kernel class of f , so that the next
occurrence of f will reduce the rank.
A positive solution to the problem above would show that this
can be done with a linear number of generators. This would
give a quadratic bound for the length of the reset word.

Image and kernel

Let f : Ω→ Ω be a map.

The image of f consists of the points a for which xf = a for
some x ∈ Ω.
The kernel of f is the equivalence relation ≡ on Ω where x ≡ y
if and only if xf = yf .
The cardinality of the image is equal to the number of
equivalence classes of the kernel.
We say that f is uniform if all kernel classes have the same
cardinality, non-uniform otherwise.

Image and kernel

Let f : Ω→ Ω be a map.
The image of f consists of the points a for which xf = a for
some x ∈ Ω.

The kernel of f is the equivalence relation ≡ on Ω where x ≡ y
if and only if xf = yf .
The cardinality of the image is equal to the number of
equivalence classes of the kernel.
We say that f is uniform if all kernel classes have the same
cardinality, non-uniform otherwise.

Image and kernel

Let f : Ω→ Ω be a map.
The image of f consists of the points a for which xf = a for
some x ∈ Ω.
The kernel of f is the equivalence relation ≡ on Ω where x ≡ y
if and only if xf = yf .

The cardinality of the image is equal to the number of
equivalence classes of the kernel.
We say that f is uniform if all kernel classes have the same
cardinality, non-uniform otherwise.

Image and kernel

Let f : Ω→ Ω be a map.
The image of f consists of the points a for which xf = a for
some x ∈ Ω.
The kernel of f is the equivalence relation ≡ on Ω where x ≡ y
if and only if xf = yf .
The cardinality of the image is equal to the number of
equivalence classes of the kernel.

We say that f is uniform if all kernel classes have the same
cardinality, non-uniform otherwise.

Image and kernel

Let f : Ω→ Ω be a map.
The image of f consists of the points a for which xf = a for
some x ∈ Ω.
The kernel of f is the equivalence relation ≡ on Ω where x ≡ y
if and only if xf = yf .
The cardinality of the image is equal to the number of
equivalence classes of the kernel.
We say that f is uniform if all kernel classes have the same
cardinality, non-uniform otherwise.

Permutation groups and synchronization

I will now introduce the ideas which will be the focus of the
second lecture.

Let G be a permutation group on Ω. We say that G synchronizes
the map f : Ω→ Ω if the monoid 〈G, f 〉 is synchronizing in our
earlier sense, that is, contains a map of rank 1.
The preceding discussion is an approach to proving the Černý
conjecture for monoids of the form 〈G, f 〉. (Note that the
extremal known examples for the Černý conjecture have this
form.)
We say that a permutation group G is synchronizing if it
synchronizes every non-permutation on Ω, and almost
synchronizing if it synchronizes every non-uniform map on Ω.

Permutation groups and synchronization

I will now introduce the ideas which will be the focus of the
second lecture.
Let G be a permutation group on Ω. We say that G synchronizes
the map f : Ω→ Ω if the monoid 〈G, f 〉 is synchronizing in our
earlier sense, that is, contains a map of rank 1.

The preceding discussion is an approach to proving the Černý
conjecture for monoids of the form 〈G, f 〉. (Note that the
extremal known examples for the Černý conjecture have this
form.)
We say that a permutation group G is synchronizing if it
synchronizes every non-permutation on Ω, and almost
synchronizing if it synchronizes every non-uniform map on Ω.

Permutation groups and synchronization

I will now introduce the ideas which will be the focus of the
second lecture.
Let G be a permutation group on Ω. We say that G synchronizes
the map f : Ω→ Ω if the monoid 〈G, f 〉 is synchronizing in our
earlier sense, that is, contains a map of rank 1.
The preceding discussion is an approach to proving the Černý
conjecture for monoids of the form 〈G, f 〉. (Note that the
extremal known examples for the Černý conjecture have this
form.)

We say that a permutation group G is synchronizing if it
synchronizes every non-permutation on Ω, and almost
synchronizing if it synchronizes every non-uniform map on Ω.

Permutation groups and synchronization

I will now introduce the ideas which will be the focus of the
second lecture.
Let G be a permutation group on Ω. We say that G synchronizes
the map f : Ω→ Ω if the monoid 〈G, f 〉 is synchronizing in our
earlier sense, that is, contains a map of rank 1.
The preceding discussion is an approach to proving the Černý
conjecture for monoids of the form 〈G, f 〉. (Note that the
extremal known examples for the Černý conjecture have this
form.)
We say that a permutation group G is synchronizing if it
synchronizes every non-permutation on Ω, and almost
synchronizing if it synchronizes every non-uniform map on Ω.

Forward look

The questions that will concern us in the second lecture will be:

I How do we characterise synchronizing monoids?
I Which permutation groups are synchronizing?
I Which permutation groups are almost synchronizing?
I How do these properties relate to more familiar

permutation group properties?
I will not be saying any more about the Černý conjecture!

Forward look

The questions that will concern us in the second lecture will be:
I How do we characterise synchronizing monoids?

I Which permutation groups are synchronizing?
I Which permutation groups are almost synchronizing?
I How do these properties relate to more familiar

permutation group properties?
I will not be saying any more about the Černý conjecture!

Forward look

The questions that will concern us in the second lecture will be:
I How do we characterise synchronizing monoids?
I Which permutation groups are synchronizing?

I Which permutation groups are almost synchronizing?
I How do these properties relate to more familiar

permutation group properties?
I will not be saying any more about the Černý conjecture!

Forward look

The questions that will concern us in the second lecture will be:
I How do we characterise synchronizing monoids?
I Which permutation groups are synchronizing?
I Which permutation groups are almost synchronizing?

I How do these properties relate to more familiar
permutation group properties?

I will not be saying any more about the Černý conjecture!

Forward look

The questions that will concern us in the second lecture will be:
I How do we characterise synchronizing monoids?
I Which permutation groups are synchronizing?
I Which permutation groups are almost synchronizing?
I How do these properties relate to more familiar

permutation group properties?

I will not be saying any more about the Černý conjecture!

Forward look

The questions that will concern us in the second lecture will be:
I How do we characterise synchronizing monoids?
I Which permutation groups are synchronizing?
I Which permutation groups are almost synchronizing?
I How do these properties relate to more familiar

permutation group properties?
I will not be saying any more about the Černý conjecture!

