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Extreme Distributions

Let {Yt} be a process of interest, where {Yt} may
represent, say, river flow rates at a monitoring
station. Suppose that we are interested in the block
maxima

Mn = max{Yt+1, . . . ,Yt+n},

say, the annual maximum flow rates.
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When {Yt} is an iid sequence, or when {Yt} is
stationary with limited dependence, the distribution
of Mn can be well approximated by a generalized
extreme value (GEV) distribution defined for
{y : 1 + ξ(y − µ)/σ > 0} by

G (y) =

{
exp{− exp[−(y − µ)/σ]}, ξ = 0,

exp
{
−
[
1 + ξ

(
y−µ
σ

)]−1/ξ}
, ξ 6= 0,

where −∞ < µ <∞, σ > 0 and −∞ < ξ <∞
are referred to as the location, scale and shape
parameters, respectively. (Coles, 2001)
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The currently favored methods of parameter
estimation include the probability-weighted
moments method (for small samples) and the
maximum likelihood method. For inference and
modeling, the maximum likelihood method is
preferred.

However, the GEV family of distributions do not
satisfy the regularity conditions for the general
asymptotic theory of MLE.
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Specifically (Smith, 1985),

I when ξ < 0.5, the ML estimators possess the
standard asymptotic properties;

I when 0.5 ≤ ξ < 1, the ML estimators are
generally obtainable, but do not possess the
standard asymptotic properties;

I when 1 ≤ ξ, the ML estimators are unlikely to
be obtainable.
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In application, a common assumption used in the
central models of extreme values is the
independence of extremes. Davison and Ramesh
(2000) admitted the difficulty to handle the failure
of this assumption. Chavez-Demoulin and Davison
(2005) argued that dependence between the
extremes would not bias estimators of the
parameters of a model built upon the independence
assumption.
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Positive α-Stable Distributions

Let S be a positive α-stable variable in the sense
that for α ∈ (0, 1) and u ≥ 0, the Laplace transform
of S satisfies

E (exp(−uS)) = exp(−uα). (1)

Let X be Gumbel distributed (ξ = 0 in the GEV
family) with parameters µ and σ. Then X + σ log S
is also Gumbel distributed with parameters µ and
σ/α.
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Let {St} be iid positive α-stable random variables
defined by (1). For σ > 0, define

Xt = αXt−1 + ασ log St , t ∈ Z. (2)

Then Equation (2) has a unique second order
stationary solution

Xt = σ
∞∑
j=0

αj+1 log St−j (3)

and Xt is Gumbel distributed with parameters µ = 0
and σ. (Toulemonde, etc. 2010)
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There are two ways to construct dependent random
sequences {Yt} with the same GEV marginal
distributions. In both ways, Yt = Xt when ξ = 0.
One way is to define

Yt =

(
Yt−1 +

σ

ξ

)α
Sαξt

(
σ

ξ

)1−α
− σ

ξ
, t ∈ Z. (4)

(Toulemonde, etc. 2010)
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Then Equation (4) has a unique second order
stationary solution

Yt = −σ
ξ

+
σ

ξ

∞∏
j=0

(St−j)
ξαj+1

(5)

and Yt is a GEV (0, σ, ξ) random variable. The
other way is to define

Yt =

{
exp

[
ξ

(
St − µ
σ

)]
− 1

}
/ξ. (6)

Then Yt is a GEV (µ, σ, ξ) random variable.
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Bias of µ̂
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MSE of µ̂
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Bias of µ̂
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MSE of µ̂
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Bias of σ̂

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

ξ

B
ia

s

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

σ̂

n = 30

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

ξ

B
ia

s

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

σ̂

n = 50

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

ξ

B
ia

s

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

σ̂

n = 100

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

ξ

B
ia

s

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

σ̂

n = 200

Gemai Chen Department of Mathematics and Statistics, University of Calgary

Dependent Extremes



Extremes Dependent Extremes Effects of Dependence 2013 Calgary Flood Estimate Return Level

MSE of σ̂
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Bias of ξ̂
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MSE of ξ̂
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Conclusion: When the dependence among the
maximums is on the higher end (α ≥ 0.7) and when
the sample size n is not large (n ≤ 100), the
maximum likelihood estimators of the parameters of
the GEV distribution family are noticeably biased.
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Calgary 2013 Flood
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Calgary 2013 Flood
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Calgary 2013 Flood
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Return Level

Let p∗ be a small upper tail probability and let r ∗ be
the (1− p∗)th quantile of a GEV (µ, σ, ξ)
distribution, one has

r ∗ =

{
µ− σ

ξ

{
1− [− ln(1− p∗)]−ξ

}
if ξ 6= 0,

µ− σ ln[− ln(1− p∗)] if ξ = 0.

In hydrology, this is the (1/p∗)-year return level.
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Thank You!
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The extreme value method.

Divide the (log) returns r1, . . . , rT into

{r1, . . . , rn|rn+1, . . . , r2n| · · · , |r(g−1)n+1, . . . , rgn}

and let rn,i be the maximum of the ith subsample.
When n is large and the dependence among {rt} is
weak, {rn,i}gi=1 can be regarded as a sample from
the generalized extreme value (GEV) distribution
defined by

Gemai Chen Department of Mathematics and Statistics, University of Calgary

Dependent Extremes



Extremes Dependent Extremes Effects of Dependence 2013 Calgary Flood Estimate Return Level

F (r) =

 exp

{
−
[

1 + ξn(r−βn)
αn

]−1/ξn}
if ξn 6= 0,

exp
[
− exp

(
− r−βn

αn

)]
if ξn = 0,

where ξn, αn and βn are the shape, scale and
location parameters, and 1 + ξn(r − βn)/αn > 0 for
ξn 6= 0.
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Let p∗ be a small upper tail probability and let r ∗n be
the (1− p∗)th quantile of the above GEV
distribution, one has

r ∗n =

{
βn − αn

ξn

{
1− [− ln(1− p∗)]−ξn

}
if ξn 6= 0,

βn − αn ln[− ln(1− p∗)] if ξn = 0.

This is the (approximate) expression for the VaR of
the subsample maximums {rn,i}gi=1.
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To get the VaR for the original returns {rt}, the
following relationship is assumed in the literature:

1− p∗ = P(rn,i ≤ r ∗n ) = P(rt ≤ r ∗n )n,

from which one has

VaR =

{
βn − αn

ξn

{
1− [−n ln(1− p)]−ξn

}
if ξn 6= 0,

βn − αn ln[−n ln(1− p)] if ξn = 0.
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