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Introduction

Within the theory of C∗-algebras, the crossed product construction is long
known as a nearly inexhaustible source of interesting examples. In
particular, certain crossed products are often natural test cases for the
Elliott classification program. Motivated by the increasing importance of
nuclear dimension in the Elliott program, the following question
constitutes the main theme of this talk:

Question

Let A be a C∗-algebra, G a countable group and (α,w) : Gy A a
cocycle action. How does nuclear dimension behave with respect to
passing to the (twisted) crossed product? A Aoα,w G

Answering this question in full generality seems to be far out of reach at
the moment. However, by inventing the concept of Rokhlin dimension,
Hirshberg, Winter and Zacharias have paved the way towards very
satisfactory partial answers. This notion was initially defined for actions of
finite groups and integers, and was also adapted to actions of Zm.

We will discuss a generalization to cocycle actions of residually finite
groups:
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Rokhlin dimension

Definition

Let A be a separable C∗-algebra and G a countable, discrete group and
H ⊂ G a subgroup with finite index. Let (α,w) : Gy A be a cocycle
action. Let d ∈ N be a natural number.

Then α has Rokhlin dimension d
with respect to H, written dimRok(α,H) = d, if d is the smallest number
such that there exist equivariant c.p.c. order zero maps

ϕl : (C(G/H), G-shift) −→ (F∞(A), α∞) (l = 0, . . . , d)

with ϕ0(1) + · · ·+ ϕd(1) = 1.
If no number satisfies this condition, we set dimRok(α,H) :=∞.
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Rokhlin dimension

Definition

Let A be a separable C∗-algebra and G a countable, discrete and residually
finite group. Let σ = (Gn)n be a residually finite approximation of G,
i.e. a decreasing and separating sequence of subgroups with finite index.
We define

dimRok(α, σ) = sup
n∈N

dimRok(α,Gn)

and
dimRok(α) = sup

H⊂finG
dimRok(α,H).

Remark

If G is finite or Zm, the second expression agrees with the previously
known definition.
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Rokhlin dimension

As hinted before, the following permanence properties served as
motivation for introducing Rokhlin dimension:

Theorem (Hirshberg-Winter-Zacharias)

If α : Gy A is a finite group action on a unital C∗-algebra, we have

dim+1
nuc(Aoα G) ≤ dim+1

Rok(α) · dim+1
nuc(A).

Theorem (Hirshberg-Winter-Zacharias)

If A is a unital C∗-algebra and α ∈ Aut(A), we have

dim+1
nuc(Aoα Z) ≤ 2 · dim+1

Rok(α) · dim+1
nuc(A).

Theorem (S)

If α : Zm y A is an action on a unital C∗-algebra, we have

dim+1
nuc(Aoα G) ≤ 2m · dim+1

Rok(α) · dim+1
nuc(A).
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Rokhlin dimension

Here comes the main result of this talk. The following unifies (and in fact
improves some of) the previous estimates:

Theorem (S-Wu-Zacharias)

Let G be a countable, discrete, residually finite group. Let σ be a
residually finite approximation of G. Let A be any C∗-algebra and
(α,w) : Gy A a cocycle action. Then we have

dim+1
nuc(Aoα,w G) ≤ asdim+1(�σG) · dim+1

Rok(α, σ) · dim+1
nuc(A).

The above constant denotes the asymptotic dimension of the so-called box
space of G associated to σ. We shall elaborate in the next part.

Remark

One particular instance of the above inequality is

dim+1
nuc(Aoα,w G) ≤ asdim+1(�sG) · dim+1

Rok(α) · dim+1
nuc(A),

where �sG is a so-called standard box space of G.
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Box spaces

Definition (Roe, Khukhro)

Let G be a countable, discrete and residually finite group. Let σ = (Gn)n
be a residually finite approximation of G. Equip G with a right-invariant,
proper metric d. (e.g. right-invariant word-length metric.)

The box space �σG of G associated to σ is the disjoint union⊔
n∈NG/Gn, endowed with a metric dB such that this metric, when

restricted to some G/Gn, is induced by d under the quotient map
G−� G/Gn, and such that

distdB
(G/Gn, G/Gm) ≥ max {diamdB

(G/Gn), diamdB
(G/Gm)}

for all n,m ∈ N.
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Box spaces

Remark

The previous definition implicitely contains a theorem stating that such a
metric space �σG exists, and is independant (up to coarse equivalence) by
the choices of either d or dB.

Definition

Let σ = (Gn)n be a residually finite approximation of G. We call σ
dominating, if for all subgroups H ⊂ G with finite index, there is some n
such that Gn ⊂ H.

Definition

If σ is dominating, we will call �sG = �σG a standard box space.
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Box spaces

It is known that the coarse structure of �σG encodes important features
of G. We would like to pick out one particular instance of this:

Theorem (Guentner)

�σG has property A if and only if G is amenable.

Theorem (Higson-Roe)

Finite asymptotic dimension implies property A.

Theorem (S-Wu-Zacharias)

Regardless of any choices, one has asdim(�sG) = min
σ

asdim(�σG).

So for what kind of groups do we have asdim(�sG) <∞?
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Box spaces

Example

The box space of a finite group is always coarsely equivalent to a
one-point space, hence it has asymptotic dimension 0.

asdim(�σZm) = m for any σ.

Theorem (S-Wu-Zacharias)

Finitely generated, virtually nilpotent groups G satisfy asdim(�sG) <∞.

Remark

This result has recently been slightly improved by Wu, in that

asdim+1(�σG) ≤ 3`Hir(G)

for every residually finite approximation σ of G.
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Box spaces

When a box space �σG of a residually finite group has finite asymptotic
dimension, one might be tempted to think that this value encodes the
complexity of the group G in some sense with respect to σ. This turns out
to be true, in that the value simultaniously keeps track of both large-scale
geometry and periodic behavior.

The usefulness for our main result comes from the fact that this gives rise
to decay functions with similar properties as found for Z.

Lemma (S-Wu-Zacharias)

Let G be a residually finite group and σ = (Gn)n a residually finite
approximation. Then for every s ∈ N, the statement asdim(�σG) ≤ s is
equivalent to the following condition: For every ε > 0 and M⊂⊂G, there
exists n and functions µ(l) : G→ [0, 1] for l = 0, . . . , s such that

supp(µ(l)) ∩ supp(µ(l))h = ∅ for all l and h ∈ Gn \ {1}.∑s
l=0

∑
h∈Gn

µ(l)(gh) = 1 for all g ∈ G.

Each µ(l) is (M, ε)-flat with respect to left-translation,
i.e. ‖µ(l) − µ(l)(g · )‖∞ ≤ ε for all l and g ∈M .
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Box spaces

Theorem (S-Wu-Zacharias)

For all (α,w) : Gy A and σ, we have

dim+1
nuc(Aoα,w G) ≤ asdim+1(�σG)︸ ︷︷ ︸

s+1

· dim+1
Rok(α, σ)︸ ︷︷ ︸
d+1

· dim+1
nuc(A)︸ ︷︷ ︸
r+1

.

Proof (rough sketch of main theorem for actions)

Let F⊂⊂Aoα,w G and ε > 0. We may pretend that F consists of aug for
certain a ∈ A and g ∈M⊂⊂G. Choose n ∈ N and decay functions
µ(0), . . . , µ(s) according to the Lemma. Define G(l) = supp(µ(l)). Choose
Rokhlin towers ϕ0, . . . , ϕd : (C(G/Gn), G-shift) ↪−→ (F∞(A), α∞).
Consider

Aoα G //

⊕s
l=0 θl ))

(Aoα G)∞

MG(0)(A)⊕ · · · ⊕MG(s)(A)

∑s
l=0

∑d
j=0 σl,j

55

16 / 23



Box spaces

Theorem (S-Wu-Zacharias)

For all (α,w) : Gy A and σ, we have

dim+1
nuc(Aoα,w G) ≤ asdim+1(�σG)︸ ︷︷ ︸

s+1

· dim+1
Rok(α, σ)︸ ︷︷ ︸
d+1

· dim+1
nuc(A)︸ ︷︷ ︸
r+1

.

Proof (rough sketch of main theorem for actions)

Let F⊂⊂Aoα,w G and ε > 0. We may pretend that F consists of aug for
certain a ∈ A and g ∈M⊂⊂G. Choose n ∈ N and decay functions
µ(0), . . . , µ(s) according to the Lemma. Define G(l) = supp(µ(l)). Choose
Rokhlin towers ϕ0, . . . , ϕd : (C(G/Gn), G-shift) ↪−→ (F∞(A), α∞).

Consider
Aoα G //

⊕s
l=0 θl ))

(Aoα G)∞

MG(0)(A)⊕ · · · ⊕MG(s)(A)

∑s
l=0

∑d
j=0 σl,j

55

16 / 23



Box spaces

Theorem (S-Wu-Zacharias)

For all (α,w) : Gy A and σ, we have

dim+1
nuc(Aoα,w G) ≤ asdim+1(�σG)︸ ︷︷ ︸

s+1

· dim+1
Rok(α, σ)︸ ︷︷ ︸
d+1

· dim+1
nuc(A)︸ ︷︷ ︸
r+1

.

Proof (rough sketch of main theorem for actions)

Let F⊂⊂Aoα,w G and ε > 0. We may pretend that F consists of aug for
certain a ∈ A and g ∈M⊂⊂G. Choose n ∈ N and decay functions
µ(0), . . . , µ(s) according to the Lemma. Define G(l) = supp(µ(l)). Choose
Rokhlin towers ϕ0, . . . , ϕd : (C(G/Gn), G-shift) ↪−→ (F∞(A), α∞).
Consider

Aoα G //

⊕s
l=0 θl ))

(Aoα G)∞

MG(0)(A)⊕ · · · ⊕MG(s)(A)

∑s
l=0

∑d
j=0 σl,j

55

16 / 23



Box spaces

Proof (rough sketch continued)

Consider
Aoα G //

⊕s
l=0 θl ))

(Aoα G)∞

MG(0)(A)⊕ · · · ⊕MG(s)(A)

∑s
l=0

∑d
j=0 σl,j

55

Here, the map θl : Aoα G→MG(l)(A) is the c.p.c. cutdown with decay

factor µ(l). Each σl,j : MG(l)(A)→ (Aoα G)∞ is given by

σl,j(eg,h ⊗ a) = ugϕj(χ{1̄G})au
∗
h.

By lengthy computation, check that

Each σl,j is order zero.

If ε > 0 is chosen to be sufficiently small at the beginning, then the
above diagram is an arbitrarily good c.p. approximation of F .

We thus obtain dim+1
nuc(Aoα G) ≤ (s+ 1)(d+ 1)(r + 1).
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Topological actions

Let G be a countable, discrete group and d ∈ N. Let 4dG ⊂ `1(G) be the
set of all probability measures of G supported on at most d+ 1 points. Let
4G =

⋃
d∈N4dG be the set of all finitely supported probability measures.

Note that there is a canonical G-action β on each of these spaces defined
by βg(µ)(A) = µ(g−1A) for all g ∈ G.

Definition (one of many equivalent ones)

Let α : Gy X be an action on a compact metric space. Then α is
amenable if there exist approximately equivariant maps

(X,α) −→ (4G, β).

That is, there exists a net of continuous maps fλ : X →4G such that
‖fλ(αg(x))− βg(fλ(x))‖1 → 0 as λ→∞ for all x ∈ X and g ∈ G.
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Topological actions

Definition (Guentner-Willett-Yu)

Let α : Gy X be an action on a compact metric space and d ∈ N. α is
said to have amenability dimension at most d, written dimam(α) ≤ d, if
there exist approximately equivariant maps

(X,α) −→ (4dG, β).

The amenability dimension dimam(α) is defined to be the smallest such d,
if it exists. Otherwise dimam(α) :=∞.

Theorem (Guentner-Willett-Yu)

For a free action α : Gy X, one has the estimate

dim+1
nuc(C(X) oα G) ≤ dim+1

am(α) · dim+1(X).
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Topological actions

For a topological dynamical system (X,α,G), denote by ᾱ : Gy C(X)
the induced C∗-algebraic action.

Question

Is there a connection between dimam(α) and dimRok(ᾱ)?

This can be answered as follows:

Theorem (S-Wu-Zacharias)

Let σ be a residually finite approximation of G. If α : Gy X is free, one
has the following estimates:

dim+1
Rok(ᾱ) ≤ dim+1

am(α) ≤ asdim+1(�σG) · dim+1
Rok(ᾱ, σ).

In particular, if asdim(�sG) <∞, then α has finite amenability dimension
if and only if ᾱ has finite Rokhlin dimension.
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This can be answered as follows:

Theorem (S-Wu-Zacharias)

Let σ be a residually finite approximation of G. If α : Gy X is free, one
has the following estimates:

dim+1
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Topological actions

Last year, the following result was obtained:

Theorem (S)

If α : Zm y X is a free action on a compact metric space of finite covering
dimension, then dimRok(ᾱ) <∞. Hence dimnuc(C(X) oα Zm) <∞.

Combining

methods developed for the above result (e.g. marker property)

detailed study of amenability dimension

some geometric group theory involving nilpotent groups

this extends to the following setting:

Theorem (S-Wu-Zacharias)

Let G be a finitely generated, nilpotent group. If α : Gy X is a free
action on a compact metric space of finite covering dimension, then both
dimam(α) and dimRok(ᾱ) are finite. In particular, dimnuc(C(X)oα G) has
finite nuclear dimension. (In fact at most 3`Hir(G) · dim+1(X)2 − 1.)
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Thank you for your attention!
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