Property T for locally compact quantum groups

Xiao Chen

Chern Institute of Mathematics, Nankai University
Department of Math. and Stat., University of Alberta

The 6th Northwest Functional Analysis Seminar
April 10-12th, 2015
Banff, Canada

(joint works with Prof. Chi-Keung Ng)
Property T for locally compact groups was first introduced by D. Kazhdan in the 1960s. He used it to show that some lattices are finitely generated. This notion was proved to be very useful and has many equivalent formulations.
Background

- Property T for locally compact groups was first introduced by D. Kazhdan in the 1960s. He used it to show that some lattices are finitely generated. This notion was proved to be very useful and has many equivalent formulations.
- P. Fima partially extended the notion of property T to discrete quantum groups and he showed that discrete quantum groups with property T are of Kac type.
Background

- Property T for locally compact groups was first introduced by D. Kazhdan in the 1960s. He used it to show that some lattices are finitely generated. This notion was proved to be very useful and has many equivalent formulations.
- P. Fima partially extended the notion of property T to discrete quantum groups and he showed that discrete quantum groups with property T are of Kac type.
- D. Kyed and M. Soltan partially generalize some equivalences of property T to discrete quantum groups.
Property T for locally compact groups was first introduced by D. Kazhdan in the 1960s. He used it to show that some lattices are finitely generated. This notion was proved to be very useful and has many equivalent formulations.

- P. Fima partially extended the notion of property T to discrete quantum groups and he showed that discrete quantum groups with property T are of Kac type.
- D. Kyed and M. Soltan partially generalize some equivalences of property T to discrete quantum groups.
- M. Daws, P. Fima, A. Skalski and S. White gave the definition of property T for general locally compact quantum groups, in their paper on the Haagerup property.
Notations and preliminaries on property T:

- If G is a locally compact group and $\mu : G \to \mathcal{L}(\mathcal{H})$ is a continuous unitary representation, then a net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an *almost invariant unit vector (for μ)* if

$$\sup_{t \in K} \|\mu_t(\xi_i) - \xi_i\| \to 0,$$

for any compact subset $K \subseteq G$.

\[\text{X. Chen}\]
Notations and preliminaries on property T:

- If G is a locally compact group and $\mu : G \to \mathcal{L}(\mathcal{H})$ is a continuous unitary representation, then a net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an *almost invariant unit vector (for μ)* if

$$\sup_{t \in K} \| \mu_t(\xi_i) - \xi_i \| \to 0,$$

for any compact subset $K \subseteq G$.

- We denote by $C^*(G)$ (or $C_r^*(G)$) the full (or reduced) group C^*-algebra of G and by π_μ the *-representation of $C^*(G)$ induced by μ.

X. Chen
Notations and preliminaries on property T:

- If G is a locally compact group and $\mu : G \to \mathcal{L}(\mathcal{H})$ is a continuous unitary representation, then a net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an *almost invariant unit vector (for μ)* if

\[
\sup_{t \in K} \| \mu_t(\xi_i) - \xi_i \| \to 0,
\]

for any compact subset $K \subseteq G$.

- We denote by $C^*(G)$ (or $C^*_r(G)$) the full (or reduced) group C^*-algebra of G and by π_μ the $*$-representation of $C^*(G)$ induced by μ.

- 1_G is the trivial one-dimensional representation of G.
Notations and preliminaries on property T:

- If G is a locally compact group and $\mu : G \to \mathcal{L}(\mathcal{H})$ is a continuous unitary representation, then a net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an almost invariant unit vector (for μ) if

$$\sup_{t \in K} \|\mu_t(\xi_i) - \xi_i\| \to 0,$$

for any compact subset $K \subseteq G$.

- We denote by $C^*(G)$ (or $C^*_r(G)$) the full (or reduced) group C^*-algebra of G and by π_μ the *-representation of $C^*(G)$ induced by μ.

- 1_G is the trivial one-dimensional representation of G.

- \hat{G} is the topological space of unitarily equiv. classes of irreducible unitary representations of G.
• G is said to have *property T* if any continuous unitary representation of G that has an almost invariant unit vector actually has an invariant unit vector.
Preliminary

- G is said to have **property T** if any continuous unitary representation of G that has an almost invariant unit vector actually has an invariant unit vector.
- Property T of G is equivalent to:
 - (T1) $C^*(G) \cong \ker \pi_1 G \oplus \mathbb{C}$ canonically.
 - (T2) There exists a minimal projection $p \in M(C^*(G))$ such that $\pi_1 G(p) = 1$.
 - (T3) 1_G is an isolated point in \hat{G}.
 - (T4) All fin. dim. representations in \hat{G} are isolated points.
 - (T5) There exists a fin. dim. representation in \hat{G} which is an isolated point.
Preliminary

• G is said to have **property T** if any continuous unitary representation of G that has an almost invariant unit vector actually has an invariant unit vector.
• Property T of G is equivalent to:

 (T1) \(C^*(G) \cong \ker \pi_1_G \oplus \mathbb{C} \) canonically.

 (T2) \(\exists \) minimal projection $p \in M(C^*(G))$ such that $\pi_1_G(p) = 1$.

 (T3) \(1_G \) is an isolated point in \hat{G}.

 (T4) All fin. dim. representations in \hat{G} are isolated points.

 (T5) \(\exists \) a fin. dim. representation in \hat{G} which is an isolated point.

• The equivalences of property T with (T1)-(T5) for discrete quantum groups are some of the main results in the paper by Kyed and Soltan.
Property T for locally compact quantum groups

Notations and preliminaries on locally compact quantum groups (all tensor product are spatial):

- $(C_0(G), \Delta, \varphi, \psi)$ is the reduced C^*-algebraic presentation of a locally compact quantum group G:
Notations and preliminaries on locally compact quantum groups (all tensor product are spatial):

- \((C_0(G), \Delta, \varphi, \psi)\) is the reduced \(C^*\)-algebraic presentation of a locally compact quantum group \(G\):
 - \(C_0(G)\) is a not necessary commutative \(C^*\)-algebra.
Property T for locally compact quantum groups

Notations and preliminaries on locally compact quantum groups (all tensor product are spatial):

- $(C_0(G), \Delta, \phi, \psi)$ is the reduced C^*-algebraic presentation of a locally compact quantum group G:
 - $C_0(G)$ is a not necessary commutative C^*-algebra.
 - $\Delta : C_0(G) \to M(C_0(G) \otimes C_0(G))$ is the “comultiplication”, i.e. $(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta$

X. Chen
Notations and preliminaries on locally compact quantum groups (all tensor product are spatial):

- $(C_0(G), \Delta, \varphi, \psi)$ is the reduced C^*-algebraic presentation of a locally compact quantum group G:
 - $C_0(G)$ is a not necessary commutative C^*-algebra.
 - $\Delta : C_0(G) \to M(C_0(G) \otimes C_0(G))$ is the “comultiplication”, i.e. $(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta$ s.t. $C_0(G)$ can be recovered from slicing on $\Delta(C_0(G))$ by elements in $C_0(G)^*$.

Notations and preliminaries on locally compact quantum groups
(all tensor product are spatial):

- \((C_0(\mathbb{G}), \Delta, \varphi, \psi) \) is the reduced \(C^* \)-algebraic presentation of a locally compact quantum group \(\mathbb{G} \):
 - \(C_0(\mathbb{G}) \) is a not necessary commutative \(C^* \)-algebra.
 - \(\Delta : C_0(\mathbb{G}) \to M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G})) \) is the “comultiplication”, i.e. \((\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta \) s.t. \(C_0(\mathbb{G}) \) can be recovered from slicing on \(\Delta(C_0(\mathbb{G})) \) by elements in \(C_0(\mathbb{G})^* \).
 - \(\varphi \) is a faithful weight which is left invariant:
 “\((\text{id} \otimes \varphi)\Delta(a) = \varphi(a)1\)” (imprecise) and has faithful \(W^* \)-lift.

- \(\psi \) is a right-invariant weight with faithful \(W^* \)-lift.
Notations and preliminaries on locally compact quantum groups (all tensor product are spatial):

- $(C_0(G), \Delta, \varphi, \psi)$ is the reduced C^*-algebraic presentation of a locally compact quantum group G:
 - $C_0(G)$ is a not necessary commutative C^*-algebra.
 - $\Delta : C_0(G) \to M(C_0(G) \otimes C_0(G))$ is the “comultiplication”, i.e. $(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta$ s.t. $C_0(G)$ can be recovered from slicing on $\Delta(C_0(G))$ by elements in $C_0(G)^*$.
 - φ is a faithful weight which is left invariant: “$(\text{id} \otimes \varphi)\Delta(a) = \varphi(a)1$” (imprecise) and has faithful W^*-lift.
 - ψ is a right-invariant weight with faithful W^*-lift.
Notations and preliminaries on locally compact quantum groups (all tensor product are spatial):

- $(C_0(G), \Delta, \varphi, \psi)$ is the reduced C^*-algebraic presentation of a locally compact quantum group G:
 - $C_0(G)$ is a not necessary commutative C^*-algebra.
 - $\Delta : C_0(G) \to M(C_0(G) \otimes C_0(G))$ is the “comultiplication”, i.e. $(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta$ s.t. $C_0(G)$ can be recovered from slicing on $\Delta(C_0(G))$ by elements in $C_0(G)^*$.
 - φ is a faithful weight which is left invariant: “$(\text{id} \otimes \varphi)\Delta(a) = \varphi(a)1$” (imprecise) and has faithful W^*-lift.
 - ψ is a right-invariant weight with faithful W^*-lift.

- If G is a locally compact group G, then $\Delta(f)(s, t) = f(st)$; $\varphi(f) = \int f(t) d\lambda(t)$ (for $f \in L^1(G) \cap C_0(G)$); ψ is induced by the right Haar measure.

X. Chen
Property T for locally compact quantum groups

- **Unitary corepresentation**: is a unitary $U \in M(\mathcal{K}(\mathfrak{H}) \otimes C_0(\mathbb{G}))$ satisfying $(\text{id} \otimes \Delta)(U) = U_{12} U_{13}$, where $\mathcal{K}(\mathfrak{H})$ is the algebra of all compact operators on \mathfrak{H}.
Property T for locally compact quantum groups

- **Unitary corepresentation**: is a unitary $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(G))$ satisfying $(\text{id} \otimes \Delta)(U) = U_{12}U_{13}$, where $\mathcal{K}(\mathcal{H})$ is the algebra of all compact operators on \mathcal{H}.

- **$1_G \in M(C_0(G))$$**: is the identity corepresentation.
Property T for locally compact quantum groups

- **Unitary corepresentation**: is a unitary $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(\mathbb{G}))$ satisfying $(\text{id} \otimes \Delta)(U) = U_{12}U_{13}$, where $\mathcal{K}(\mathcal{H})$ is the algebra of all compact operators on \mathcal{H}.

- $1_{\mathbb{G}} \in M(C_0(\mathbb{G}))$: is the identity corepresentation.

- $(\lambda_{\mathbb{G}}, L^2(\mathbb{G}))$ is the GNS representation for φ.

X. Chen
Property T for locally compact quantum groups

- **Unitary corepresentation**: is a unitary $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(\mathbb{G}))$ satisfying $(\text{id} \otimes \Delta)(U) = U_{12}U_{13}$, where $\mathcal{K}(\mathcal{H})$ is the algebra of all compact operators on \mathcal{H}.
- $1_{\mathbb{G}} \in M(C_0(\mathbb{G}))$: is the identity corepresentation.
- $(\lambda_{\mathbb{G}}, L^2(\mathbb{G}))$ is the GNS representation for φ.
- $(C^u_0(\widehat{\mathbb{G}}), \Delta^u)$: the universal C^*-bialgebra associated with the dual group $\widehat{\mathbb{G}}$ of \mathbb{G}.
Property T for locally compact quantum groups

- **Unitary corepresentation**: is a unitary $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(\mathbb{G}))$ satisfying $(\text{id} \otimes \Delta)(U) = U_{12}U_{13}$, where $\mathcal{K}(\mathcal{H})$ is the algebra of all compact operators on \mathcal{H}.
- $1_\mathbb{G} \in M(C_0(\mathbb{G}))$: is the identity corepresentation.
- $(\lambda_\mathbb{G}, L^2(\mathbb{G}))$ is the GNS representation for φ.
- $(C_0^u(\hat{\mathbb{G}}), \hat{\Delta}^u)$: the universal C^*-bialgebra associated with the dual group $\hat{\mathbb{G}}$ of \mathbb{G}.
- $V_G^u \in M(C_0^u(\hat{\mathbb{G}}) \otimes C_0(\mathbb{G}))$: is a unitary that implements the bijective correspondence $U \leftrightarrow \pi_U$ between the set of all unitary corepresentations of $C_0(\mathbb{G})$ and the set of all non-degenerate $*$-representations of $C_0^u(\hat{\mathbb{G}})$ through the relation $U = (\pi_U \otimes \text{id})(V_G^u)$.
Some notations and supplementary concerning a C^*-algebra A:

- $\hat{A} \subseteq \text{Rep}(A)$: the set of unitarily equivalent classes of all irreducible representations of A (equipped with Fell topology).

X. Chen

Property T for locally compact quantum groups
Some notations and supplementary concerning a C^*-algebra A:

- $\text{Rep}(A)$: is the set of unitary equivalence classes of non-degenerate $*$-representations of a C^*-algebra A.
Some notations and supplementary concerning a \(C^* \)-algebra \(A \):

- **\(\text{Rep}(A) \)**: is the set of unitary equivalence classes of non-degenerate \(*\)-representations of a \(C^* \)-algebra \(A \).
- If \((\mu, \mathcal{H}), (\nu, \mathcal{K}) \in \text{Rep}(A) \), we say
 - \(\mu \) is *contained* in \(\nu \), denoted by \(\mu \subset \nu \), if there exists an isometry \(V : \mathcal{H} \to \mathcal{K} \) s.t. \(\mu(a) = V^* \nu(a) V \), \(\forall a \in A \);
 - \(\mu \) is *weakly contained* in \(\nu \), denoted by \(\mu \prec \nu \), if \(\ker \nu \subset \ker \mu \).
Some notations and supplementary concerning a C^*-algebra A:

- **$\text{Rep}(A)\!$**: is the set of unitary equivalence classes of non-degenerate \ast-representations of a C^*-algebra A.

- If $(\mu, \mathcal{H}), (\nu, \mathcal{K}) \in \text{Rep}(A)$, we say
 — μ is **contained** in ν, denoted by $\mu \subset \nu$, if there exists an isometry $V : \mathcal{H} \to \mathcal{K}$ s.t. $\mu(a) = V^* \nu(a) V$, $\forall a \in A$;
 — μ is **weakly contained** in ν, denoted by $\mu \prec \nu$, if $\ker \nu \subset \ker \mu$.

- **$\hat{A} \subseteq \text{Rep}(A)$**: the set of unitarily equiv. classes of all irreducible representations of A (equipped with Fell topology).
Lemma

Let A be a C^*-algebra and $(\mu, \mathcal{H}) \in \hat{A}$.

(a) The following statements are equivalent.

1. μ is an isolated point in \hat{A}.
2. $\forall (\pi, \mathcal{K}) \in \text{Rep}(A) \text{ with } \mu \prec \pi$, one has $\mu \subset \pi$.
3. $A = \ker \mu \oplus \bigcap_{\nu \in \hat{A} \setminus \{\mu\}} \ker \nu$.

(b) If $\dim \mathcal{H} < \infty$, then $\{\mu\}$ is a closed subset of \hat{A}.

X. Chen
Property T for locally compact quantum groups

- For any unitary corepresentation $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(G))$,
 (a) $\xi \in \mathcal{H}$ is a U-invariant vector if $U(\xi \otimes \eta) = \xi \otimes \eta$, $\forall \eta \in L^2(G)$.
Property T for locally compact quantum groups

- For any unitary corepresentation $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(G))$,
 (a) $\xi \in \mathcal{H}$ is a U-invariant vector if $U(\xi \otimes \eta) = \xi \otimes \eta$, $\forall \eta \in L^2(G)$.
 (b) A net $\{\xi_i\}_{i \in \mathcal{I}}$ of unit vectors in \mathcal{H} is called an almost U-invariant unit vector if $\|U(\xi_i \otimes \eta) - \xi_i \otimes \eta\| \to 0$, $\forall \eta \in L^2(G)$.
Property T for locally compact quantum groups

- For any unitary corepresentation $U \in \mathcal{M}(\mathcal{K}(\mathcal{H}) \otimes C_0(\mathbb{G}))$,
 (a) $\xi \in \mathcal{H}$ is a U-invariant vector if $U(\xi \otimes \eta) = \xi \otimes \eta$, $\forall \eta \in L^2(\mathbb{G})$.
 (b) A net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an almost U-invariant unit vector if $\|U(\xi_i \otimes \eta) - \xi_i \otimes \eta\| \to 0$, $\forall \eta \in L^2(\mathbb{G})$.
- U has a non-zero invariant vector $\iff \pi_{1\mathbb{G}} \subset \pi_U$;
Property T for locally compact quantum groups

- For any unitary corepresentation $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(G))$,

 (a) $\xi \in \mathcal{H}$ is a \textit{U-invariant vector} if $U(\xi \otimes \eta) = \xi \otimes \eta$, $\forall \eta \in L^2(G)$.

 (b) A net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an \textit{almost U-invariant unit vector} if $\|U(\xi_i \otimes \eta) - \xi_i \otimes \eta\| \to 0$, $\forall \eta \in L^2(G)$.

- U has a non-zero invariant vector $\iff \pi_{1_G} \subset \pi_U$;
- U has almost invariant vectors $\iff \pi_{1_G} \prec \pi_U$.
Property T for locally compact quantum groups

- For any unitary corepresentation $U \in M(\mathcal{K}(\mathcal{H}) \otimes C_0(\mathbb{G}))$,
 (a) $\xi \in \mathcal{H}$ is a U-invariant vector if $U(\xi \otimes \eta) = \xi \otimes \eta$, $\forall \eta \in L^2(\mathbb{G})$.
 (b) A net $\{\xi_i\}_{i \in I}$ of unit vectors in \mathcal{H} is called an almost U-invariant unit vector if $\|U(\xi_i \otimes \eta) - \xi_i \otimes \eta\| \to 0$, $\forall \eta \in L^2(\mathbb{G})$.

- U has a non-zero invariant vector $\iff \pi_{1_G} \subset \pi_U$;
- U has almost invariant vectors $\iff \pi_{1_G} \prec \pi_U$.

Definition

\mathbb{G} is said to have property T if every unitary corepresentation of $C_0(\mathbb{G})$ having an almost invariant unit vector has a non-zero invariant vector.
The following extends some results in the paper by Kyed and Soltan:

Proposition

Property T of a L.C.Q.G. G is equivalent to:

1. $C_u^0(\hat{G}) \cong \ker \pi_1 G \oplus \mathbb{C}$.
2. There exists a projection $p_G \in M(C^u_0(\hat{G}))$ with $p_G C^u_0(\hat{G}) p_G = \mathbb{C} p_G$ and $\pi_1 G (p_G) = 1$.
3. $\pi_1 G$ is an isolated point in $C^u_0(\hat{G})$.
Recall:

Let G be a locally compact group.

- Property T of G is equivalent to:

 (T1) $C^*(G) \cong \ker \pi_{1G} \oplus \mathbb{C}$ canonically.

 (T2) \exists minimal projection $p \in M(C^*(G))$ such that $\pi_{1G}(p) = 1$.

 (T3) 1_{G} is an isolated point in \hat{G}.

 (T4) All fin. dim. representations in \hat{G} are isolated points.

 (T5) \exists a fin. dim. representation in \hat{G} which is an isolated point.

For the corresponding results of (T4) and (T5), we need the notion of “tensor products” and “contragredients” of unitary corepresentations.
• If V is another unitary corepresentation of $C_0(G)$ on a Hilbert space \mathcal{K}, then $U \boxtimes V := U_{13} V_{23} \in M(\mathcal{K}(\mathcal{H} \otimes \mathcal{K}) \otimes C_0(G))$ is a unitary corepresentation called the tensor product of U and V.

Recall that G is of Kac type if its antipode is bounded, or equivalently, \hat{G} is unimodular, that is, the left and right Haar weights of \hat{G} coincide.

Suppose G is of Kac type and $\kappa : C_0(G) \to C_0(G)$ is the antipode. If $\tau : K(\overline{\mathcal{K}}) \to K(\overline{\mathcal{K}})$ is the canonical anti-isomorphism, then $V := (\tau \otimes \kappa)(V) \in M(K(\overline{\mathcal{K}}) \otimes C_0(G))$ is a unitary corepresentation called the contragredient of V.

X. Chen
Property T for locally compact quantum groups

- If V is another unitary corepresentation of $C_0(G)$ on a Hilbert space \mathcal{H}, then $U \boxplus V := U_{13}V_{23} \in M(\mathcal{K}(\mathcal{H} \otimes \mathcal{K}) \otimes C_0(G))$ is a unitary corepresentation called the tensor product of U and V.

- Recall that G is of Kac type if its antipode is bounded, or equivalently, \hat{G} is unimodular, that is, the left and right Haar weights of \hat{G} coincide.
• If V is another unitary corepresentation of $C_0(\mathbb{G})$ on a Hilbert space \mathcal{H}, then $U \bowtie V := U_{13} V_{23} \in M(\mathcal{K}(\mathcal{H} \otimes \mathcal{K}) \otimes C_0(\mathbb{G}))$ is a unitary corepresentation called the tensor product of U and V.

• Recall that \mathbb{G} is of Kac type if its antipode is bounded, or equivalently, $\hat{\mathbb{G}}$ is unimodular, that is, the left and right Haar weights of $\hat{\mathbb{G}}$ coincide.

• Suppose \mathbb{G} is of Kac type and $\kappa : C_0(\mathbb{G}) \rightarrow C_0(\mathbb{G})$ is the antipode. If $\tau : \mathcal{K}(\mathcal{H}) \rightarrow \mathcal{K}(\mathcal{H})$ is the canonical anti-isomorphism, then $\overline{V} := (\tau \otimes \kappa)(V) \in M(\mathcal{K}(\overline{\mathcal{K}}) \otimes C_0(\mathbb{G}))$ is a unitary corepresentation called the contragredient of V.

X. Chen
Property \(T\) for locally compact quantum groups

- We can identify \(\mathcal{H} \otimes \bar{\mathcal{K}}\) with the space of Hilbert-Schmidt operator space \(HS(\mathcal{K}, \mathcal{H})\) from \(\mathcal{K}\) to \(\mathcal{H}\) through a linear isomorphism \(\Phi: \mathcal{H} \otimes \bar{\mathcal{K}} \rightarrow HS(\mathcal{K}, \mathcal{H})\) defined, for all \(\xi \in \mathcal{H}\) and \(\eta \in \mathcal{K}\), by
 \[
 \Phi(\xi \otimes \eta)(\zeta) = \langle \zeta, \eta \rangle \xi \quad (\forall \zeta \in \mathcal{K}),
 \]
 where the inner product on the right is taken in \(\mathcal{K}\). This yields an isomorphism
 \(Ad \Phi: \mathcal{L}(\mathcal{H} \otimes \bar{\mathcal{K}}) \rightarrow \mathcal{L}(HS(\mathcal{K} \otimes \mathcal{H}))\)
 defined by
 \[
 Ad \Phi(T) = \Phi T \Phi^* \quad \text{for all} \quad T \in \mathcal{L}(\mathcal{H} \otimes \bar{\mathcal{K}}).
 \]
We can identify $\mathcal{H} \otimes \bar{\mathcal{K}}$ with the space of Hilbert-Schmidt operator space $HS(\mathcal{K}, \mathcal{H})$ from \mathcal{K} to \mathcal{H} through a linear isomorphism $\Phi : \mathcal{H} \otimes \bar{\mathcal{K}} \rightarrow HS(\mathcal{K}, \mathcal{H})$ defined, for all $\xi \in \mathcal{H}$ and $\eta \in \mathcal{K}$, by $\Phi(\xi \otimes \eta)(\zeta) = \langle \zeta, \eta \rangle \xi$ ($\forall \zeta \in \mathcal{K}$), where the inner product on the right is taken in \mathcal{K}. This yields an isomorphism $\text{Ad } \Phi : \mathcal{L}(\mathcal{H} \otimes \bar{\mathcal{K}}) \rightarrow \mathcal{L}(HS(\mathcal{K} \otimes \mathcal{H}))$ defined by $\text{Ad } \Phi(T) = \Phi T \Phi^*$ for all $T \in \mathcal{L}(\mathcal{H} \otimes \bar{\mathcal{K}})$. Then we have

Lemma

Suppose that G is of Kac type. $T \in \mathcal{H} \otimes \bar{\mathcal{K}}$ is $U \bigoplus \bar{V}$-invariant if and only if $U(T \otimes 1)V^ = T \otimes 1$ (as operators from $\mathcal{K} \otimes L^2(G)$ to $\mathcal{H} \otimes L^2(G)$).*
Property T for locally compact quantum groups

G is a locally compact quantum group of Kac type.

Proposition

$\pi_{1_G} \subset \pi_{U \overline{\otimes} V}$ if and only if there exists a finite dimensional unitary corepresentation W s.t. $\pi_W \subset \pi_U$ and $\pi_W \subset \pi_V$.
Proposition

$\pi_{1_G} \subset \pi_{U \bigcircledast V}$ if and only if there exists a finite dimensional unitary corepresentation. W s.t. $\pi_W \subset \pi_U$ and $\pi_W \subset \pi_V$.

Following the lemmas and propositions above, we obtain

Theorem

Property T of G is also equivalent to the following statements.

(4) All finite dimensional irreducible representations of $C^u_0(\hat{G})$ are isolated points in $C^u_0(\hat{G})$.

(5) $C^u_0(\hat{G}) \cong B \oplus M_n(\mathbb{C})$ for a C^*-algebra B and $n \in \mathbb{N}$.
Next, I will give a non-trivial example of a discrete quantum group with property T.
Examples through bicrossed products

- G : a locally compact group.
Examples through bicrossed products

- G: a locally compact group.
- G_1, G_2: closed subgroups of G s.t. the canonical map from $G_1 \times G_2$ to G is a bijective homeomorphism

\[\gamma : G_1 \times G_2 \to G, \ (g_1, g_2) \mapsto g_1 g_2 \]

onto to an open dense subset Ω of G.
Examples through bicrossed products

- G: a locally compact group.
- G_1, G_2: closed subgroups of G s.t. the canonical map from $G_1 \times G_2$ to G is a bijective homeomorphism

\[\gamma : G_1 \times G_2 \rightarrow G, \ (g_1, g_2) \mapsto g_1 g_2 \]

onto to an open dense subset Ω of G.
- α, β: the canonical continuous actions of G_1 and G_2 on the right coset space $G_1 \backslash G$ and the left coset space G/G_2, respectively, that is,

\[\alpha(s)(G_1 x) = G_1 xs^{-1} \quad \text{and} \quad \beta(t)(xG_2) = txG_2, \]

for all $s \in G_1, t \in G_2, G_1 x \in G/G_1, xG_2 \in G/G_2$.
Examples through bicrossed products

Lemma

There exists a discrete quantum group G (called the bicrossed product of G_1 and G_2) such that $C_0(G) = C_0(G/G_2) \rtimes_{\beta, r} G_2$ and $C_0(\hat{G}) = C_0(G_1 \setminus G) \rtimes_{\alpha, r} G_1$.

Lemma

There exists a discrete quantum group \mathbb{G} (called the bicrossed product of G_1 and G_2) such that $C_0(\mathbb{G}) = C_0(G/G_2) \rtimes_{\beta,r} G_2$ and $C_0(\hat{\mathbb{G}}) = C_0(G_1 \setminus G) \rtimes_{\alpha,r} G_1$.

Then we have the main result in this section.

Theorem

If G_1 is discrete has property T and G_2 is finite, then \mathbb{G} has property T.
It’s well known that, if G is σ-compact, then property T of G is also equivalent to:

(T6) (Delorme-Guichardet Theorem) The first cohomology of G with coefficient in (π, \mathcal{H}) vanishes, i.e., $H^1(G, \pi) = (0)$, for any strongly continuous unitary representation (π, \mathcal{H}) of G.
It’s well known that, if G is σ-compact, then property T of G is also equivalent to:

(T6) (Delorme-Guichardet Theorem) The first cohomology of G with coefficient in (π, \mathcal{H}) vanishes, i.e., $H^1(G, \pi) = (0)$, for any strongly continuous unitary representation (π, \mathcal{H}) of G.

- D. Kyed had generalized the D-G theorem to the discrete quantum groups.
It’s well known that, if G is σ-compact, then property T of G is also equivalent to:

(T6) (Delorme-Guichardet Theorem) The first cohomology of G with coefficient in (π, \mathcal{H}) vanishes, i.e., $H^1(G, \pi) = (0)$, for any strongly continuous unitary representation (π, \mathcal{H}) of G.

- D. Kyed had generalized the D-G theorem to the discrete quantum groups.

For any general locally compact quantum group G,
- Delorme-Guichardet type theorem for G?
A tentative answer

A tentative answer

In short,

1. we obtain a cohomological property for $C_c(G)$ (G is a locally compact group), which coincides with Kyed’s D-G type theorem when G is a discrete group;

In short,

1. we obtain a cohomological property for $C_c(G)$ (G is a locally compact group), which coincides with Kyed’s D-G type theorem when G is a discrete group;

2. we generalize the above property to an arbitrary locally convex *-algebra (such as $C_c(G)$, $L^1(G)$, $M(G)$, $A(G)$, Lau algebra, ...), which is related to the character amenability and some other new concepts;
A tentative answer

In short,

1. we obtain a cohomological property for $C_c(G)$ (G is a locally compact group), which coincides with Kyed’s D-G type theorem when G is a discrete group;

2. we generalize the above property to an arbitrary locally convex \ast-algebra (such as $C_c(G)$, $L^1(G)$, $M(G)$, $A(G)$, Lau algebra, ...), which is related to the character amenability and some other new concepts;

3. an application to the theory of the fixed points.
References

Thank you for your attention!

Email: cxwhsdu@hotmail.com