Vertex-primitive digraphs having vertices with almost equal neighbourhoods

Gabriel Verret

The University of Western Australia

BIRS Prairie Discrete Math Workshop, Banff
August 8th 2015
A digraph Γ on a (finite) set Ω is a binary relation on Ω.
A digraph Γ on a (finite) set Ω is a binary relation on Ω. (In other words, a subset of $\Omega \times \Omega$.)
A digraph Γ on a (finite) set Ω is a binary relation on Ω. (In other words, a subset of $\Omega \times \Omega$.)

Γ may have directed edges, loops, but not multiple edges.
A digraph Γ on a (finite) set Ω is a binary relation on Ω. (In other words, a subset of $\Omega \times \Omega$.)

Γ may have directed edges, loops, but not multiple edges.

Elements of Ω are vertices of Γ.
A digraph Γ on a (finite) set Ω is a binary relation on Ω. (In other words, a subset of $\Omega \times \Omega$.)

Γ may have directed edges, loops, but not multiple edges.

Elements of Ω are vertices of Γ.

The neighbourhood of a vertex v is $\Gamma(v) := \{ u \in \Omega : (v, u) \in \Gamma \}$.
A **digraph** Γ on a (finite) set Ω is a binary relation on Ω. (In other words, a subset of $\Omega \times \Omega$.)

Γ may have directed edges, loops, but not multiple edges.

Elements of Ω are **vertices** of Γ.

The **neighbourhood** of a vertex v is $\Gamma(v) := \{u \in \Omega : (v, u) \in \Gamma\}$.

If Γ is symmetric then we call it a **graph**.
Vertex-transitive digraphs

The automorphism group $\text{Aut}(\Gamma)$ of Γ is the group of permutations of Ω that preserve Γ.
The automorphism group $\text{Aut}(\Gamma)$ of Γ is the group of permutations of Ω that preserve Γ.

Γ is vertex-transitive if, for every $x, y \in \Omega$, there exists an automorphism of Γ mapping x to y.

Note that vertex-transitive digraphs are regular. ($|\Gamma(v)|$ does not depend on v.)
Vertex-transitive digraphs

The automorphism group $\text{Aut}(\Gamma)$ of Γ is the group of permutations of Ω that preserve Γ.

Γ is vertex-transitive if, for every $x, y \in \Omega$, there exists an automorphism of Γ mapping x to y.

For example, $K_{m,n}$ is vertex-transitive if and only if $m = n$.
Vertex-transitive digraphs

The automorphism group $\text{Aut}(\Gamma)$ of Γ is the group of permutations of Ω that preserve Γ.

Γ is vertex-transitive if, for every $x, y \in \Omega$, there exists an automorphism of Γ mapping x to y.

For example, $K_{m,n}$ is vertex-transitive if and only if $m = n$.

Note that vertex-transitive digraphs are regular.
Vertex-transitive digraphs

The automorphism group $\text{Aut}(\Gamma)$ of Γ is the group of permutations of Ω that preserve Γ.

Γ is vertex-transitive if, for every $x, y \in \Omega$, there exists an automorphism of Γ mapping x to y.

For example, $K_{m,n}$ is vertex-transitive if and only if $m = n$.

Note that vertex-transitive digraphs are regular. ($|\Gamma(v)|$ does not depend on v.)
Vertex-primitive digraphs

Γ is vertex-primitive if it is vertex-transitive and $\text{Aut}(\Gamma)$ preserves no nontrivial partition of Ω.

1. Disconnected digraphs are not vertex-primitive.
2. Connected bipartite graphs are not vertex-primitive.
3. K_n is vertex-primitive.
4. C_n is vertex-primitive if and only if n is prime.
Vertex-primitive digraphs

Γ is vertex-primitive if it is vertex-transitive and $\text{Aut}(\Gamma)$ preserves no nontrivial partition of Ω.

Examples

1. Disconnected digraphs are not vertex-primitive.
Vertex-primitive digraphs

Γ is vertex-primitive if it is vertex-transitive and $\text{Aut}(\Gamma)$ preserves no nontrivial partition of Ω.

Examples

1. Disconnected digraphs are not vertex-primitive.
2. Connected bipartite graphs are not vertex-primitive.
Vertex-primitive digraphs

Γ is vertex-primitive if it is vertex-transitive and Aut(Γ) preserves no nontrivial partition of Ω.

Examples

1.Disconnected digraphs are not vertex-primitive.
2. Connected bipartite graphs are not vertex-primitive.
3. K_n is vertex-primitive.
Vertex-primitive digraphs

Γ is vertex-primitive if it is vertex-transitive and \(\text{Aut}(\Gamma) \) preserves no nontrivial partition of \(\Omega \).

Examples

1. Disconnected digraphs are not vertex-primitive.
2. Connected bipartite graphs are not vertex-primitive.
3. \(K_n \) is vertex-primitive.
4. \(C_n \) is vertex-primitive if and only if \(n \) is prime.
Vertex-primitive digraphs

Γ is vertex-primitive if it is vertex-transitive and \(\text{Aut}(\Gamma) \) preserves no nontrivial partition of Ω.

Examples

1.Disconnected digraphs are not vertex-primitive.
2. Connected bipartite graphs are not vertex-primitive.
3. \(K_n \) is vertex-primitive.
4. \(C_n \) is vertex-primitive if and only if \(n \) is prime.

(From now on, \(\Gamma \) will be a vertex-primitive digraph on \(\Omega \).)
Vertex-primitive digraphs

\(\Gamma \) is vertex-primitive if it is vertex-transitive and \(\text{Aut}(\Gamma) \) preserves no nontrivial partition of \(\Omega \).

Examples

1. Disconnected digraphs are not vertex-primitive.
2. Connected bipartite graphs are not vertex-primitive.
3. \(K_n \) is vertex-primitive.
4. \(C_n \) is vertex-primitive if and only if \(n \) is prime.

(From now on, \(\Gamma \) will be a vertex-primitive digraph on \(\Omega \). In particular, it is regular, of valency \(d \).)
A little more notation

Let $\Omega^* := \{(v, v) : v \in \Omega\}$.
A little more notation

Let $\Omega^* := \{(v, v) : v \in \Omega\}$. (The equality relation or, the graph consisting of all loops.)
A little more notation

Let $\Omega^* := \{(v, v) : v \in \Omega\}$. (The equality relation or, the graph consisting of all loops.)

Let Γ_i be the graph on Ω with two vertices being adjacent if the intersection of their neighbourhoods in Γ has size $d - i$.
A little more notation

Let $\Omega^* := \{(v, v) : v \in \Omega \}$. (The equality relation or, the graph consisting of all loops.)

Let Γ_i be the graph on Ω with two vertices being adjacent if the intersection of their neighbourhoods in Γ has size $d - i$.

Note that Γ_i really is a graph, and it is also vertex-primitive.
Let $\Omega^* := \{(v, v) : v \in \Omega\}$. (The equality relation or, the graph consisting of all loops.)

Let Γ_i be the graph on Ω with two vertices being adjacent if the intersection of their neighbourhoods in Γ has size $d - i$.

Note that Γ_i really is a graph, and it is also vertex-primitive.

For example, Γ_0 is the graph with two vertices adjacent if they have the same neighbourhood.
Easy exercise: vertices with the same neighbourhood

Lemma

If Γ is vertex-primitive and $\Gamma_0 \neq \Omega^*$ then $\Gamma = \emptyset$ or $\Gamma = \Omega \times \Omega$.
Lemma

If Γ is vertex-primitive and $\Gamma_0 \neq \Omega^*$ then $\Gamma = \emptyset$ or $\Gamma = \Omega \times \Omega$.

In other words, if a vertex-primitive digraph has two vertices with the same neighbourhood, then it is “trivial”.

Easy exercise: vertices with the same neighbourhood
Easy exercise: vertices with the same neighbourhood

Lemma

If Γ is vertex-primitive and $\Gamma_0 \neq \Omega^*$ then $\Gamma = \emptyset$ or $\Gamma = \Omega \times \Omega$.

In other words, if a vertex-primitive digraph has two vertices with the same neighbourhood, then it is “trivial”.

Proof.

Γ_0 is an equivalence relation preserved by a primitive group. Since $\Gamma_0 \neq \Omega^*$, $\Gamma_0 = \Omega \times \Omega$.
Easy exercise: vertices with the same neighbourhood

Lemma

If Γ is vertex-primitive and $\Gamma_0 \neq \Omega^$ then $\Gamma = \emptyset$ or $\Gamma = \Omega \times \Omega$.***

In other words, if a vertex-primitive digraph has two vertices with the same neighbourhood, then it is “trivial”.

Proof.

Γ_0 is an equivalence relation preserved by a primitive group. Since $\Gamma_0 \neq \Omega^*$, $\Gamma_0 = \Omega \times \Omega$.

If $\Gamma \neq \emptyset$ there exists $(\alpha, \beta) \in \Gamma$. As $\Gamma_0 = \Omega \times \Omega$, all vertices of Γ have the same neighbourhood and thus $\beta \in \Gamma(\omega)$ for every $\omega \in \Omega$ but then vertex-transitivity implies that $\Gamma = \Omega \times \Omega$.

☐
Vertices with almost the same neighbourhood

Question
What if two vertices have neighbourhoods “differing” by only one?
Vertices with almost the same neighbourhood

Question

What if two vertices have neighbourhoods “differing” by only one?

In other words, what if $\Gamma_1 \neq \emptyset$?
Question

What if two vertices have neighbourhoods “differing” by only one?

In other words, what if $\Gamma_1 \neq \emptyset$?

Examples

- K_n.

- Ω^*.

- C_n when n is prime.
Vertices with almost the same neighbourhood

Question
What if two vertices have neighbourhoods “differing” by only one?

In other words, what if $\Gamma_1 \neq \emptyset$?

Examples
- K_n.
- Ω^*.
Vertices with almost the same neighbourhood

Question

What if two vertices have neighbourhoods “differing” by only one?

In other words, what if $\Gamma_1 \neq \emptyset$?

Examples

- K_n.
- Ω^*.
- C_n when n is prime.
Vertices with almost the same neighbourhood

Question
What if two vertices have neighbourhoods “differing” by only one?

In other words, what if $\Gamma_1 \neq \emptyset$?

Examples
- K_n.
- Ω^*.
- C_n when n is prime.

A computer search suggested that, apart from K_n and Ω^*, all examples have prime order.
$\Delta_{11,2,3}$:
Vertices with almost the same neighbourhood

Posted on mathoverflow.net, some interest, but no answer.
Vertices with almost the same neighbourhood

Posted on mathoverflow.net, some interest, but no answer.

Theorem (Spiga, Verret, 2015)

If $\Gamma_1 \neq \emptyset$ then Γ is one of K_n, Ω^* or $\Delta_{p,x,d}$, for some prime p.
A consequence of a more general theorem

Let \(n \) be the order of \(\Gamma \). Let \(\kappa \) be the smallest positive \(i \) such that \(\Gamma^i \neq \emptyset \).
A consequence of a more general theorem

Let n be the order of Γ. Let κ be the smallest positive i such that $\Gamma_i \neq \emptyset$.

Theorem (Spiga, Verret, 2015)

If $\emptyset \neq \Gamma \neq \Omega \times \Omega$, then either

1. $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$ and $(n - 1)(d - \kappa) = d(d - 1)$, or

2. there exists $i \in \{\kappa, \ldots, d - 1\}$ such that Γ_i has valency at least 1 and at most $\kappa^2 + \kappa$.
A consequence of a more general theorem

Let n be the order of Γ. Let κ be the smallest positive i such that $\Gamma_i \neq \emptyset$.

Theorem (Spiga, Verret, 2015)

If $\emptyset \neq \Gamma \neq \Omega \times \Omega$, then either

1. $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$ and $(n - 1)(d - \kappa) = d(d - 1)$, or
2. there exists $i \in \{\kappa, \ldots, d - 1\}$ such that Γ_i has valency at least 1 and at most $\kappa^2 + \kappa$.

The earlier result corresponds to the case $\kappa = 1$ and easily follows.
A consequence of a more general theorem

Let n be the order of Γ. Let κ be the smallest positive i such that $\Gamma_i \neq \emptyset$.

Theorem (Spiga, Verret, 2015)

If $\emptyset \neq \Gamma \neq \Omega \times \Omega$, then either

1. $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$ and $(n - 1)(d - \kappa) = d(d - 1)$, or

2. there exists $i \in \{\kappa, \ldots, d - 1\}$ such that Γ_i has valency at least 1 and at most $\kappa^2 + \kappa$.

The earlier result corresponds to the case $\kappa = 1$ and easily follows.

(In the second case, we use the fact that a cycle is vertex-primitive if and only if it has prime order.)
The case $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$

We can show $n \leq \kappa^2 + \kappa + 1$ (apart from the trivial case $k \in \{1, d\}$).
The case $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$

We can show $n \leq \kappa^2 + \kappa + 1$ (apart from the trivial case $k \in \{1, d\}$).

In particular, for any specific value of κ, this is a “finite” problem,
The case $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$

We can show $n \leq \kappa^2 + \kappa + 1$ (apart from the trivial case $k \in \{1, d\}$).

In particular, for any specific value of κ, this is a “finite” problem, with a somewhat “effective” solution.
Sketch of proof of main theorem

Let \(\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\} \).
Sketch of proof of main theorem

Let $\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\}$.

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega$.
Sketch of proof of main theorem

Let $\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\}$.

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega$.

Case I: $\ell = \kappa$.
Sketch of proof of main theorem

Let \(\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\} \).

We can show that \(\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega \).

Case I : \(\ell = \kappa \).

This implies \(\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega \).
Sketch of proof of main theorem

Let $\ell := \min\{ i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset \}.$

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega.$

Case I: $\ell = \kappa.$

This implies $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega.$

$\mathcal{B} := \{ \Gamma(\alpha) \mid \alpha \in \Omega \}.$
Sketch of proof of main theorem

Let $\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\}$.

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega$.

Case I : $\ell = \kappa$.

This implies $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$.

$\mathcal{B} := \{\Gamma(\alpha) \mid \alpha \in \Omega\}$.

$\mathcal{S} := \{(\alpha, b, b') \mid \alpha \in \Omega, b, b' \in \mathcal{B}, \alpha \in b \cap b', b \neq b'\}$.
Sketch of proof of main theorem

Let $\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\}$.

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega$.

Case I : $\ell = \kappa$.

This implies $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$.

$B := \{\Gamma(\alpha) \mid \alpha \in \Omega\}$.

$S := \{(\alpha, b, b') \mid \alpha \in \Omega, b, b' \in B, \alpha \in b \cap b', b \neq b'\}$.

$$|S| = \sum_{\alpha \in \Omega} |\{(b, b') \mid \alpha \in b \cap b', b \neq b'\}| = \sum_{\alpha \in \Omega} d(d-1) = nd(d-1).$$
Sketch of proof of main theorem

Let $\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\}$.

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega$.

Case I: $\ell = \kappa$.

This implies $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$.

$\mathcal{B} := \{\Gamma(\alpha) \mid \alpha \in \Omega\}$.

$\mathcal{S} := \{(\alpha, b, b') \mid \alpha \in \Omega, b, b' \in \mathcal{B}, \alpha \in b \cap b', b \neq b'\}$.

$$|\mathcal{S}| = \sum_{\alpha \in \Omega} |\{(b, b') \mid \alpha \in b \cap b', b \neq b'\}| = \sum_{\alpha \in \Omega} d(d-1) = nd(d-1).$$

$$|\mathcal{S}| = \sum_{b, b' \in \mathcal{B}, b \neq b'} |b \cap b'| = \sum_{b, b' \in \mathcal{B}, b \neq b'} (d - \kappa) = n(n - 1)(d - \kappa).$$
Sketch of proof of main theorem

Let $\ell := \min\{i \geq \kappa : \Gamma_{i+1} = \Gamma_{i+2} = \cdots = \Gamma_{i+\kappa} = \emptyset\}$.

We can show that $\Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell = \Omega \times \Omega$.

Case I : $\ell = \kappa$.

This implies $\Gamma_0 \cup \Gamma_\kappa = \Omega \times \Omega$.

$\mathcal{B} := \{\Gamma(\alpha) \mid \alpha \in \Omega\}$.

$\mathcal{S} := \{ (\alpha, b, b') \mid \alpha \in \Omega, b, b' \in \mathcal{B}, \alpha \in b \cap b', b \neq b' \}$.

$$|\mathcal{S}| = \sum_{\alpha \in \Omega} |\{(b, b') \mid \alpha \in b \cap b', b \neq b'\}| = \sum_{\alpha \in \Omega} d(d-1) = nd(d-1).$$

$$|\mathcal{S}| = \sum_{b, b' \in \mathcal{B}} |b \cap b'| = \sum_{b, b' \in \mathcal{B}} (d - \kappa) = n(n-1)(d - \kappa).$$

Therefore $(n-1)(d - \kappa) = d(d-1)$.
Case II, $\ell \geq \kappa + 1$

Let $\alpha \in \Omega$ and let $S(\alpha) := \{(\beta, \gamma) \in \Omega \times \Omega : \beta \in \Gamma(\alpha) \cap \Gamma(\gamma)\}$.

A slightly more complicated argument yields:

$$|S(\alpha)| \geq d_2^2 - \ell \left(\ell - 1\right) + \ell - 1 \sum_{i=1}^{\ell - 1} d_i \left(\ell - i\right),$$

where d_i is the valency of Γ_i. From there, we find that, for some i, $d_i \leq \kappa_2^2 + \kappa_2$.
Case II, $\ell \geq \kappa + 1$

Let $\alpha \in \Omega$ and let $S(\alpha) := \{ (\beta, \gamma) \in \Omega \times \Omega : \beta \in \Gamma(\alpha) \cap \Gamma(\gamma) \}$.

$$|S(\alpha)| = \sum_{\beta \in \Gamma(\alpha)} \left| \{ \gamma \in \Omega : \gamma \in \Gamma^{-1}(\beta) \} \right| = \sum_{\beta \in \Gamma(\alpha)} d = d^2.$$
Case II, $\ell \geq \kappa + 1$

Let $\alpha \in \Omega$ and let $S(\alpha) := \{ (\beta, \gamma) \in \Omega \times \Omega : \beta \in \Gamma(\alpha) \cap \Gamma(\gamma) \}$.

$$|S(\alpha)| = \sum_{\beta \in \Gamma(\alpha)} |\{ \gamma \in \Omega : \gamma \in \Gamma^{-1}(\beta) \}| = \sum_{\beta \in \Gamma(\alpha)} d = d^2.$$

A slightly more complicated argument yields:

$$|S(\alpha)| \geq d^2 - \ell(\ell - 1) + \sum_{i=1}^{\ell-1} d_i(\ell - i),$$

where d_i is the valency of Γ_i.

Case II, $\ell \geq \kappa + 1$

Let $\alpha \in \Omega$ and let $S(\alpha) := \{ (\beta, \gamma) \in \Omega \times \Omega : \beta \in \Gamma(\alpha) \cap \Gamma(\gamma) \}$.

$$|S(\alpha)| = \sum_{\beta \in \Gamma(\alpha)} |\{ \gamma \in \Omega : \gamma \in \Gamma^{-1}(\beta) \}| = \sum_{\beta \in \Gamma(\alpha)} d = d^2.$$

A slightly more complicated argument yields:

$$|S(\alpha)| \geq d^2 - \ell(\ell - 1) + \sum_{i=1}^{\ell-1} d_i(\ell - i),$$

where d_i is the valency of Γ_i.

From there, we find that, for some i, $d_i \leq \kappa^2 + \kappa$.

Motivation: synchronising groups

Let G be a permutation group and let f be a map on Ω.
Motivation: synchronising groups

Let G be a permutation group and let f be a map on Ω.

The kernel of f is the partition of Ω into the inverse images of points in the image of f.
Motivation: synchronising groups

Let G be a permutation group and let f be a map on Ω.

The kernel of f is the partition of Ω into the inverse images of points in the image of f.

The kernel type of f is the partition of $|\Omega|$ given by the sizes of the parts of its kernel.
Motivation: synchronising groups

Let G be a permutation group and let f be a map on Ω.

The kernel of f is the partition of Ω into the inverse images of points in the image of f.

The kernel type of f is the partition of $|\Omega|$ given by the sizes of the parts of its kernel.

(For example, if $f(1, 2, 3, 4) = (2, 2, 3, 2)$ then f has kernel type $(1, 3)$.)
Motivation: synchronising groups

Let G be a permutation group and let f be a map on Ω.

The kernel of f is the partition of Ω into the inverse images of points in the image of f.

The kernel type of f is the partition of $|\Omega|$ given by the sizes of the parts of its kernel.

(For example, if $f(1, 2, 3, 4) = (2, 2, 3, 2)$ then f has kernel type $(1, 3)$.)

We say that G synchronises f if the semigroup $\langle G, f \rangle$ contains a constant map, while G is said to be synchronising if G synchronises every non-invertible map on Ω.
Synchronising groups II

(Synchronising \implies primitive) but the converse is not true.
Synchronising groups II

(Synchronising \implies primitive) but the converse is not true.

Theorem (Araújo, Cameron, 2014)

If G is primitive and f has kernel type $(2, 2, 1, \ldots, 1)$, then G synchronises f.

They asked about the case $(3, 2, 1, \ldots, 1)$.

Theorem (Spiga, Verret, 2015)

If G is primitive and f has kernel type $(p, 2, 1, \ldots, 1)$ with $p \geq 2$, then G synchronises f.

This was later proved independently by Araújo, Bentz, Cameron, Royle and Schaefer.
Synchronising groups II

(Synchronising \implies primitive) but the converse is not true.

Theorem (Araújo, Cameron, 2014)

*If G is primitive and f has kernel type $(2, 2, 1, \ldots, 1)$, then G synchronises f."

They asked about the case $(3, 2, 1, \ldots, 1)$.
Synchronising groups II

(Synchronising \implies primitive) but the converse is not true.

Theorem (Araújo, Cameron, 2014)

If G is primitive and f has kernel type $(2, 2, 1, \ldots, 1)$, then G synchronises f.

They asked about the case $(3, 2, 1, \ldots, 1)$.

Theorem (Spiga, Verret, 2015)

If G is primitive and f has kernel type $(p, 2, 1, \ldots, 1)$ with $p \geq 2$, then G synchronises f.

This was later proved independently by Araújo, Bentz, Cameron, Royle and Schaefer.
Synchronising groups II

(Synchronising \implies primitive) but the converse is not true.

Theorem (Araújo, Cameron, 2014)
If G is primitive and f has kernel type $(2, 2, 1, \ldots, 1)$, then G synchronises f.

They asked about the case $(3, 2, 1, \ldots, 1)$.

Theorem (Spiga, Verret, 2015)
If G is primitive and f has kernel type $(p, 2, 1, \ldots, 1)$ with $p \geq 2$, then G synchronises f.

This was later proved independently by Araújo, Bentz, Cameron, Royle and Schaefer.
κ = 2?

It would be interesting to classify vertex-primitive digraphs with κ = 2.
$\kappa = 2$?

It would be interesting to classify vertex-primitive digraphs with $\kappa = 2$. (For its own sake and applications.)
\[\kappa = 2? \]

It would be interesting to classify vertex-primitive digraphs with \(\kappa = 2 \). (For its own sake and applications.)

Using our main theorem, this would require classifying vertex-primitive graphs of valency at most 6.
It would be interesting to classify vertex-primitive digraphs with \(\kappa = 2 \). (For its own sake and applications.)

Using our main theorem, this would require classifying vertex-primitive graphs of valency at most 6. (And a “little” more work.)
κ = 2?

It would be interesting to classify vertex-primitive digraphs with κ = 2. (For its own sake and applications.)

Using our main theorem, this would require classifying vertex-primitive graphs of valency at most 6. (And a “little” more work.)

Vertex-primitive graphs of valency at most 4 are known (Li, Lu, Marušič 2004).
κ = 2?

It would be interesting to classify vertex-primitive digraphs with κ = 2. (For its own sake and applications.)

Using our main theorem, this would require classifying vertex-primitive graphs of valency at most 6. (And a “little” more work.)

Vertex-primitive graphs of valency at most 4 are known (Li, Lu, Marušič 2004).

The valency 5 case is almost done. (Fawcett, Giudicci, Li, Praeger, Royle, Verret.)
It would be interesting to classify vertex-primitive digraphs with \(\kappa = 2 \). (For its own sake and applications.)

Using our main theorem, this would require classifying vertex-primitive graphs of valency at most 6. (And a “little” more work.)

Vertex-primitive graphs of valency at most 4 are known (Li, Lu, Marušič 2004).

The valency 5 case is almost done. (Fawcett, Giudici, Li, Praeger, Royle, Verret.)

The valency 6 case might also be doable, but the “little” work does not seem trivial.