Schur positivity arising from log-concavity problems

Arthur L.B. Yang
joint work with
William Y.C. Chen, Robert L. Tang and Larry X.W. Wang

Center for Combinatorics
Nankai University

August 16th, 2015
Outline

1 Definitions

2 q-Narayana Numbers

3 Narayana polynomials

4 Some Open Problems
Unimodality

Let \(\{a_i\}_{0 \leq i \leq m} \) be a positive sequence of real numbers.

Definition

\(\{a_i\}_{0 \leq i \leq m} \) is **unimodal** if there exists \(k \) such that

\[
a_0 \leq \cdots \leq a_k \geq \cdots \geq a_m,
\]

and is **strictly unimodal** if

\[
a_0 < \cdots < a_k > \cdots > a_m.
\]

Example

For fixed \(m \), \(\{\binom{m}{0}, \binom{m}{1}, \ldots, \binom{m}{m}\} \) is symmetric and unimodal. Furthermore, it is strictly unimodal if \(m \) is even.
Log-concavity

Definition

\{a_i\}_{0 \leq i \leq m} \text{ is log-concave if} \quad a_i^2 \geq a_{i+1}a_{i-1}

for all $1 \leq i \leq m - 1$, and is strictly log-concave if

\[a_i^2 > a_{i+1}a_{i-1}. \]

Remark: A log-concave sequence is unimodal.

Example

For fixed m, \{\binom{m}{0}, \binom{m}{1}, \ldots, \binom{m}{m}\} is strictly log-concave. While \{1, 3, 5, 9, 5, 3, 1\} is unimodal, but not log-concave.
Let $f(q) = a_0 + a_1 q + \cdots + a_m q^m$ be a polynomial with real coefficients.

Definition

$f(q)$ is unimodal (or strictly unimodal) if \{a_i\}_{0 \leq i \leq m} is unimodal (resp. strictly unimodal).

Definition

$f(q)$ is log-concave (or strictly log-concave) if \{a_i\}_{0 \leq i \leq m} is log-concave (resp. strictly log-concave).

Example

Let $\text{des}(\pi)$ denote the number of descents of π. The Eulerian polynomial $A_m(q) = \sum_{\pi \in \mathfrak{S}_m} q^{1+\text{des}(\pi)}$ is strictly log-concave.
Let \(\{f_i(q)\}_{0 \leq i \leq m} \) be a sequence of polynomials with real coefficients.

Definition

For any two polynomials \(f(q) \) and \(g(q) \) with real coefficients, define
\[f(q) \geq_q g(q) \text{ if and only if } f(q) - g(q), \text{ as a polynomial in } q, \text{ has all nonnegative coefficients.} \]

Definition

\(\{f_i(q)\}_{0 \leq i \leq m} \) is **q-log-concave** if
\[f_i(q)^2 \geq_q f_{i+1}(q)f_{i-1}(q), \quad 1 \leq i \leq m - 1, \]

and is **strongly q-log-concave** if
\[f_i(q)f_j(q) \geq_q f_{i+1}(q)f_{j-1}(q), \quad i \geq j \geq 1. \]
q-Log-concavity

Example

The Gaussian binomial coefficients \(\{ \binom{m}{k}_q \}_{0 \leq k \leq m} \) are strongly q-log-concave.

- The q-log-concavity was conjectured by Butler (1987).
- The first proof was given by Butler (1990).
- Krattenthaler (1989) found an alternative combinatorial proof.

Remark: Usually, a q-log-concave sequence is not strongly q-log-concave.

Example

The sequence \(\{ q^2, q + q^2, 1 + 2q + q^2, 4 + q + q^2 \} \) is q-log concave but not strongly q-log concave.
q-Log-convexity

Based on the q-log-concavity, it is natural to define the q-log-convexity.

Definition

\[\{f_i(q)\}_{0 \leq i \leq m} \text{ is } q\text{-log-convex if} \]

\[f_i(q)^2 \leq_q f_{i+1}(q)f_{i-1}(q), \quad 1 \leq i \leq m - 1, \]

and is **strongly q-log-convex if**

\[f_i(q)f_j(q) \leq_q f_{i+1}(q)f_{j-1}(q), \quad i \geq j \geq 1. \]

Example

The sequence

\[\{2q + q^2 + 3q^3, q + 2q^2 + 2q^3, q + 2q^2 + 2q^3, 2q + q^2 + 3q^3\} \]

is q-log-convex, but not strongly q-log-convex.
Let λ be a partition of n.

Definition

*The Young diagram of λ is an array of squares in the plane justified from the top and left corner with $\ell(\lambda)$ rows and λ_i squares in row i.***

Fig 1: The diagram of $(4, 3, 1)$
Semistandard Young Tableau

Definition

A semistandard Young tableau (SSYT) of shape λ/μ is an array $T = (T_{ij})$ of positive integers of shape λ/μ that is weakly increasing in every row and strictly increasing in every column.

The type of T is defined as the composition $\alpha = (\alpha_1, \alpha_2, \ldots)$, where α_i is the number of i’s in T.

```
      1  1  2  3
      2  2  4
      3
```

Fig 2: SSYT of shape $(4, 3, 1)$
If T has type $\text{type}(T) = \alpha$, then we write

$$x^T = x_1^{\alpha_1} x_2^{\alpha_2} \cdots.$$

Definition

The Schur function $s_\lambda(x)$ of shape λ is defined as the generating function

$$s_\lambda(x) = \sum_T x^T,$$

summed over all semistandard Young tableaux T of shape λ. We set $s_\emptyset(x) = 1$.

Schur Positivity

Theorem

The Schur functions $s_{\lambda}(x)$ are symmetric functions, and $\{s_{\lambda}(x) \mid \lambda \vdash n\}$ form a basis of symmetric functions of degree n.

Definition

Given a symmetric function $f(x)$, we say that it is Schur positive if all the coefficients are positive when expanding $f(x)$ in terms of Schur functions.

For a symmetric function $f(x)$, define

$$
ps_n(f) = f(1, q, \ldots, q^{n-1}),
$$

$$
ps_n^1(f) = ps_n(f)|_{q=1} = f(1^n).
$$
Outline

1 Definitions

2 q-Narayana Numbers

3 Narayana polynomials

4 Some Open Problems
The q-Narayana numbers, as a natural q-analogue of the Narayana numbers $N(n, k)$, arise in the study of q-Catalan numbers. The q-Narayana number $N_q(n, k)$ is given by

$$
N_q(n, k) = \frac{1}{[n] [k] [k - 1]} q^{k^2 - k},
$$

where we have adopted the common notation

$$
[k] := (1 - q^k)/(1 - q), \quad [k]! = [1][2] \cdots [k], \quad \begin{bmatrix} n \\ j \end{bmatrix} := \frac{[n]!}{[j]![n-j]!}
$$

for the q-analogues of the integer k, the q-factorial, and the q-binomial coefficient, respectively.
Hook-content Formula

A square \((i, j)\) in \(\lambda\) is the square in row \(i\) from the top and column \(j\) from the left. The hook length \(h(i, j)\), is given by \(\lambda_i + \lambda'_j - i - j + 1\). The content \(c(i, j)\) is given by \(j - i\).

Theorem (Stanley, Studies in Applied Math. (1971))

For any partition \(\lambda\) and \(n \geq 1\), we have

\[
\begin{align*}
\text{ps}_n(s_\lambda) &= q \sum_{k \geq 1} (k-1) \lambda_k \prod_{(i, j) \in \lambda} \frac{[n + c(i, j)]}{[h(i, j)]} \\
\text{ps}^1_n(s_\lambda) &= \prod_{(i, j) \in \lambda} \frac{n + c(i, j)}{h(i, j)}.
\end{align*}
\]
Brändén noticed that the q-Narayana number $N_q(n, k)$ has a Schur function expression by a specialization of the variables.

Theorem (Brändén, Discrete Math. (2004))

For all $n, k \in \mathbb{N}$, we have

$$N_q(n, k) = s_{(2^{k-1})}(q, q^2, \ldots, q^{n-1}).$$

Thus

$$N(n, k) = N_q(n, k)|_{q=1} = s_{(2^k)}(1^{n-1}) = ps_{n-1}1s_{(2^k)}.$$
q-Log-concavity of $N_q(n, k)$ for Fixed n

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

Given an integer n, the sequence $(N_q(n, k))_{k \geq 1}$ of polynomials in q is strongly q-log-concave.

For any $k \geq l \geq 2$,

$$N_q(n, k)N_q(n, l) - N_q(n, k + 1)N_q(n, l - 1) = s(2^{k-1})s(2^{l-1}) - s(2^k)s(2^{l-2}),$$

where the Schur functions are evaluated at the variable set

$\{q, q^2, \ldots, q^{n-1}\}$.

Theorem (Bergeron-McNamara, 2004, arXiv)

For $k \geq 1$ and $a \geq b$, the symmetric function $s(k^a)s(k^b) - s(k^{a+1})s(k^{b-1})$ is Schur positive.

The case of $a = b$ is due to Kirillov (1984), and a different proof was given by Kleber (2001).
q-Log-concavity of $N_q(n, k)$ for Fixed k

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

Given an integer k, the sequence $(N_q(n, k))_{n \geq k}$ is strongly q-log-concave.

Proof. For any $m \geq n \geq k$, the difference

$$N_q(m, k)N_q(n, k) - N_q(m+1, k)N_q(n-1, k)$$

equals

$$q^{k-2}s_{(2k-2,1)}(X_{n-1})s_{(2k-1)}(Z) + q^{2(k-1)(m+n-1)}s_{(2k-2)}(X_{n-1})s_{(2k-1)}(Z^{-1})$$

$$+ q^{k-2} \sum_{J \subseteq (2k-2,1)} s_J(Z) \left(s_{(2k-2,1)}s_{(2k-1)} / J - s_{(2k-2,1)} / J s_{(2k-1)} \right) (X_{n-1})$$

$$+ q^{2(k-1)(m+n-1)}s_{(2k-2)}(X_{n-1})s_{(2k-2,1)}(Z^{-1})s_{(1)}(X_{n-1})$$

$$+ q^{2(k-1)(m+n-1)} \sum_{I \subseteq (2k-2)} s_I(Z^{-1}) \left(s_{(2k-2)}s_{(2k-1)} / I - s_{(2k-2)} / I s_{(2k-1)} \right) (X_{n-1})$$

where $X_r = \{q, q^2, \ldots, q^{r-1}\}$, $X_r^{-1} = \{q^{-1}, q^{-2}, \ldots, q^{-(r-1)}\}$, $Z = \{q^{n-1}, \ldots, q^{m-1}\}$ and $Z^{-1} = \{q^{1-n}, \ldots, q^{1-m}\}$.
q-Log-concavity of $N_q(n, k)$ **for Fixed** k

Given two partitions $\lambda = (\lambda_1, \lambda_2, \ldots)$ and $\mu = (\mu_1, \mu_2, \ldots)$, let

\[
\begin{align*}
\lambda \vee \mu &= (\max(\lambda_1, \mu_1), \max(\lambda_2, \mu_2), \ldots), \\
\lambda \wedge \mu &= (\min(\lambda_1, \mu_1), \min(\lambda_2, \mu_2), \ldots).
\end{align*}
\]

For two skew partitions λ/μ and ν/ρ, we define

\[
\begin{align*}
(\lambda/\mu) \vee (\nu/\rho) &= (\lambda \vee \nu)/(\mu \vee \rho), \\
(\lambda/\mu) \wedge (\nu/\rho) &= (\lambda \wedge \nu)/(\mu \wedge \rho).
\end{align*}
\]

Theorem (Lam-Postnikov-Pylyavaskyy, Amer. J. Math. (2007))

For any two skew partitions λ/μ and ν/ρ, the difference

\[
S(\lambda/\mu) \vee (\nu/\rho) - S(\lambda/\mu) \wedge (\nu/\rho)
\]

is Schur positive.
q-Log-concavity of $N_q(n, k)$ for Fixed k

Corollary

Let k be a positive integer. If I, J are partitions with $I \subseteq (2^{k-1})$ and $J \subseteq (2^{k-1}, 1)$, then both

\[S(2^{k-1})S(2^k)/I - S(2^{k-1})/IS(2^k) \] \hspace{1cm} (1)

and

\[S(2^{k-1}, 1)S(2^k)/J - S(2^{k-1}, 1)/JS(2^k) \] \hspace{1cm} (2)

are Schur positive.

Proof. For (1), take $\lambda = (2^{k-1}), \mu = I, \nu = (2^k)$ and $\rho = \emptyset$. For (2), take $\lambda = (2^{k-1}, 1), \mu = J, \nu = (2^k)$ and $\rho = \emptyset$.

Remark. The q-Log-Concavity of $N_q(n, k)$ for fixed k follows from the above corollary.
Define the operator \mathcal{L} which maps a polynomial sequence $\{f_i(q)\}_{i \geq 0}$ to a polynomial sequence given by

$$\mathcal{L}(f_i(q)) := f_i(q)^2 - f_{i-1}(q)f_{i+1}(q).$$

A sequence $\{f_i(q)\}$ is k-fold q-log-concave if $\mathcal{L}^j(f_i)$ is q-log-concave for $1 \leq j \leq k - 1$.

If $\{f_i(q)\}$ is k-fold log-concave for any k, then it is said to be infinitely q-log-concave.

Conjecture (McNamara and Sagan, Adv. in Appl. Math. (2010))

For fixed k, the Gaussian polynomials $\binom{n}{k}_{n \geq k}$ is infinitely q-log-concave.

Remark. For fixed n, they have shown that $\binom{n}{k}_k$ is not 2-fold q-log-concave.
Connection with a Conjecture of McNamara and Sagan

For fixed k, subscript the \mathcal{L}-operator by n.

$$\mathcal{L}_n\left(\begin{bmatrix} n \\ k \end{bmatrix}\right) = \frac{q^{n-k}}{[n]} \begin{bmatrix} n \\ k-1 \end{bmatrix} \begin{bmatrix} n \\ k \end{bmatrix},$$

which are, up to a power of q, the q-Narayana numbers.

$$\mathcal{L}_n^2\left(\begin{bmatrix} n \\ k \end{bmatrix}\right) = \frac{q^{3n-3k}[2]}{[n][n-1]} \begin{bmatrix} n \\ k \end{bmatrix}^2 \begin{bmatrix} n \\ k-1 \end{bmatrix} \begin{bmatrix} n \\ k-2 \end{bmatrix}.$$

McNamara and Sagan (2010) conjectured that these polynomials are q-nonnegative.
Connection with a Conjecture of McNamara and Sagan

McNamara and Sagan (2010):
“It is not clear that these polynomials are q-nonnegative, although they must be if Conjecture 5.3 is true. Furthermore, when $q = 1$, the triangle made as n and k vary is not in Sloane’s Encyclopedia [24] (although it has now been submitted). We expect that these integers and polynomials have interesting, yet to be discovered, properties.”

Corollary (Chen-Wang-Yang, J. Algebraic Combin. (2010))
For fixed k, the Gaussian polynomials $\binom{n}{k}_{n \geq k}$ is 2-fold q-log-concave.
Further Result

Let \(X_n = \{q, q^2, \ldots, q^{n-1}\} \).

Theorem (King-Yang, preprint)

For any partition \(\lambda \), the polynomial sequence \(\{s_\lambda(X_n)\}_{n \geq 1} \) is strongly \(q \)-log-convex. Namely, for any \(n \geq m \geq 1 \), we have

\[
s_\lambda(X_m) s_\lambda(X_n) - s_\lambda(X_{m-1}) s_\lambda(X_{n+1}) \geq_q 0.
\]

Proof.

\[
s_\lambda(X_m) s_\lambda(X_n) - s_\lambda(X_{m-1}) s_\lambda(X_{n+1}) = \sum_{\rho, \mu: \lambda/\mu = h.s} q^A s_\rho(X_n/X_{m-1}) \left(s_\mu(X_{m-1}^{-1}) s_{\lambda/\rho}(X_{m-1}^{-1}) - s_\lambda(X_{m-1}^{-1}) s_{\mu/\rho}(X_{m-1}^{-1}) \right)
\]

where

\[
A = (n + m - 1)|\lambda| + f(\mu) + f(\lambda).
\]
Schur Positivity

Recall that

$$s_{(\lambda \land \nu)/(\mu \land \rho)} s_{(\lambda \lor \nu)/(\mu \lor \rho)} - s_{\lambda/\mu} s_{\nu/\rho} \geq s_0.$$

If $\nu \subseteq \lambda$ and $\mu \subseteq \rho$ then

$$s_{\lambda/\rho} s_{\nu/\mu} - s_{\lambda/\mu} s_{\nu/\rho} \geq s_0.$$

Setting $\mu = 0$ and then $\nu = \mu$, we find

$$s_{\lambda/\rho} s_{\mu} - s_{\lambda} s_{\mu/\rho} \geq s_0$$

for any $\mu \subseteq \lambda$.
Outline

1. Definitions
2. q-Narayana Numbers
3. Narayana polynomials
4. Some Open Problems
q-Log-convexity of Narayana Polynomials

Narayana polynomial of type A and B are defined respectively as follows:

$$NA_n(q) = \sum_{k=0}^{n} N(n, k)q^k,$$

and

$$NB_n(q) = \sum_{k=0}^{n} \binom{n}{k}^2 q^k.$$

Conjecture (Liu-Wang, Adv. in Appl. Math. (2007))

The polynomials $NA_n(q)$ form a q-log-convex sequence, so do $NB_n(q)$.
q-Log-convexity of Narayana Polynomials

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

The Narayana polynomials $N_{A_n}(q)$ of type A are strongly q-log-convex.

The Narayana polynomials $N_{B_n}(q)$ of type B are q-log-convex.

Idea: q-log-convexity \Rightarrow Schur positivity
Method: regard coefficients as specialization of symmetric functions.
Remark: Zhu (Adv. in Appl. Math., 2013) gave a simple proof of the
q-log-convexity of Narayana polynomials by using the recurrence
relations.
Narayana Polynomials of Type A

\[N(n, k) = N_q(n, k)|_{q=1} = s_{(2^{k-1})}(1^{n-1}) = ps_{n-1}^1 \left(s_{(2^{k-1})} \right). \]

\[[q^r]N_{A_{m+1}}(q)N_{A_{n-1}}(q) = \sum_{k=0}^{r-2} ps_m^1 \left(s_{(2^k)} \right) ps_{n-2}^1 \left(s_{(2^{r-2-k})} \right). \]

\[[q^r]N_{A_{m}}(q)N_{A_{n}}(q) = \sum_{k=0}^{r-2} ps_{m-1}^1 \left(s_{(2^k)} \right) ps_{n-1}^1 \left(s_{(2^{r-2-k})} \right) \]
Narayana Polynomials of Type A

Given $a, b, m \in \mathbb{N}$ and $0 \leq i \leq m$, let

\begin{align*}
D_1(m, i, a, b) &= s_{(2i-b, 1b-a)}s_{(2m-i-1)}, \\
D_2(m, i, a, b) &= s_{(2i-b-1, 1b+2-a)}s_{(2m-i-1)}, \\
D_3(m, i, a, b) &= s_{(2i-b-1, 1b+1-a)}s_{(2m-i-1, 1)},
\end{align*}

$$D(m, i, a, b) = D_1(m, i, a, b) + D_2(m, i, a, b) - D_3(m, i, a, b).$$

The coefficient $[q^r](NA_{m+1}(q)NA_{n-1}(q) - NA_m(q)NA_n(q))$ is equal to

$$p_{n-2}^1 \left(\sum_{0 \leq a \leq b \leq d-1} p_d^1(s_{2a, 1b+1-a}) \sum_{k=0}^{r-2} D(r-2, k, a, b) \right).$$
Schur Positivity

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

For any \(b \geq a \geq 0 \) and \(m \geq 0 \), the symmetric function \(\sum_{i=0}^{m} D(m, i, a, b) \) is Schur positive.

Proof is based on the case of \(a = b = 0 \).
Given a set \(S \) of positive integers, let \(\text{Par}_S(n) \) denote the set of partitions of \(n \) whose parts belong to \(S \).

Theorem (Chen-Wang-Yang, J. Algebraic Combin. (2010))

For any \(m \geq 0 \), we have

\[
\sum_{i=0}^{m} D(m, i, 0, 0) = \sum_{\lambda \in \text{Par}_{\{2,4\}}(2m-2)} s_{\lambda}.
\]

(3)
Schur Positivity

Taking \(m = 3, 4, 5 \) and using the Maple package, we observe that

\[
\begin{align*}
\sum_{k=0}^{3} & \left(s_{2k-1} s_{2^3-k} + s_{2k-2,1} s_{2^3-k} - s_{2k-1,1} s_{2^3-k-1,1} \right) \\
& = s_{4} + s_{2,2}.
\end{align*}
\]

\[
\begin{align*}
\sum_{k=0}^{4} & \left(s_{2k-1} s_{2^4-k} + s_{2k-2,1} s_{2^4-k} - s_{2k-1,1} s_{2^4-k-1,1} \right) \\
& = s_{4,2} + s_{2,2,2}.
\end{align*}
\]

\[
\begin{align*}
\sum_{k=0}^{5} & \left(s_{2k-1} s_{2^5-k} + s_{2k-2,1} s_{2^5-k} - s_{2k-1,1} s_{2^5-k-1,1} \right) \\
& = s_{4,4} + s_{4,2,2} + s_{2,2,2,2}.
\end{align*}
\]

The proof of the above theorem mainly relies on the recurrence relations of summands \(D(m, i, 0, 0) \).

Experiment ⇒ Observation ⇒ Proof
Narayana Polynomials of Type B

When $\lambda = (1^k)$ for $k \geq 1$, the Schur function $s_{\lambda}(x)$ becomes the k-th elementary symmetric function $e_k(x)$, i.e.,

$$s_{(1^k)}(x) = e_k(x) = \sum_{1 \leq i_1 < \cdots < i_k} x_{i_1} \cdots x_{i_k}. \quad (4)$$

$$NB_n(q) = \sum_{k=0}^{n} \binom{n}{k}^2 q^k.$$

$$[q^k](NB_n(q)) = \text{ps}_n^1(e_k^2).$$

$$\text{ps}_n^1(e_k) = \text{ps}_{n-1}^1(e_k + e_{k-1}).$$
Narayana Polynomials of Type B

The coefficient of q^r in $NB_{n-1}(q)NB_{n+1}(q) - (NB_n(q))^2$ is given by

$$\sum_{k=0}^{r} ps_{n-1}^1(e_k)^2 ps_{n+1}^1(e_{r-k})^2 - ps_{n}^1(e_k)^2 ps_{n}^1(e_{r-k})^2.$$

⇓ apply $ps_{n}^1(e_k) = ps_{n-1}^1(e_k + e_{k-1})$ twice.

$$ps_{n-1}^1 \left(\sum_{k=0}^{r} e_k^2 (e_{r-k} + 2e_{r-k-1} + e_{r-k-2})^2 - (e_k + e_{k-1})^2 (e_{r-k} + e_{r-k-1})^2 \right).$$

⇓

$$2 ps_{n-1}^1 \left(\sum_{k=0}^{r} e_{k-1}^2 e_{r-k} + e_{k-2} e_k e_{r-k} - 2e_{k-1} e_k e_{r-k-1} e_{r-k} \right).$$
Narayana Polynomials of Type B

For any $r \geq 1$, we have

$$\sum_{k=0}^{r} \left(e_{k-1}e_{k-1}e_{r-k}e_{r-k} + e_{k-2}e_{k}e_{r-k}e_{r-k} - 2e_{k-1}e_{k}e_{r-k-1}e_{r-k} \right) = \sum_{\lambda} s_{\lambda},$$

where λ sums over all partitions of $2r - 2$ of the form $(4i_4, 3^2i_3, 2^2i_2, 1^2i_1)$ with i_1, i_2, i_3, i_4 being nonnegative integers.

Remark. Proof relies on the Jacobi-Trudi identity.

Theorem (The Jacobi-Trudi identity)

Let λ be a partition with the largest part $\leq n$ and λ' its conjugate. Then

$$s_{\lambda}(x) = \det(e_{\lambda'_i - i + j}(x))_{i,j=1}^{n},$$

where $e_0 = 1$ and $e_k = 0$ for $k < 0$.
Dear Boliya,

I have just seen your paper, with Chen and Wang, about Schur positivity. **Good to see something from you, I did not receive news since long.** I see that you still use ACE, but there is still the problem of recompiling it, so that in particular I can include many more libraries.
Dear Boliya,

I have just seen your paper, with Chen and Wang, about Schur positivity. **Good to see something from you, I did not receive news since long.** I see that you still use ACE, but there is still the problem of recompiling it, so that in particular I can include many more libraries.

A quick look at your article reminds me that there are many things that I did not finish, in particular in my course, the use of symmetrizing operators in symmetric function theory. As an example, I shall take your functions $D(m, r)$ p.9. It is more convenient to transpose partitions.
Outline

1. Definitions
2. q-Narayana Numbers
3. Narayana polynomials
4. Some Open Problems
Longest Increasing Subsequences

Let

\[P_n(q) = \sum_k P_{n,k} q^k, \]

where \(P_{n,k} \) is the number of permutations \(\pi \) on \([n] = \{1, 2, \ldots, n\}\) such that the length of the longest increasing subsequences of \(\pi \) equals \(k \).

Theorem (Baik-Deift-Johansson, J. Amer. Math. Soc. (1999))

The limiting distribution of the coefficients of \(P_n(q) \) is the Tracy-Widom distribution.

The numbers \(P_{n,k} \) can be computed by Gessel’s theorem. Let \(\mathfrak{S}_n \) be the symmetric group on \([n]\), and let \(\text{is}(\pi) \) be the length of the longest increasing subsequences of \(\pi \).
Longest Increasing Subsequences

Define

\[u_k(n) = \#\{w \in \mathfrak{S}_n : \text{is}(w) \leq k\}, \quad (5) \]

\[U_k(q) = \sum_{n \geq 0} u_k(n) \frac{q^{2n}}{n!^2}, \quad k \geq 1, \quad (6) \]

\[l_i(2q) = \sum_{n \geq 0} \frac{q^{2n+i}}{n!(n+i)!}, \quad i \in \mathbb{Z}. \quad (7) \]

Theorem (Gessel, J. Combin. Theory, Ser. A (1990))

\[U_k(q) = \det(l_i-j(2q))_{i,j=1}^k. \]
Longest Increasing Subsequences

Note that $P_{n,k} = u_k(n) - u_{k-1}(n)$ for $n \geq 1$.

\[
P_1(q) = q,
\]
\[
P_2(q) = q + q^2,
\]
\[
P_3(q) = q + 4q^2 + q^3,
\]
\[
P_4(q) = q + 13q^2 + 9q^3 + q^4,
\]
\[
P_5(q) = q + 41q^2 + 61q^3 + 16q^4 + q^5,
\]
\[
P_6(q) = q + 131q^2 + 381q^3 + 181q^4 + 25q^5 + q^6,
\]
\[
P_7(q) = q + 428q^2 + 2332q^3 + 1821q^4 + 421q^5 + 36q^6 + q^7.
\]
Definitions

q-Narayana Numbers

Narayana polynomials

Some Open Problems

Longest Increasing Subsequences

Conjecture

\[P_n(q) \text{ is log-concave for } n \geq 1. \]

Conjecture

\[P_n(q) \text{ is } \infty\text{-log-concave for } n \geq 1. \]

Conjecture

The polynomial sequence \(\{P_n(q)\} \) is strongly \(q \)-log-convex.

Conjecture

The polynomial sequence \(\{P_n(q)\} \) is infinitely \(q \)-log-convex.

These conjectures were proposed by W.Y.C. Chen (unpublished).
Longest Increasing Subsequences

Let $f^{\lambda/\mu}$ denote the number of standard Young tableaux of shape λ/μ. The exponential specialization is a homomorphism $\text{ex} : \Lambda \to \mathbb{Q}[t]$, defined by $\text{ex}(p_n) = t\delta_{1n}$, where p_n is the n-th power sum. Let $\text{ex}_1(f) = \text{ex}(f)_{t=1}$, provided this number is defined. It is known that

$$\text{ex}_1(s_{\lambda/\mu}) = \frac{f^{\lambda/\mu}}{|\lambda/\mu|!}, \quad P_{n,k}^\text{RSK} = \sum_{\lambda \vdash n, \lambda_1 = k} (f^{\lambda})^2.$$

Conjecture

Let

$$f_{n,k} = \sum_{\lambda \vdash n, \lambda_1 = k} s_{\lambda}^2.$$

Then $f_{n,k}^2 - f_{n,k+1}f_{n,k-1}$ is s-positive for $1 \leq k \leq n$.

Remark. This conjecture implies the log-concavity of $P_{n,k}$.
Matchings with Given Crossing Number

Let

\[M_{2n}(q) = \sum_k M_{2n,k} q^k, \]

where \(M_{2n,k} \) is the number of matchings on \([2n]\) with crossing number \(k \).

Let

\[V_k(q) = \sum_{n \geq 0} v_k(n) \frac{q^n}{n!}, \]

where \(v_k(n) \) denotes the number of matchings on \([2n]\) whose crossing number is less than or equal to \(k \).

Theorem (Grabiner-Magyar, J. Algebraic Combin. (1993); Goulden, Discrete Math. (1992))

\[V_k(q) = \det(l_{i-j}(2q) - l_{i+j}(2q))_{i,j=1}^k. \]
Matchings with Given Crossing Number

Note that \(M_{2n,k} = v_k(n) - v_{k-1}(n) \).

\[
\begin{align*}
M_2(q) &= q \\
M_4(q) &= 2q + q^2 \\
M_6(q) &= 5q + 9q^2 + q^3 \\
M_8(q) &= 14q + 70q^2 + 20q^3 + q^4 \\
M_{10}(q) &= 42q + 552q^2 + 315q^3 + 35q^4 + q^5 \\
M_{12}(q) &= 132q + 4587q^2 + 4730q^3 + 891q^4 + 54q^5 + q^6 \\
M_{14}(q) &= 429q + 40469q^2 + 71500q^3 + 20657q^4 + 2002q^5 + 77q^6 + q^7
\end{align*}
\]
Matchings with Given Crossing Number

Chen (unpublished) also made the following conjectures.

<table>
<thead>
<tr>
<th>Conjecture</th>
<th>(M_{2n}(q)) is log-concave for (n \geq 1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjecture</td>
<td>(M_{2n}(q)) is (\infty)-log-concave for (n \geq 1).</td>
</tr>
<tr>
<td>Conjecture</td>
<td>The polynomial sequence ({M_{2n}(q)}) is strongly q-log-convex.</td>
</tr>
<tr>
<td>Conjecture</td>
<td>The polynomial sequence ({M_{2n}(q)}) is infinitely q-log-concavity.</td>
</tr>
</tbody>
</table>
Schur Positivity

It is easy to see that

\[
M_{2n,k}^{\text{RSK}} = \sum_{\lambda \vdash n, \lambda_1 = k} (f^\lambda).
\]

Conjecture

Let

\[
g_{n,k} = \sum_{\lambda \vdash n, \lambda_1 = k} s_\lambda.
\]

Then \(g_{n,k}^2 - g_{n,k+1}g_{n,k-1} \) is s-positive for \(1 \leq k \leq n \).

Remark. This conjecture implies the log-concavity of \(M_{2n,k} \).
More Conjectures

It is well known that the polynomial $s_\lambda(1, q, q^2, \ldots, q^m)$ is unimodal for any m as a polynomial of q.

Using the theory of symmetric functions, it is easy to derive the following result

Theorem

The polynomial $h_m(\{1, q\}^n)$ is log-concave as a polynomial of q. Hence $h_\lambda(\{1, q\}^n)$ is log-concave. Similarly, the result holds for elementary symmetric functions.

Conjecture

The polynomial $s_\lambda(\{1, q\}^n)$ is log-concave as a polynomial of q.
More Conjectures

Fixing a partition λ, let

$$a_k = \sum_{|\mu|=k} s_\mu s_{\lambda/\mu}.$$

The above conjecture can be proved using the following conjecture.

Conjecture

For any $1 \leq k \leq |\lambda|$, we have $a_k^2 - a_{k+1}a_{k-1}$ is s-positive.

In particular, for $\lambda = 2^n$, we conjectured the above result holds. That is, if

$$f_k = \sum_{a=0}^{\lfloor k/2 \rfloor} S[2^a, 1^{k-2a}] S[2^m + a - k, 1^{k-2a}],$$

then the difference

$$f_k^2 - f_{k+1}f_{k-1}$$

is s-positive.
Professor R.C. King observed that a_k has an alternative expression.

Lemma (Littlewood)

Let λ, σ and τ be partitions such that $|\lambda| = |\sigma| + |\tau|$. Then

$$s_\lambda * (s_\sigma s_\tau) = \sum_{\mu \vdash |\sigma|} (s_\mu * s_\sigma)(s_{\lambda/\mu} * s_\tau).$$

Corollary

Let λ be a partition of weight $m = |\lambda|$. Then

$$s_\lambda * (s(k)s(m-k)) = \sum_{\mu \vdash k} s_\mu s_{\lambda/\mu}.$$

where (k) and $(m - k)$ are one part partitions.
Welcome!

Center for Combinatorics, Nankai University
http://www.combinatorics.net.cn
Welcome!

Center for Combinatorics, Nankai University
http://www.combinatorics.net.cn
and
Center for Applied Mathematics, Tianjin University
http://cam.tju.edu.cn
Thanks for your attention!