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The workshop brought together experts and junior mathematicians in various areas of Analysis, Dynam-
ics, Geometry, and Topology where computability and complexity ideas play a key role. Theory of computa-
tion of analytic objects is an emerging field of mathematics which has seen much exciting progress recently.
The talks by the workshop participats outlined the main current directions of study, which we describe below.

1 Computability problems in topology of knots
Two beautiful talks on the subject were given by M. Lackenby (Oxford) and N. Dunfield (UIUC). We briefly
survey the field below.

1.1 Computational complexity of knot genus
A fundamental property of a null-homologous knot K in a closed 3-manifold Y is the minimal genus g(K)
of an embedded surface in Y with boundary K. In the 1960s, Haken used normal surface theory to give an
algorithm which computes g(K), opening the door to a whole subfield and the discovery of algorithms for
determining a wide range of topological properties. However, algorithms based on normal surface theory are
usually exponential-time both in theory and practice [16]. Moreover, in some cases the underlying problems
have been shown to be in complexity classes which are thought to be fundamentally difficult. For example,
consider the following decision problem:

KNOT GENUS. Given an integer g0 and a null-homologous knot K embedded in the 1-skeleton of a trian-
gulation T of a closed 3-manifold, is g(K) ≤ g0?

Agol, Hass, and W. Thurston showed that KNOT GENUS is NP–complete [1], and so has the same compu-
tational complexity as e.g. the Traveling Salesman Problem. The conjecture that P 6= NP thus implies that
there is no algorithm for KNOT GENUS which runs in time polynomial in the size of T .

However, when b1(Y ) = 0, for instance Y = S3, then KNOT GENUS should be considerably easier than
NP–complete, perhaps even solvable in polynomial time. Here are three pieces of evidence for this. First,
as discussed below in Section 1.2, Hirani and Dunfield showed that a closely related but more geometric
problem can be solved in polynomial time when b1(Y ) = 0 despite being NP–complete in general. Second,
Lackenby, using an approach of Agol, has recently proved

Theorem. [(Lackenby 2015)] When b1(Y ) = 0, then KNOT GENUS is in coNP.

The Agol-Lackenby approach uses Gabai’s sutured manifold hierarchies to bound the genus from below.
If P is the class of decision problems for which there are polynomial-time algorithms, then the standard

conjectures are that the known containments P ⊂
(
NP ∩ coNP

)
⊂ NP are all proper. Thus, as KNOT

GENUS is in NP ∩ coNP when b1(Y ) = 0, there is the potential for an algorithm in this special case which
is substantially faster than for an NP-complete problem. Third, using a very different approach relying on
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results in gauge theory and arithmetic geometry, Kuperberg had previously proved that for Y = S3 the g0 = 0
case of KNOT GENUS is in coNP [34].

1.2 Minimal spanning area
Returning to the general setup, let K be a null-homologous knot in a closed 3-manifold Y with no restriction
on b1(Y ). Let M be a simplicial complex triangulating the exterior Y \ int

(
N(K)

)
of K, and assign to

each 2-simplex in M a positive real number which we refer to as its area. Consider the set F of simplicial
maps f 7→ (S, ∂S) → (M,∂M) where S is an orientable surface with boundary and f∗

(
[∂S]

)
generates

the kernel of H1(∂M) → H1(M). Thus, when we collapse ∂M back to K, the image f(S) is a (possibly
non-embedded) surface homologically bounding K. The areas of 2-simplices of M naturally define the area
of each f ∈ F . Consider:

LEAST SPANNING AREA. Given A0 ∈ N and the exterior M of a null-homologous knot K ⊂ Y is there
an f ∈ F with Area(f) ≤ A0?

The work of [1] shows this problem is NP-complete. Despite this, Hirani and Dunfield proved the following,
which made Dunfield conjecture in his talk KNOT GENUS is in P for knots in S3.

Theorem. [19] For manifolds with b1(Y ) = 0, the LEAST SPANNING AREA problem can be solved in
polynomial time.

1.3 Random knots
Dunfield also described his experimental work with a graduate student Malik Obeiden on random prime knots
with 100 to 1,000 crossings, both to probe algorithmic complexity in practice and to better understand the
properties of random knots in the spirt of [21, 20]. Their initial findings give an evidence of linear growth
(with little spread) with respect to crossing number of the following invariants: hyperbolic volume (slope
≈ 2), knot genus (slope ≈ 0.25), and bridge number (slope ≈ 0.15). One pattern that demands explanation:
these knots have triangulations where most of the tetrahedra are “fat” in the hyperbolic structure, that is, have
volumes near that of the regular ideal one.

2 Algorithmic randomness and computable Ergodic theory
D. Hirschfeldt (Chicago) gave a beatiful introduction to Algorithmic Randomness. Building on his talk,
C. Rojas (Andres Bello) and J. Avigad (Carnegie Mellon) described applications of Computability to Ergodic
Theory, which is an area of research relating measurable dynamics to theoretical computer science. Its
general goal is to understand in a precise mathematical way the theoretical simulation and computation of the
long term behavior of dynamical systems. Among the objects describing this limiting behavior, of particular
interest are invariant measures and generic points which provide a complete statistical description of the
system. Their computability and complexity properties – in the sense of theoretical computer science – and
its relationship to the dynamical, geometrical and analytical properties of the system, are the main questions
of the subject. The tools and techniques vary according to the nature of the different systems involved, but
they have all one thing in common: one has to deal with rigorous notions of computability for infinite objects.
This is done in the field known as “Computable Analysis” ([36, 5, 47]). The main idea here being that an
object x is computable if there exists an algorithm (a Turing Machine) which, upon input ε ∈ Q, will produce
a “finite” object describing x at accuracy ε with respect to some suitable notion of distance. In what follows
we recall the most relevant known results on the subject, and state some directions of active research.

2.1 Invariant measures
Computability of invariant measures in the rigorous sense of computable analysis is a very recent topic of
research. One way to prove computability of an invariant measure is to use some known strong statistical
properties of the system, like for example decay of correlations as done in [24]. The algorithms obtained in
this way, however, usually depend on some finite information that might be not known, and therefore they are
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non-uniform. The most general technique to obtain uniform algorithms consists, very roughly speaking, on
finding a list of suitable semi-decidable conditions that together characterize a particular invariant measure of
interest. The computability of this measure then follows from general computability considerations involving
the effectiveness of certain compact sets. These results have the advantage of being simple and quite general
with all the needed assumptions made explicit. They have a wide range of application including several
different classes of systems like hyperbolic systems (see [26]) or rational functions (see [8]). On the other
hand, they are not well suited for a complexity (in time or space) analysis, so it is not clear if they can
be implemented and used in practice. The rigorous framework in which they are proved, however, allows
to see them as a study about the theoretical limits of (Turing-)computation of invariant measures and, in
fact, also negative results can be obtained. For example, there exists computable systems for which every
invariant measure is non-computable (see [26]), and systems having measures of maximal entropy, all of
which are non computable ([8]). There are also examples of computable invariant measures which are a
computable combination of finitely many ergodic measures all of which are non computable (see [31]). An
important direction of research here is the study of the robustness properties of these kind of non computable
phenomena. In [14] it is shown for example that the addition of a small amount of noise at each step of the
evolution of the system is sufficient to destroy the non computability of the ergodic measures – the noise
turns them from non computable into computable. However, a more fine analysis of how persistent can the
non computable phenomenon be, is still lacking. Another important open research direction is the analysis
of the computational resources required to achieve the computation of an invariant measure and the way
this complexity relates to the dynamics. In particular, how sensitive is the computational complexity with
respect to small changes to the dynamics. Some progress was made in [14] where the authors show that for
noisy systems, if the noise itself is not a source of additional complexity, then the invariant measures can be
computed efficiently, namely in time polynomial in the number of bits required to specify the precision of the
computation.

2.2 Effective ergodic theorems, randomness and pseudorandomness
The main question here is to understand the effectiveness of the rate of convergence in the ergodic theorems.
It has long been known that this rate can be arbitrarily slow [33, 32]. However, the point here is not directly
about the speed of convergence, but rather about the information required to algorithmically extract a bound
on this rate [3, 4]. These effective results are important because they allow to obtain more concrete informa-
tion about how the finite structures underlying the ergodic behavior are constructed. For example, they are
useful in developing algorithms to compute points exhibiting good statistical properties ([24, 27]). They have
played a role in recent results in number theory and combinatorics ([2, 44]). They are also important in the
theory of algorithmic randomness ([18]) as a tool to calibrate the degree of randomness required by points in
order to satisfy the ergodic theorem (or other almost everywhere convergence results) with respect to specific
observables. For example, the understanding achieved on the computable content in the ergodic theorem for
ergodic measures versus non ergodic ones, gave rise to a series of results ([45, 46, 23, 25, 28, 40, 7, 22])
culminating in a sharp characterization of generic points in terms of algorithmic randomness.

3 Computability questions in Complex Analysis

3.1 Computability of the Riemann mapping
Theoretical aspects of computability of the Riemann mapping were discussed by I. Binder (Toronto). We
briefly summarize the discussion below.

An open set U in the plane is called lower-computable if there exists a computable sequence of rational
balls whose union exhausts the set U . Similarly, a closed set K is lower-computable if rational balls which
intersect K can be computably enumerated.

Let Ω be a simply-connected proper subdomain of C and let w0 ∈ Ω. The celebrated Riemann Mapping
Theorem states that there exists a unique conformal homeomorphism

g : Ω→ D such that g(w0) = 0 and g′(w0) > 0. (1)
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We will denote f ≡ g−1 : D→ Ω. Hertling showed in [30] that g and f are computable if and only if: Ω is a
lower-computable open set, ∂Ω is a lower-computable closed set, and w0 ∈ Ω is a computable point.

The computational complexity of the Riemann mapping were addressed by Binder, Braverman, and Yam-
polsky in [9]. They showed, in particular:

Theorem. [9] Suppose there is an algorithm A that given a simply-connected domain Ω with a linear-time
computable boundary, a point w0 ∈ Ω withdist(w0, ∂Ω) > 1

2 and a number n, computes 20n digits of the
conformal radius f ′(0)), then we can use one call to A to solve any instance of a #SAT(n) with a linear time
overhead.

In other words, #P is poly-time reducible to computing the conformal radius of a set.

Note, that any algorithm computing values of the uniformization map f will also compute the conformal
radius with the same precision, by Koebe Distortion Theorem. Conversely,

Theorem. [9] There is an algorithm A that computes the uniformizing map in the following sense:
Let Ω be a bounded simply-connected domain, and w0 ∈ Ω. Assume that the boundary of a simply

connected domain Ω, ∂Ω, w0 ∈ Ω, and w ∈ Ω are provided to A by an oracle. Then A computes g(w) with
precision n with complexity PSPACE(n).

Rettinger later observed that the proof of [9] actually gives a better complexity bound, #P .
Binder also described the work [10], in which he, Rojas, and Yampolsky developed the computable ver-

sion of the Carathéodory Theory of prime ends, proving a computable version of the Carathéodory Theorem.
A special case of this theorem states that f continuously extends to the unit circle if and only if ∂Ω is

locally connected. The computable version of this proved in [?] relies on the definition of the Carathéodory
modulus. Namely, a non-decreasing function η(δ) is called the Carathéodory modulus of Ω if η(δ) → 0 as
δ → 0 and if for every crosscut γ with diam(γ) < δ we have diamNγ < η(δ). Here Nγ is the component
of Ω \ γ not containing w0.

It was shown in [10], that the Carathéodory extension of f : D → Ω is computable iff f is computable
and there exists a computable Carathéodory modulus of Ω. Furthermore, it was shown that there exists a
domain Ω with computable Carathéodory modulus but no computable modulus of local connectivity.

3.2 Computational aspects of the conformal mapping: Zipper algorithm
S. Rohde’s (Washington) was based in part on his joint work with Don Marshall. The best known algorithm
for computing the conformal mapping is Zipper algorithm proposed by Marshall [35]. Its convergence was
proven by Rohde and Marshall in [42]. Rohde described the algorithm, together with the related Loewner
equation and conformal welding. He explained how the zipper algorithm can be viewed as a discretization of
the Loewner differential equation, and how this discretization can be implemented to produce an approxima-
tion to a given conformal map as a composition of a large number of conformal maps onto half-planes slit by
a hyperbolic geodesic (or straight line). He sketched the proof of the convergence of the algorithm, a key idea
being the use of Jorgensen’s theorem about the hyperbolic convexity of Euclidean discs in planar domains.

The celebrated Schramm-Loewner Evolution SLE is obtained by using Brownian motion as the driving
function for the Loewner equation. Rohde gave a brief overview of some highlights regarding SLE, some
of their path properties, and a comparison to the corresponding deterministic results. He then proceeded to
the seemingly unrelated topic of Grothendieck dessins d’enfants and the associated Belyi functions: Every
connected graph drawn on the sphere can be realized (up to homeomorphism) as the preimage f−1(L) under
a rational map with at most three critical values (Belyi function), where L is a line segment joining two of
the critical points. In the special case when the graph is a tree (no cycles), one of the critical points can
be normalized to be infinity, and the Belyi function is a polynomial (Shabat polynomial). The computation
of Belyi functions has spurred a lot of research and led to many publications in computational algebra, but
the algebraic methods fail as soon as the degree of the polynomial exceeds about 10. Rohde explained how
the zipper algorithm can be modified to numerically approximate Shabat polynomials and their trees when
the degree is very large (even in the thousands!). The method also allows to re-construct a dendrite from its
lamination, and Rohde illustrated this in the setting of quadratic Julia sets. He then proceeded to a discussion
of random trees, an object of very high current interest: He explained how a bijection between trees and
their Dyck paths leads to the Aldous Continuum Random Tree in the scaling limit, and how this CRT arises
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Figure 1: Zipper algorithm at work: Carleson grid in the unit disk (left) and its image under the Riemann
map inside a “snowflake” domain.

as a building block of the scaling limit of large random maps, the so-called Brownian map. He concluded
by discussing partial results to the existence question of the distributional limit of the Shabat trees when the
degree tends to infinity.

4 Decidability of equivalence problems in topological dynamics

4.1 Decidability of the Thurston equivalence problem
N. Selinger (Stony Brook) spoke about the Thurston equivalence problem for branched covering maps. A
Thurston mapping f : S2 → S2 is a branched covering of a finite topological degree d > 1, and such that
the orbits of the branched points are finite. f is Thurston equivalent to g if there exist homeomorphisms ψ1,
ψ2 : S2 → S2 such that (ψ2)−1 ◦ f ◦ ψ1 = g, and there is an isotopy between ψ1 and ψ2 which does not
move the orbits of the branched points of the coverings. A celebrated theorem of Thurston [17] answers the
question when a Thurston mapping is equivalent to a rational map R : Ĉ → Ĉ. The criterion of Thurston is
formulated in terms of non-existence of certain finite collections of homotopy classes of loops on the sphere,
known as Thurston obstructions.

A question, which had remained open for some time, was whether there exists an algorithm which given a
finite description of the branched covering f can answer whether a rational map R exists or not. We resolved
this long-standing problem in a recent work of M. Braverman, S. Bonnot, and M. Yampolsky [11]. A more
general problem is:
Thurston Equivalence Problem. Is there an algorithm which decides whether two Thurston mappings f
and g are equivalent or not?
N. Selinger and M. Yampolsky [43] we have made significant progress towards resolving this questions by
proving that any Thurston mapping can be constructively canonically geometrized. This allowed them to
partially resolve the problem of comparing two maps, yet complete solution requires further work.

4.2 Conjugacy problem for expanding maps
V. Nekrashevych (Texas A& M) reported on his current work on the conjugacy problem for expanding maps.
Let (X, d) be a compact metric space. A map f : X → X is said to be expanding if there exist ε > 0 and
L > 1 such that d(f(x), f(y)) ≥ Ld(x, y) for all x, y ∈ X such that d(x, y) < ε.

Expanding covering maps f : X → X can be given (modulo topological conjugacy) by a finite amount
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of information. For example, one can use the fact that they are finitely presented: such a map is conjugate to
a quotient of a shift of finite type by an equivalence relation which is also a shift of finite type.

If X is locally connected and connected, then there is also a natural group associated with f : X → X
which is a complete invariant. For t ∈ X consider the tree of preimages Tt with the set of vertices equal
to the (formal) disjoint union of the setsf−n(t) for n ≥ 0. Here a vertex v ∈ f−n(t) is connected to
f(v) ∈ f−(n−1)(t). If γ is a path from t1 to t2, then for every v ∈ f−n(t1) there exists a unique lift γv of γ
by fn starting at v. Denote the end of γv by Sγ(v). Then Sγ : Tt1 → Tt2 is an isomorphism. It also induces
a homeomorphism of the boundaries Sγ : ∂Tt1 → ∂Tt2 .

Fix t ∈ X , and consider two finite sets {v1, v2, . . . , vn} and {u1, u2, . . . , un} of vertices of Tt such that
∂Tt is equal to the disjoint union

⊔n
i=1 ∂Tvi and to the disjoint union

⊔n
i=1 ∂Tui

. Choose paths γi from vi
to ui. Then union of the maps Sγi is a homeomorphism of ∂Tt with itself. Denote by Vf the set of all such
homeomorphisms.

Nekrashevych reported the following result:

Theorem. The set Vf is a group. It is finitely presented, its derived subgroup is simple. It is a complete
invariant of topological conjugacy: two dynamical systems are topologically conjugate if and only if the
corresponding groups are isomorphic as abstract groups.

He then posed a natural question, whether the problem of topological conjugacy of expanding self-coverings
is algorithmically solvable. While the question is open, there is hope that it can be resolved using group-
theoretic methods.

5 Words in linear groups, random walks, automata, and P-recursiveness
I. Pak (UCLA) described his current work with S. Garrabrant. An integer sequence {an} is called polynomi-
ally recursive, or P-recursive, if it satisfies a nontrivial linear recurrence relation of the form

(∗) q0(n)an + q1(n)an−1 + . . .+ qk(n)an−k = 0,

for some qi(x) ∈ Z[x], 0 ≤ i ≤ k. The study of P-recursive sequences plays a major role in modern
Enumerative and Asymptotic Combinatorics. They have D-finite (also called holonomic) generating series

A(t) =

∞∑
n=0

ant
n,

and various asymptotic properties.
Let G be a group and Z[G] denote its group ring. For every g ∈ G and u ∈ Z[G], denote by [g]u the

value of u on g. Let an = [1]un, which denotes the value of un at the identity element. When G = Zk or
G = Fk, the sequence {an} is known to be P-recursive for all u ∈ Z[G]. Maxim Kontsevich asked in 2014
whether {an} is always P-recursive when G ⊆ GL(k,Z). Pak and Garrabrant gave a negative answer to this
question:

Theorem. There exists an element u ∈ Z[SL(4,Z)], such that the sequence {[1]un} is not P-recursive.

Pak described two proofs of the theorem. The first proof is completely self-contained and based on ideas from
computability. Roughly, one gives an explicit construction of a finite state automaton with two stacks and
a non-P-recursive sequence of accepting path lengths. One then converts this automaton into a generating
set S ⊂ SL(4,Z). The key part of the proof is a new combinatorial lemma giving an obstruction to P-
recursiveness.

The second proof is analytic in nature, and is the opposite of being self-contained. The problem is
interpreted in a probabilistic language, a number of advanced and technical results in Analysis, Number
Theory, Probability, and Group Theory are used to derive the theorem.
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6 Other complexity questions in groups with applications
M. Sapir (Vanderbilt) gave a beautiful talk on various computing devices (Turing machines, S-machines,
Minsky machines) used in dealing with algorithmic problems in group theory.

A. Nabutovsky (Toronto) described his joint work with B. Lishak. In his earlier works [39, 37, 38], Nab-
utovsky described the geometric complexity of the space of Riemannian metrics on a manifold of dimension
d ≥ 5 which arises from undecidability of word problem in the fundamental group, and related geometric
complexity phenomena resulting from non-computability in groups. The work with Lishak extends these
results to dimension d = 4. Namely, Nabutovsky and Lishak proved that: 1) There exist infinitely many non-
trivial codimension one “thick” knots in R5; 2) For each closed four-dimensional smooth manifold M and
for each sufficiently small positive ε the set of isometry classes of Riemannian metrics with volume equal to 1
and injectivity radius greather than ε is discon- nected; 4) For each closed four-dimensional PL-manifold M
there exist arbitrarily large values of N such that some two triangulations of M with < N simplices cannot
be connected by any sequence of < M(N) bistellar transformations, where M = 22

2···2

([log2N ] − const
times).

7 Information and communication complexity
A.Garg (Princeton) gave a talk on communication and information complexity. Two-party communication
complexity is the study of how much communication two parties need to exchange to compute a function of
their private inputs. It is one of the few models of computation in which strong unconditional lower bounds
are known and has applications throughout complexity theory, for example to lower bounds on circuits,
streaming algorithms, data structures etc. In the past 5-10 years, the study of information complexity has
greatly advanced the state-of-the-art knowledge about communication complexity. Information complexity is
the study of how much information two parties need to exchange to compute a function of their private inputs.
It has helped in tackling hard questions in communication complexity, for example direct sum and direct
product theorems. The best known direct sum and direct product theorems for randomized communication
complexity are proven via information complexity. Roughly, the current best direct sum theorem [6] says
that the amount of communication required to compute n independent copies of a function is at least Ω(

√
n)

times the amount of communication required for one copy. Furthermore, it has also been proven [15] that
the success probability decays exponentially in n. Such statements are known as direct product theorems.
Improving the known direct sum and direct products theorems is equivalent to the compression question:
whether uninformative conversations can be compressed down to their information content. It is known that
the compression question does not have a positive answer in its full generality [29], but it still largely remains
an open problem. Information complexity also has other applications within communication complexity and
complexity theory in general. For example, it can be used to pin down the exact communication complexity
of disjointness up to low order terms [13]. Also the techniques used for proving direct product theorems in
communication complexity have helped in getting new proofs (and improvements) of the parallel repetition
theorem [41, 12].

8 A complexity theory of constructible functions and sheaves
S. Basu (Purdue) gave a talk on constructible functions and sheaves. Constructible functions and more gener-
ally constructible sheaves play a very important role in algebraic geometry with many applications, including
in theory of D-mocules, algebraic theory of partial differential equations, and even in more applied areas
such as computational geometry and signal processing. In his talk Basu described an approach towards
developing a complexity theory for these objects, which generalizes the Blum-Shub-Smale model over R.
More precisely, he introduced a class of sequences simple constructible sheaves, that could be seen as the
sheaf-theoretic analog of the Blum-Shub-Smale class PR. He also defined a hierarchy of complexity classes
of sheaves mirroring the polynomial hierarchy, PHR in the B-S-S theory. He proved a singly exponential
upper bound on the topological complexity of the sheaves in this hierarchy mirroring a similar result in the
BSS setting. He obtained as a result an algorithm with singly exponential complexity for a sheaf-theoretic
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variant of the real quantifier elimination problem. Finally, he posed the natural sheaf-theoretic analogs of the
classical P vs NP question, and also discussed a connection with Toda’s theorem from discrete complexity
theory in the context of constructible sheaves.
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