Current Density Impedance Imaging with Complete Electrode Model

Alexandru Tamasan
jointly with A. Nachman & J. Veras

University of Central Florida
Work supported by NSF

BIRS Workshop on Hybrid Methods in Imaging, Banff, Canada, June 18, 2015
Outline

In motivation
Hybrid methods in Inverse Problems
Current density based EIT
Acquiring the interior data

The forward problem
The Complete Electrode Model

The Inverse Problem
Characterization of non-uniqueness
Phase retrieval
Restoring uniqueness
A numerical algorithm and experiment
Conclusions
Coupled Physics Imaging Methods

Combine high contrast & high resolution

- **Elastography**: elastic waves & ultrasound/MRI \Rightarrow stiffness
- **Thermo/PhotoAcoustic**: UV light & sound \Rightarrow embedded acoustic sources
- **AcoustoOptics**: light & sound \Rightarrow absorption and scattering

Coupled Physics Electrical Impedance Tomography

- Current density impedance imaging **CDII**: Joy & Nachman since 2002, Seo et al. 2002
- **MREIT** (B_z-methods): Seo et al. since 2003
- Impedance acoustic: Scherzer et al. 2009
- Lorentz force driven EIT: Ammari et al. since 2013
- ...
Interpretation of the voltage potential along \(\Gamma \)

Interior measurement of the magnitude of the current density

Reconstruction
Current density tracing inside an object

Figure: Courtesy: Joy’s group, U Toronto
Magnetic resonance data: \(M : \Omega \to \mathbb{C} \)

\[
M_{\pm}(x, y, z_0) = M(x, y, z_0) \exp(\pm i \gamma B_z(x, y, z_0) T + i \varphi_0)
\]
Aquiring the interior data

One MR scan ⇒ longitudinal component B_z (along gantry) of the magnetic field $\mathbf{B} = (B_x, B_y, B_z)$

$$B_z(x, y, z_0) = \frac{1}{2\gamma T} \Im \log \left(\frac{M_+(x, y, z_0)}{M_-(x, y, z_0)} \right)$$

- MREIT (Seo at al. since 2003): Does B_z uniquely determine the electrical conductivity? In general, not known.
- CDII (Nachman et al since 2002, Seo (2002)) : + two rotation of the object

$$\Rightarrow \mathbf{B} \Rightarrow \mathbf{J} = \frac{1}{\mu_0} \nabla \times \mathbf{B}$$

- Anisotropic case: Bal & Monard (2013), unique determination Hoell-Moradifam-Nachman (2014, within conformal class)

Today: the magnitude $|\mathbf{J}|$ is assumed known inside.
Outline

In motivation
 Hybrid methods in Inverse Problems
 Current density based EIT
 Acquiring the interior data

The forward problem
 The Complete Electrode Model

The Inverse Problem
 Characterization of non-uniqueness
 Phase retrieval
 Restoring uniqueness
 A numerical algorithm and experiment
 Conclusions
Complete Electrode Model
(Somersalo-Cheney-Isaacson ’92)

\(\Omega \subset \mathbb{R}^n \) bounded with Lipschitz boundary \(\partial \Omega \),
\(N + 1 \) electrodes: \(e_k \subset \partial \Omega, \ k = 0, ..., N, \)
\(\epsilon \leq \text{Re}\{\sigma}\leq 1/\epsilon, \)
\(\epsilon \leq \text{Re}\{z_k\} \leq 1/\epsilon, \ k = 0, 1, ..., N, \)

\[\nabla \cdot \sigma \nabla u = 0, \text{ in } \Omega, \]

\[u + z_k \sigma \frac{\partial u}{\partial \nu} \equiv \text{const} = U_k \text{ on } e_k, \text{ for } k = 0, ..., N, \]

\[\int_{e_k} \sigma \frac{\partial u}{\partial \nu} \, ds = l_k, \text{ for } k = 0, ..., N, \]

\[\frac{\partial u}{\partial \nu} = 0, \text{ on } \partial \Omega \setminus \bigcup_{k=0}^{N} e_k, \]
Forward problem (CEM) is well posed

Based on Lax-Milgram lemma:

Theorem (Somersalo- Cheney- Isaacson ’92) Provided

\[
\sum_{k=0}^{N} I_k = 0,
\]

there is a unique solution \(\langle u(x), (U_0, \ldots, U_N) \rangle \in H^1(\Omega) \times \mathbb{C}^{N+1} \)
up to a constant.
Normalization

Uniqueness up to a constant:
\[\langle u(x) + c, (U_0 + c, \ldots, U_N + c) \rangle \] also a solution.

\[\nabla \cdot \sigma \nabla (u + c) = 0, \quad \text{in } \Omega, \]

\[(u + c) + z_k \sigma \frac{\partial (u + c)}{\partial \nu} \equiv \text{const} = U_k + c \quad \text{on } e_k, \quad \text{for } k = 0, \ldots, N, \]

\[\int_{e_k} \sigma \frac{\partial (u + c)}{\partial \nu} ds = I_k, \quad \text{for } k = 0, \ldots, N, \]

\[\frac{\partial (u + c)}{\partial \nu} = 0, \quad \text{on } \partial \Omega \setminus \bigcup_{k=0}^{N} e_k, \]

Normalization: fix a constant by seeking \(\mathbf{U} = (U_0, \ldots, U_N) \) with \(\sum_{k=0}^{N} U_k = 0. \)
New properties in the real valued case

\[\sigma(x), z_0(x), ..., z_N(x) \in \mathbb{R} \]

\[\mathbf{U} \in \Pi := \left\{ (U_0, ..., U_N) \in \mathbb{R}^{N+1} : \sum_{k=0}^{N} U_k = 0 \right\} \]

- Maximum Principle for CEM: The maximum and minimum of the voltage potential \(u \) occur on the electrodes.

- A Poicaré Inequality (not necessarily connected with CEM): \(\exists C > 0 \) dependent only on \(\Omega \) and \(e_k \subset \partial \Omega \) such that \(\forall u \in H^1(\Omega) \) and \(\forall \mathbf{U} = (U_0, ..., U_N) \in \Pi : \)

\[
\int_{\Omega} u^2 + \sum_{k=0}^{N} U_k^2 \leq C \left(\int_{\Omega} |\nabla u|^2 \, dx + \sum_{k=0}^{N} \int_{e_k} (u - U_k)^2 \, ds \right)
\]
The Dirichlet principle for the CEM

Consider the functional

$$F_{\sigma}(u, U) := \frac{1}{2} \int_{\partial \Omega} \sigma |\nabla u|^2 \, dx + \frac{1}{2} \sum_{k=0}^{N} \int_{e_k} \frac{1}{z_k} (u - U_k)^2 \, ds - \sum_{k=0}^{N} I_k U_k.$$

Recall $\Omega, \Pi, e_k \subset \partial \Omega, z_k, \text{ for } k = 0, \ldots, N, \sigma, \text{ and}$

$$\sum_{k=0}^{N} I_k = 0 \quad (\ast)$$

Theorem (Nachman-T-Veras ’14)

(i) Independently of (\ast):

$$\exists! \ (u, U) = \arg\min_{H^1(\Omega) \times \Pi} F_{\sigma}$$

(ii) If (\ast) holds:

$$(u, U) = \arg\min_{H^1(\Omega) \times \Pi} F_{\sigma} \Leftrightarrow (u, U) \text{ solves CEM}$$
Formulation of an Inverse Problem

Given: Ω, $e_k \subset \partial\Omega$ with $z_k > 0$, and I_1, \ldots, I_N, (then $I_0 := -\sum_{k=1}^{N} I_k$), and $|\mathbf{J}| = \sigma |\nabla u|$ inside Ω,

Find σ.
Formulation of an Inverse Problem

Given: Ω, $e_k \subset \partial \Omega$ with $z_k > 0$, and $I_k, k = 1, \ldots, N$ (then $l_0 := -\sum_{k=1}^{N} I_k$), and $|J| = \sigma |\nabla u|$ inside,

Find σ.

Not possible:
$\Omega = (0, 1) \times (0, 1)$,
Top side: e_1 with $z_1 > 0$, inject $I_1 = 1$
Bottom side: e_0 with $z_0 = z_1 + 1$, extract $l_0 = -1$
Measure the magnitude $|J| \equiv 1$ inside.

Arbitrary $\varphi : [0, 1] \to [\varphi(0), \varphi(1)]$ increasing, Lipschitz with $\varphi(0) + \varphi(1) = 1$.

Then: $u_\varphi(x, y) := \varphi(y)$ voltage for $\sigma_\varphi(x, y) = 1/\varphi'(y)$.
Yet for all such φ,

$$\sigma_\varphi |\nabla u_\varphi| \equiv 1!$$
Generic non-uniqueness

Let \((u, U) \in H^1(\Omega) \times \Pi\) be the solution of CEM for some \(\sigma\).
\(\varphi \in Lip(u(\overline{\Omega}))\) be an increasing function of one variable,
\(\varphi(t) = t + c_k\) whenever \(t \in u(e_k)\), for each \(k = 0, \ldots, N\), and
constants \(c_k\) satisfying \(\sum_{k=0}^{N} c_k = 0\). Then

\[
u \varphi := \varphi \circ u \tag{1}\]

is a voltage potential for CEM with

\[
\sigma \varphi := \frac{\sigma}{\varphi' \circ u}, \tag{2}
\]

and has the same interior data

\[
\sigma |\nabla u| = \sigma \varphi |\nabla u \varphi|. \]
Theorem (Nachman-T-Veras ’14) Recall assumptions on \(\Omega \subset \mathbb{R}^d\) be bounded, connected \(C^{1,\alpha}\), \(e_k \subset \partial\Omega\), \(z_k > 0\), \(I_k\), \(k = 0, \ldots, N\).

Let \((u, U), (v, V) \in H^1(\Omega) \times \Pi\), be the CEM solutions for unknown conductivities \(\sigma, \tilde{\sigma} \in C^{\alpha}(\Omega)\) with

\[
|J| := \sigma|\nabla u| = \tilde{\sigma}|\nabla v| > 0 \text{ a.e. in } \Omega.
\]

Then \(\exists \varphi \in C^1(u(\Omega))\), with \(\varphi'(t) > 0\) a.e. in \(\Omega\), such that

\[
v = \varphi \circ u, \quad \text{in } \Omega,
\]

\[
\tilde{\sigma} = \frac{\sigma}{\varphi' \circ u}, \quad \text{a.e. in } \Omega.
\]

Moreover, for each \(k = 0, \ldots, N\) and \(t \in v(e_k)\),

\[
\varphi(t) = t + (U_k - V_k).
\]
Idea: reduction to a minimization problem

Inverse hybrid problem: Consider

\[G_{||J||}(v, V) = \int_{\Omega} |J| |\nabla v| dx + \frac{1}{2} \sum_{k=0}^{N} \int_{e_k} \frac{1}{z_k} (v - V_k)^2 ds - \sum_{k=0}^{N} I_k V_k, \]

- solutions of CEM are global minimizers of \(G_{||J||} \) over \(H^1(\Omega) \times \Pi \).
- Geometry of the equipotential sets are uniquely determined! Contrast with Dirichlet

Contrast with functional in the forward model

\[F_\sigma(v, V) := \frac{1}{2} \int_{\partial\Omega} \sigma|\nabla v|^2 dx + \frac{1}{2} \sum_{k=0}^{N} \int_{e_k} \frac{1}{z_k} (v - V_k)^2 ds - \sum_{k=0}^{N} I_k V_k. \]
Corollaries

- **Phase retrieval** (Nachman-T-Veras’14) Same hypotheses (recall).

 \[|J| = |	ilde{J}| \Rightarrow J = \tilde{J}. \]

- There is uniqueness (and a reconstruction method) from the magnitudes of **two** currents via a local formula (Nachman et al., Lee 2004)

- The J-substitution algorithm via magnitudes of **two** currents (Seo et al 2002) converges to the unique solution.
Knowledge of the potential on a boundary curve joining the electrodes restores uniqueness

Theorem (Nachman-T-Veras ’14) In addition to the hypotheses of the characterization theorem if

\[u|_\Gamma = \tilde{u}|_\Gamma + C, \]

for some \(C \), and \(\Gamma \) a curve joining the electrodes, then

\[u = \tilde{u} + C \text{ in } \overline{\Omega}, \]
\[\sigma = \tilde{\sigma} \text{ in } \Omega. \]
A minimization algorithm for G

$$G_J(v, V) = \int_\Omega |J| |\nabla v| dx + \sum_{k=0}^{N} \int_{e_k} \frac{1}{2z_k} (v - V_k)^2 ds - \sum_{k=0}^{N} I_k V_k,$$

Lemma Assume that $v \in H^1(\Omega)$ satisfies

$$\epsilon \leq \frac{a}{|\nabla v|} \leq \frac{1}{\epsilon},$$

for some $\epsilon > 0$, and let $(u, U) \in H^1(\Omega) \times \Pi$ be the unique solution for CEM with $\sigma := a/|\nabla v|$. Then

$$G_a(u, U) \leq G_a(v, V), \quad \text{for all } V \in \Pi.$$

Moreover, if equality holds then $(u, U) = (v, V)$.
A minimization algorithm

- With σ_n given: Solve CEM for the unique solution (u_n, U^n);
- If
 \[
 \text{essinf} \| \nabla u_n - \nabla u_{n-1} \| > \delta \frac{\epsilon}{\text{essinf} |J|},
 \]
 update
 \[
 \sigma_{n+1} := \min \left\{ \max \left\{ \frac{|J|}{|\nabla u_n|}, \epsilon \right\}, \frac{1}{\epsilon} \right\}
 \]
 and repeat;
- else STOP.

Enough for the phase retrieval:
\[
J \approx |J| \frac{\nabla u_n}{|\nabla u_n|}
\]
Using the voltage on Γ

Let n be the last iteration and set

$$\sigma_{n+1} := \frac{|J|}{\nabla u_n}.$$

The Characterization Theorem

$$\Rightarrow u(x) \approx f(u_n(x)).$$

Read off the measured data on Γ to determine the scaling function $f : u(\Gamma) \rightarrow u_n(\Gamma)$.

Then

$$\sigma(x) \approx \frac{1}{f'(u_n(x))}\sigma_{n+1}(x).$$
Reconstruction results in a numerical experiment

\[1 \text{S/m} \leq \sigma \leq 1.8 \text{S/m}, \quad -l_0 = l_1 = 3 \text{mA}, \quad z_0 = z_1 = 8.3 \text{mV} \cdot \text{m}^2 \]

Figure: Exact conductivity (left) vs. reconstructed conductivity (right)
Voltage potential scaling along Γ

Figure: The scaling function f and its derivative.
Figure: L^2-Error: Understood from the stability in the linearized case Kuchment & Steinhauer (2011), Bal (2012)
Some learnings

► in the more realistic CEM, the magnitude of one current density by itself cannot determine an isotropic conductivity
► the magnitude of two currents uniquely determine the conductivity (up to an additive constant)
► in the isotropic case: the phase of the current is uniquely determined from its magnitude (not known in the anisotropic case)
► knowledge of the voltage potential along a curve restores uniqueness
► the method is constructive

Thank you!