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Attractors for nonautonomous random dynamical systems

This work started with the study of the stardard model for the
stochastic resonance: which is the RDS version of the phenomenon?

dx =
(
αx − βx3

)
dt +A cos νt dt + σdWt α, β, σ > 0, x ∈ R

(Wt)t∈R Gaussian noise

We define a framework for random dynamical systems with a
nonautonomous deterministic component (nonautonomous RDS)
and in this setting we give definitions and results for dynamical
entities such as global random attactors.

We describe the stochastic resonance as a nonautonomous RDS.

We show that the SR has a global random attractor and it is a
random periodic orbit.

We propose an indicator for the resonant regime which is naturally
derived from the dynamical properties of RDS.
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Attractors for nonautonomous random dynamical systems

Definition

For random systems with a nonautonomous deterministic component, the
dynamics depends on the initial time: in the definition of nonautonomous
RDS, we keep the standard model for the evolution of noise and we add
to the cocycle a variable accounting for the initial time.

Model of noise

Given a probability space (Ω,F ,P); a time set T (R,R+ or Z); a
(B(T)⊗F ,F)-measurable function θ : T× Ω→ Ω is called a ergodic
dynamical system if the following four conditions are fulfilled.

(i) Initial value condition: θ0ω = ω.
(ii) Group property: θt+sω = θt(θsω).
(iii) Invariance: P(θtA) = P(A).
(iv) Ergodicity: θtA = A =⇒ P(A) ∈ {0, 1}.
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Model for the dynamics

Let X = Rd . Then

Φ : T× T×Ω× X → X , (B(T)⊗ B(T)⊗F ⊗ B(X ),B(X ))-measurable,
is a mapping with the cocycle properties:

(i) Φ(0, τ, ω, x) = x for all τ ∈ T, ω ∈ Ω and x ∈ X ,
(ii) Φ(t + s, τ, ω, x) = Φ(t, τ + s, θsω,Φ(s, τ, ω, x)) for all t, s, τ ∈ T,

ω ∈ Ω and x ∈ X .

We will indifferently write Φ(t + s, τ, ω, x) and Φ(t + s, τ, ω)x .



Periodic random dynamical system

A special case of nonautonomous RDS is a periodic RDS. We say that
the RDS is periodic if there exists a number T > 0 such that

Φ(t, τ + T , ω, x) = Φ(t, τ, ω, x) for all t, τ ∈ T, ω ∈ Ω, x ∈ X



Remarks:

Another possibility to describe nonautonomous RDS is by removing
the invariance hypothesis for P under θ in the model for noise
evolution.

Previous work on nonautonomous RDS has been done by T.
Caraballo, P.Kloeden, B. Wang...



Example: discrete-time case

Consider a metric space X and four homeomorphisms hi
j : X → X ,

i , j = 0, 1. We want to study the random dynamics if hi
j is used with

probability pj .

Generation of a discrete-time RDS

(i) The ergodic dynamical system θ is given by:
Ω :=

{
ω = (. . . , ω−2, ω−1, ω0, ω1, ω2, . . . ) : ωi ∈ {0, 1}

}
.

P(Ix1,...,xn ) :=
∏n

i=1 pxi (defined on cylinder sets with xi ∈ {0, 1}).
F = σ(cylinder sets).
θ: left shift.

(ii) ϕ(1,m, ω)x := (hm mod 2
ω0

)(x) for m ∈ N.

The cocycle property is

ϕ(n − 1,m + 1, θ1ω)ϕ(1,m, ω)x =

= (hm+n−1 mod 2
ωn−1

◦ · · · ◦ hm+1 mod 2
ω1

) ◦ (hω0

m mod 2(x)) = ϕ(n,m, ω)x .



Example: continuous-time case

Given a 1-dim SDE

dx = f (x , t)dt + σdWt , σ > 0, x ∈ R

(Wt)t∈R is a Wiener process.

The model for the noise is:

• Ω := C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0} equipped with the
compact-open topology and the Borel σ-algebra F := B(C0(R,R))

• P is the Wiener probability measure on (Ω,F).

• The evolution of noise is described by the Wiener shift
θ : R× Ω→ Ω, defined by θ(t, ω(·)) := ω(·+ t)− ω(t).

Let X (t, τ, ω, x) be the stochastic flow of the SDE, for initial time τ
and initial condition x ∈ R; the cocycle is defined by

Φ(t, τ, θτω, x) =def . X (t + τ, τ, ω, x)



Generalising RDS concepts to the nonautonomous case

Nonautonomous random sets

We call nonautonomous random set a set-valued function
M : T× Ω 7→ 2X , (τ, ω) 7→ M(τ, ω), taking values in the subsets of a
metric space (X , d), with (τ, ω) 7→ d(x ,M(τ, ω)) measurable for each
x ∈ X .1

The set M(τ, ω) is the (τ, ω)-fiber of M.
We say that M is compact if M(τ, ω) is compact.

Nonautonomous invariant random sets

A random set M is invariant with respect to the RDS iff.

Φ(t, τ, ω)M(τ, ω) = M(τ + t, θtω)

for all t, τ,∈ T and for almost all ω ∈ Ω.

1dist(C ,D) := supc∈C d(c,D) is the Hausdorff semi-distance of C and D.



Periodic orbit

An invariant random set p : R× Ω 7→ X whose fibers are points is
called random periodic orbit if there exists a positive time T such
that

Φ(T , τ, ω)p(τ, ω) = p(τ, θTω)

for all τ ∈ T and for almost all ω ∈ Ω



Nonautonomous random attractors

We define attracting sets in terms of pullback.

Nonautonomous attracting sets

A random set A is attracting for a random set M iff.

lim
t→∞

dist (Φ(t, τ − t, θ−tω)M(τ − t, θ−tω),A(τ, ω)) = 0

for all τ ∈ T, for almost all ω ∈ Ω

Nonautonomous random global attractors

Let H be a family of random sets: a random set A ∈ H is a global
H-attractor if

A is invariant;
A attracts in the pullback sense every M ∈ H

Remark For the purpose of this talk, we are interested in global random
attractors for the family of all deterministic bounded sets, i.e.

lim
t→∞

dist (Φ(t, τ − t, θ−tω)B,A(τ, ω)) = 0 for all τ ∈ T, for almost all ω ∈ Ω

for all bounded B ⊂ X .



Existence of random global attractors

A classical result relating compact absorbing sets and global attractors
still holds in the nonautonomous case 2.

Nonautonomous absorbing set

A random set B is absorbing for a random set M if, for almost all ω ∈ Ω,
there exists a time T (M, τ, ω) > 0 such that for all
τ ∈ T, for all t ≥ T (M, τ, ω)

Φ(t, τ − t, θ−tω)M(τ − t, θ−tω) ⊂ B(τ, ω)

2H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probability
Theory and Related Fields 100 (1994), no. 3; F. Flandoli and B. Schmalfuß, Random
attractors for the 3-D stochastic Navier-Stokes equation with mulitiplicative white
noise, Stochastics and Stochastics Reports 59 (1996).



Ω-limit sets

Definition (Ω-limit sets)

Given a random set M(τ, ω), we define the Ω-limit

ΩM (τ, ω) :=
⋂

T≥0

⋃
t≥T

Φ(t, τ − t, θ−tω)M(τ − t, θ−tω)

or equivalently:

ΩM (τ, ω) := {y ∈ X : ∃ tn →∞,∃ xn ∈ M(τ − tn, θ−tnω) s.t. y =

= lim
n→∞

Φ(tn, τ − tn, θ−tnω)xn}



Existence of global random attractors

Proposition

Let H be a family of random sets, inclusion-closed 3 and K ∈ H a
compact random set absorbing every M ∈ H (including itself). Then ΩK

is a global H-attractor and it is unique.

Remark In particular, if K is a compact random set absorbing all
deterministic bounded sets, then there exists a unique global random
attractor for all deterministic bounded sets and it is compact. (For this
version of the proposition, it is not necessary for K to be a deterministic
bounded set.).

3We say that a family H of random sets is inclusion-closed if for each M ∈ H
M(τ, ω) 6= ∅ for all (τ, ω), and if M2 ∈ H and ∅ 6= M1(τ, ω) ⊂ M2(τ, ω), ∀(τ, ω),
imply that M1 ∈ H.



Application: stochastic resonance.

The concept of stochastic resonance broadly indicates a class of
phenomena in nonlinear systems where a weak ’signal’ can be be
amplified and optimized by the presence of noise.

It was originally introduced to explain the (almost) periodic recursion of
glaciations (R.Benzi and G. Parisi, C. Nicolis...): the periodic effect of
the changes in time of the eccentricity of the earth’s orbit around the sun
is amplified by environmental noise given by atmosferic fluctuations.

Other phenomena in physics and biology can be explained by the role
played by the noise in the amplification of a signal (ring laser, crayfish,
barn owl...)

Recent mathematical work on the subject by:

N. Berglund, B. Gentz, S. Herrmann, P. Imkeller, I. Pavlyukevich, D.
Peithmann.



Description of the phenomenon

A simple model for stochastic resonance is given by a damped
particle in a periodically oscillating double-well potential in the
presence of noise: when applying a periodic forcing, the double-well
potential is tilted asymmetrically up and down, periodically raising
and lowering the potential barrier.

For weak periodic forcing, the noise strenght can be tuned so that
noise-induced hopping between the wells become synchronised with
the periodic forcing.

In this case the average waiting time between two noise-induced
interwell transitions is comparable with half the period of the
forcing. Outside the resonant range of parameters, for increasing
noise strength, the periodicity is lost and the hopping becomes
increasingly random.



Description of the phenomenon

Figure 1 : Effect of the periodic forcing on a double-well potential.
L. Gammaitoni et al , Stochastic resonance, Reviews of Modern Physics 70
(1998)



SDE for the stochastic resonance

The phenomenon appears also in the one-dimensional approximation of
this model, which describes the dynamics of an overdamped particle:

dx =
(
αx − βx3

)
dt +A cos νt dt + σdWt α, β, σ > 0, x ∈ R

Figure 2 : Paths for the SDE at increasing value of noise



Existence of a global attractor

The SDE

dx =
(
αx − βx3

)
dt +A cos νt dt + σdWt α, β, σ > 0, x ∈ R

generates a nonautonomous RDS (θ,Φ), where the cocycle Φ is given by
the stochastic flow, as defined earlier.

We prove that the RDS has a compact nonautonomous random set
absorbing all deterministic bounded sets. This implies the existence of a

nonautonomous random global attractor.

The main idea in the proof is to change variable in order to transform the
SDE into a RODE and get asymptotic estimates for its solution.



Change of variable and RODE

Given the Ornstein-Uhlenbeck SDE

dy = −ydt + σdWt y ∈ R (1)

The pathwise solution for the equation is given by

Y (t, τ, ω, yτ ) = yτe
−t + σe−t

∫ t

τ

erdWr

The pathwise pullback limit gives

Ot(ω) = σe−t

∫ t

−∞
erdWr

unique stationary solution, which can be seen as a random variable
defined on Ω.



Change of variable and RODE

Let Zt = Xt − Ot , where Xt is shorthand for a pathwise solution of
the SDE for the stochastic resonance

Zt satisfies the random ordinary differential equation

dz

dt
= f (z + Ot(ω), t) + Ot(ω)

f (x , t) = αx − βx3 +A cos νt. We associate to the RODE a
nonautonomous RDS; Ω is the Wiener space, the cocycle is given by

Ψ(s, τ, ω)z =def . Z (τ + s, τ, θ−τω, z)

for all t, τ,∈ R, ω ∈ Ω, z ∈ R



Dissipativity and integrability conditions

The following conditions hold for f :

i Dissipativity condition. There exist constants L1, L2 ≥ 0 such that
(x1 − x2)

(
f (x1, t)− f (x2, t)

)
≤ L1 − L2 |x1 − x2|2.

ii Integrability condition. ∃C0 > 0 s.t.
∫ t

−∞ expc r
∣∣f (u(r), r)

∣∣2dr <∞,
for all 0 < c < C0 and u continous in R with sub-exponential
growth.



Differential inequalities

Given Z (t, τ, ω, z) solution of (21) we have, because of the dissipativity
condition (omitting the dependence on τ, ω, and initial conditions):

dZ 2
t

dt
= 2Zt

(
f (Xt , t) + Ot

)
≤ 2
(
L1 − L2Z

2
t

)
+ L3Z

2
t +

1

L3

(
f (Ot , t) + Ot

)2

for any L3 > 0

⇓
dZ 2

t

dt
≤ −C1Z

2
t + C2 + C3

(
f (Ot , t) + Ot

)2

where C1 = L2 − L3 > 0 can be taken smaller than C0 in the integrability
condition. For brevity, let’s C2 + C3

(
f (x , t) + x

)
:= F (x , t)



Estimates

The differential inequality leads to

|Ψ(s, τ, ω)z |2 ≤ |z |2 e−C1s + e−C1(s+τ)

∫ s+τ

τ

e−C1r F (Or (θ−τω), r)dr

Given an initial condition x ∈ C , bounded set, for the stochastic
resonance SDE, the corresponding initial condition z is such that
z + Oτ (ω) ∈ C , which defines a random set C̃ ;

|z |2 e−C1s ≤ 1 for s ‘big enough’.



Then for times s big enough in the pullback we have:

|Ψ(s, τ − s, θ−sω)z |2 ≤ 1 + e−C1τ

∫ τ

τ−s

e−C1 rF (Or (θ−s ◦ θs−τ (ω)), r)dr

In the limit s →∞

lim
s→∞

|Ψ(s, τ − s, θ−sω)z |2 ≤ 1 + e−C1τ

∫ τ

−∞
e−C1 r F (Or (θ−τω), r)dr := R(τ, ω)2

where the integral is well defined because of the integrability condition.



Existence of a compact absorbing set

There exists T̃ (C , τ, ω) s.t. for s > T̃ (C , τ, ω) :

Ψ(s, τ − s, θ−sω)C (τ, ω) ⊂ B (R(τ, ω))

ball with radius R(τ, ω)
⇓

for any bounded set C there exists T (C , τ, ω) s.t. for s > T (C , τ, ω)

Φ(s, τ − s, θ−sω)C ⊂ B (Oτ (ω),R(τ, ω))

B (Oτ (ω),R(τ, ω)) ball of radius R(τ, ω) centered in Oτ (ω).

B (Oτ (ω),R(τ, ω)) is a random compact set absorbing all
deterministic bounded sets for the RDS for the stochastic resonance.
This implies that the RDS as a random global attractor for the
family of deterministic bounded sets.
The attractor is a periodic, compact and connected random set,
each fiber is an interval in R.



In order to prove that the global random attractor is a periodic orbit, we
need to characterise measures for the nonautonomous RDS



Invariant and periodic invariant measures for the
nonautonomous RDS.

The skew product for the nonautonomous RDS is the map
Θ : T× T× Ω× X 7→ T× X × Ω

(t, τ, ω, x) 7→ (τ + t, θtω,Φ(t, τ, ω)x)

We say that µ : T×F ⊗ B 7→ [0, 1] is an invariant measure for the
nonautonomous RDS if

for all t, µ(t, ·) is a measure on Ω× X such that
for all A ∈ F ⊗ B(X ), for all t, τ

µ(Θ(t, τ,A)) = µ(τ,A)

πΩµ(t, ·) = P where πΩµ(t, ·) denotes the marginal on (Ω,F)

We say that an invariant measure µ is periodic invariant for a
nonautonomous periodic RDS if ∃T > 0 such that for all t

µ(t, ·) = µ(t + T , ·)



Disintegration of measures

We write µτ for µ(τ, ·).

µτ can be uniquely ‘disintegrated’ into a family µ(τ,ω) of probability
measures on X as follows

µτ (A) =

∫
Ω

µ(τ,ω)(Aω)dP(ω)

where Aω = {x ∈ X : (x , ω) ∈ A}.

µ is invariant iff.
Φ(t, τ, ω)µ(τ,ω) = µ(τ+t,θtω)

for all t, τ,∈ T and for almost all ω ∈ Ω

An invariant µ is periodic invariant iff.

Φ(T , τ, ω)µ(τ,ω) = µ(τ,θTω)

for all τ ∈ T and for almost all ω ∈ Ω



Periodic stationary measures for the Markov semigroup

Let ρτ , τ ∈ R, be a measure on X , invariant for the non-homogeneous
Markov semigroup associated to the SDE for the stochastic resonance,
i.e. if P(t, τ, x ,B) is the probability transition for the process

ρτ+t(B) =

∫
X

P(τ, x , t,B)dρτ (x)

for all B ∈ B(X ).

We say that the family {ρτ} is a periodic stationary measure (or periodic
invariant for the semigroup) if

ρτ+T = ρτ for all τ



The attractor is a point

To prove that the global attractor is a random point, we generalise to the
nonautonomous case a result in:

• H. Crauel and F. Flandoli, Additive noise destroys a pitchfork
bifurcation, Journal of Dynamics and Differential Equations 10
(1998), no. 2, 259–274.



Proposition

i There exists a compact global attractor A for the RDS, which is a
periodic random set with period T .

ii The RDS is order-preserving i.e. if x ≥ y then
Φ(t, τ, ω, x) ≥ Φ(t, τ, ω, y), for all t, τ, for almost all ω

If there exist a unique T -periodic stationary measure {ρt} , t ∈ R,
A(τ, ω) is a point for all (τ, ω).



The proposition is based on the fact that the existence of a T-periodic
stationary measure implies the existence of a T-periodic invariant
measure for the RDS.

This can be proved by applying to the discrete RDS defined by the time
T map Φ̃(n, ω, x) := Φ(nT , 0, ω, x) results in:

• H. Crauel, Markov measures for random dynamical systems,
Stochastics and Stochastic Reports 37 (1991), no. 3, 153–173

• H. Crauel Extremal exponents of random dynamical systems do not
vanish, Journal of Dynamics and Differential Equations 2 (1990),
no. 3, 245–291.



Then:

there exists a unique T-periodic family of measures {ρτ} invariant
for the non-homogeneous Markov semigroup associated to the
stochastic resonance;

the pullback limit

µ(τ,ω) := lim
t→∞

Φ(t, τ − t, θ−tω)ρτ−t

exists for all τ ∈ T, for almost all ω ∈ Ω and defines a T-periodic
measure for the RDS.



An indicator for the resonance.

A natural indicator for the resonance properties of the system can be
derived by density of the distribution of the periodic attractor.
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The strong asymmetry in the distribution is progressively less marked
at increasing noise, until eventually the system exits the resonant
regime.

The absolute value of the difference between the integrals for the
density function in the two intervals defined by the potential wells is
maximised for set of parameters in the resonant regime.

This value can be used as an indicator (p+ in the following slide) for
the stochastic resonance, naturally deduced by the dynamical
properties of the RDS (and providing an extimate of how many
particles move, in time, between wells).



Comparison with other indicators

Preliminary tests show differences between the response of p+, the
signal-to-noise ratio and the mean value of x .4.
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4See L. Gammaitoni et al., Reviews of Modern Physics (1998) for the definition
of the indicators.



Conclusions

The nonautonomous RDS generated by the equation

dx =
(
αx − βx3

)
dt +A cos νt dt + σdWt α, β, σ > 0, x ∈ R

has a random global attractor for all deterministic bounded sets.

The attractor is a periodic orbit and the disintegration of the
periodic invariant measure for the RDS is a Dirac measure.

We derive an indicator for the resonant regime from the distribution
of the global attracting point: the efficency of this indicator in
comparison with other indicators for the stochastic resonance will be
further investigated.
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Thanks for your attention!


