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Cocycles

Definition

Let (X ,B, µ,T ) be a probability space with a measure-preserving map T
(the ‘base dynamics’). A (measurable) matrix cocycle is a measurable
map A : Z× X → Mn(F) satisfying the following:

1 A(0, x) = I , for all x ∈ X .

2 A(n + m, x) = A(m,T n(x))A(n, x), for all n ∈ N and x ∈ X .
(‘Cocycle’ property)

If T is invertible and A(1, x) ∈ GLn(F) is invertible for all x , then we may
require the cocycle property to hold for all n,m ∈ Z.

Note, as usual, that A is generated by its time-one map A(1, x).
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MET

Theorem (Multiplicative Ergodic Theorem, Invertible version)

Let (X ,B, µ,T ) be a probability space equipped with an invertible,
ergodic, measure-preserving map T . Let A : X → GLn(R) be a measurable
map generating a cocycle, such that∫

X
log+ ‖A(x)‖ dµ <∞,

∫
X

log+
∥∥A(x)−1

∥∥ dµ <∞.
Then there exist λ1 > λ2 > · · · > λk > −∞, positive integers
m1,m2, . . . ,mk , and measurable families of subspaces
V1(x),V2(x), . . . ,Vk(x) of Rn such that for almost every x ∈ X :

1
⊕k

i=1 Vi (x) = Rn, Vi (x) ∩ Vj(x) = {0}, and dim(Vi ) = mi ;

2 For v ∈ Vj \ {0}, lim
n→∞

1
n log ‖A(n, x)v‖ = λj and

lim
n→∞

1
n log ‖A(−n, x)v‖ = λj ;

3 A(x)Vi (x) = Vj(T (x)).
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Measurable Selection

Walters, 1993: Measurable subspaces x 7→ Vi (x) ⇐⇒ measurable basis
vectors x 7→ vi ,j(x), j = 1 . . .mi .

Collecting these vector-valued functions together in a matrix C (x) allows
us to ‘conjugate’ the cocycle by taking C (T (x))−1A(1, x)C (x). Hence...
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MET Redux

Theorem (Equivalent Formulation of the MET, Invertible Case)

Let (X ,B, µ,T ) and A be as before. Then there exist
λ1 > λ2 > · · · > λk > −∞, positive integers m1,m2, . . . ,mk , and a
measurable function C : X → GLn(R) such that for almost every x ∈ X :

1 C (T (x))−1A(x , 1)C (x) is block diagonal, with the i th block of size
mi ;

2 For v 6= 0 in the columnspace of the i th block,
lim
n→∞

1
n log ‖A(n, x)v‖ = λj and and lim

n→∞
1
n log ‖A(−n, x)v‖ = λj .

Remark

The equivariance condition is encompassed by the block diagonalization.
C can be chosen to be orthogonal.
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Motivation

Oseledets, 1968: Extended the base space for the cocycle by SOn(R) and
constructed a triangular cocycle for this larger space, in order to use nice
properties of such a cocycle. Perhaps it is possible to triangularize without
extending the base?

As well, in analogy with single matrices, an upper triangular form seems to
be a refinement of a block triangularization. So purely from an aesthetic
perspective, one might hope to accomplish something like this.

Remark

Upper-triangularization implies the existence of an equivariant family of
1-D subspaces.
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A Vague Question

Question

If we can block diagonalize in this equivariant manner, can we do better?
Say, upper-triangularization?

Answer

Arnold, Nguyen, Oseledets, Jordan Normal Form for Linear Cocycles, 1997.
Thieullen, Ergodic Reduction of Random Products of Two-by-Two
Matrices, 1997.

Remark

These results are only about real-valued conjugation and normal forms.
They do not precisely refine the MET.
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A Better Question

With single matrices, we like to triangularize over C, as it is always
possible, unlike real triangularization.

Question

Can we always block upper-triangularize a matrix cocycle, over C? That
is, find C : X → GLn(C) such that C (T (x))−1A(1, x)C (x) is block
upper-triangular over C?

Remark

If one uses the MET before attempting this, the problem reduces to
triangularizing each block separately. (We have not attempted to describe
anything like a complex Lyapunov exponent.)
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An Answer

Answer

Not always!
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An Almost-Example

Let X = T = R/Z, B = Borel sets, µ = λ (normalized Lebesgue measure),
and T : T→ T,T (x) = x + η, η ∈ Qc . Define

A(1, x) =

[
cos(πx) − sin(πx)
sin(πx) cos(πx)

]
.

Then the cocycle A cannot be upper-triangularized over R, but may be
triangularized over C.

Remark

A has Lyapunov exponents equal to 0, hence its Oseledets splitting is
trivial.

For the first part, apply a theorem by Thieullen, 1997. Alternatively, we
may proceed bare-handed, so to speak.

Joseph Horan (UVic) Triangularization of Cocyles Jan. 21, 2015 11 / 20



An Almost-Example

Let X = T = R/Z, B = Borel sets, µ = λ (normalized Lebesgue measure),
and T : T→ T,T (x) = x + η, η ∈ Qc . Define

A(1, x) =

[
cos(πx) − sin(πx)
sin(πx) cos(πx)

]
.

Then the cocycle A cannot be upper-triangularized over R, but may be
triangularized over C.

Remark

A has Lyapunov exponents equal to 0, hence its Oseledets splitting is
trivial.

For the first part, apply a theorem by Thieullen, 1997. Alternatively, we
may proceed bare-handed, so to speak.

Joseph Horan (UVic) Triangularization of Cocyles Jan. 21, 2015 11 / 20



The ‘Invariant Ponytail’ argument

A can be thought of as acting on Gr1(R2), the Grassmannian of 1-D
subspaces of R2, which is homeomorphic to [0, π) (or T). There, it acts as

R(x , y) = (x + η, y + x),

which Furstenburg (and others) have proved to be ergodic with respect to
Lebesgue measure.

For contradiction, assume that A may be triangularized; this means there
is an equivariant family of subspaces x 7→ V (x), which implies, since

A(1, x)V (x) = V (T (x)),

that the graph of V on T is invariant under R:

R(x ,V (x)) = (x + η,V (x) + x) = (x + η,V (x + η)).
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The ‘Invariant Ponytail’ Argument

Finally, computing

R(x ,V (x) + h) = R(x + η,V (x) + h + x) = (x + η,V (x + η) + h)

shows that any vertical translate of the graph is invariant, and hence that
there exists an invariant set of positive measure. This is a contradiction,
which shows that an equivariant family of real 1-D subspaces cannot exist.
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Complex Case

However,

C (x) ≡
[

1 i
−i 1

]
diagonalizes every single matrix in the range of A, so there is no extra
work to obtain C (x) such that

C (T (x))−1A(x)C (x) =

[
eπx 0
0 e−πx

]
.
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An Actual Example

Let α ∈ [0, 1) be irrational, and consider the same base dynamics as
before. Let

A(1, x) =



[
cos(πα) − sin(πα)

sin(πα) cos(πα)

]
x ∈ [0, 1− η),

[
1 0

0 −1

]
x ∈ [1− η, 1).

This matrix cocycle also has 0 for both Lyapunov exponents, but this time
there is no obvious way to triangularize it over C. In fact, is it even
triangularizable over R?

Answer

No, to both!
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Outline of Proof

1 Instead of Gr1(R2), we are dealing with Gr1(C2), which is
homeomorphic to C̄ (or the Riemann Sphere S2). Furthermore, A
acts as either a rotation (about the polar axis), or as an inversion
about the unit circle (that is, a flip over the equator).

2 We see that A leaves pairs of circles invariant: those circles
equidistant from the equator (including the two poles).

3 Assuming there is an equivariant family of subspaces, we see that
either these subspaces lie on a pair of circles, or on the equator.
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Outline of Proof

4 In the case of two circles, project down to a two-point extension and
prove that the resulting map is ergodic, yielding the same
contradiction as before.

5 In the case of one circle, project down to an interval extension and
proceed as earlier. This is also how one shows that the cocycle is not
upper-triangularizable over R.

Remark

The resulting dynamics is much more difficult to show to be ergodic. We
utilized a result by Schmidt, 1976 (Theorem 12.8), which took much work
to prove.
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A... Better? Example

Let X be the full shift on {0, 1}, with cylinder set σ-algebra, product
measure µ, and left shift σ. Define a cocycle:

A(1, x) =



[
cos(πα) − sin(πα)

sin(πα) cos(πα)

]
x0 = 0,

[
1 0

0 −1

]
x0 = 1.

We may show that the cocycle generated by A *also* may not be
triangularized, by the same overall scheme as before, but without needing
to utilize a powerful theory.

Joseph Horan (UVic) Triangularization of Cocyles Jan. 21, 2015 18 / 20



A Conjecture

Conjecture

The set matrix cocycles into O(2) which cannot be triangularized over C
is generic, with respect to a reasonable topology.

Approach: Break the cocycle into its rotation part and its flipping part,
and work on the factors.
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The End

Thank you!
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