Block Triangularization of Matrix Cocycles

Joseph Horan

Department of Mathematics and Statistics University of Victoria Victoria, BC

Joint work with Anthony Quas and Christopher Bose

BIRS Workshop: RDSs and METs Banff, Alberta January 23, 2015

Outline

Definition

Let (X, \mathcal{B}, μ, T) be a probability space with a measure-preserving map T (the 'base dynamics'). A (measurable) **matrix cocycle** is a measurable map $A : \mathbb{Z} \times X \to M_n(\mathbb{F})$ satisfying the following:

$$I A(0,x) = I, \text{ for all } x \in X.$$

② $A(n+m,x) = A(m, T^n(x))A(n,x)$, for all $n \in \mathbb{N}$ and $x \in X$. ('Cocycle' property)

If T is invertible and $A(1, x) \in GL_n(\mathbb{F})$ is invertible for all x, then we may require the cocycle property to hold for all $n, m \in \mathbb{Z}$.

Note, as usual, that A is generated by its time-one map A(1, x).

Theorem (Multiplicative Ergodic Theorem, Invertible version)

Let (X, \mathcal{B}, μ, T) be a probability space equipped with an invertible, ergodic, measure-preserving map T. Let $A : X \to GL_n(\mathbb{R})$ be a measurable map generating a cocycle, such that

$$\int_X \log^+ \|A(x)\| \, d\mu < \infty, \ \int_X \log^+ \left\|A(x)^{-1}\right\| \, d\mu < \infty.$$

Then there exist $\lambda_1 > \lambda_2 > \cdots > \lambda_k > -\infty$, positive integers m_1, m_2, \dots, m_k , and measurable families of subspaces $V_1(x), V_2(x), \dots, V_k(x)$ of \mathbb{R}^n such that for almost every $x \in X$: $\bigoplus_{i=1}^k V_i(x) = \mathbb{R}^n$, $V_i(x) \cap V_j(x) = \{0\}$, and dim $(V_i) = m_i$; $\text{For } v \in V_j \setminus \{0\}$, $\lim_{n \to \infty} \frac{1}{n} \log ||A(n, x)v|| = \lambda_j$ and $\lim_{n \to \infty} \frac{1}{n} \log ||A(-n, x)v|| = \lambda_j$; $A(x)V_i(x) = V_j(T(x))$. Walters, 1993: Measurable subspaces $x \mapsto V_i(x) \iff$ measurable basis vectors $x \mapsto v_{i,j}(x), j = 1 \dots m_i$.

Collecting these vector-valued functions together in a matrix C(x) allows us to 'conjugate' the cocycle by taking $C(T(x))^{-1}A(1,x)C(x)$. Hence...

MET Redux

Theorem (Equivalent Formulation of the MET, Invertible Case) Let (X, \mathcal{B}, μ, T) and A be as before. Then there exist $\lambda_1 > \lambda_2 > \cdots > \lambda_k > -\infty$, positive integers m_1, m_2, \ldots, m_k , and a measurable function $C : X \to GL_n(\mathbb{R})$ such that for almost every $x \in X$:

C(T(x))⁻¹A(x,1)C(x) is block diagonal, with the ith block of size m_i;

2 For
$$v \neq 0$$
 in the columnspace of the *i*th block,
 $\lim_{n \to \infty} \frac{1}{n} \log ||A(n, x)v|| = \lambda_j$ and and $\lim_{n \to \infty} \frac{1}{n} \log ||A(-n, x)v|| = \lambda_j$.

Remark

The equivariance condition is encompassed by the block diagonalization. C can be chosen to be orthogonal.

Oseledets, 1968: Extended the base space for the cocycle by $SO_n(\mathbb{R})$ and constructed a triangular cocycle for this larger space, in order to use nice properties of such a cocycle. Perhaps it is possible to triangularize without extending the base?

As well, in analogy with single matrices, an upper triangular form seems to be a refinement of a block triangularization. So purely from an aesthetic perspective, one might hope to accomplish something like this. Oseledets, 1968: Extended the base space for the cocycle by $SO_n(\mathbb{R})$ and constructed a triangular cocycle for this larger space, in order to use nice properties of such a cocycle. Perhaps it is possible to triangularize without extending the base?

As well, in analogy with single matrices, an upper triangular form seems to be a refinement of a block triangularization. So purely from an aesthetic perspective, one might hope to accomplish something like this.

Remark

Upper-triangularization implies the existence of an equivariant family of 1-D subspaces.

A Vague Question

Question

If we can block diagonalize in this equivariant manner, can we do better? Say, upper-triangularization?

Question

If we can block diagonalize in this equivariant manner, can we do better? Say, upper-triangularization?

Answer

Arnold, Nguyen, Oseledets, Jordan Normal Form for Linear Cocycles, 1997. Thieullen, Ergodic Reduction of Random Products of Two-by-Two Matrices, 1997.

Question

If we can block diagonalize in this equivariant manner, can we do better? Say, upper-triangularization?

Answer

Arnold, Nguyen, Oseledets, Jordan Normal Form for Linear Cocycles, 1997. Thieullen, Ergodic Reduction of Random Products of Two-by-Two Matrices, 1997.

Remark

These results are only about real-valued conjugation and normal forms. They do not precisely refine the MET.

With single matrices, we like to triangularize over \mathbb{C} , as it is always possible, unlike real triangularization.

Question

Can we always block upper-triangularize a matrix cocycle, over \mathbb{C} ? That is, find $C: X \to GL_n(\mathbb{C})$ such that $C(T(x))^{-1}A(1,x)C(x)$ is block upper-triangular over \mathbb{C} ?

With single matrices, we like to triangularize over \mathbb{C} , as it is always possible, unlike real triangularization.

Question

Can we always block upper-triangularize a matrix cocycle, over \mathbb{C} ? That is, find $C: X \to GL_n(\mathbb{C})$ such that $C(T(x))^{-1}A(1,x)C(x)$ is block upper-triangular over \mathbb{C} ?

Remark

If one uses the MET before attempting this, the problem reduces to triangularizing each block separately. (We have not attempted to describe anything like a complex Lyapunov exponent.)

An Answer

Answer

An Answer

Answer

Not always!

An Almost-Example

Let $X = \mathbb{T} = \mathbb{R}/\mathbb{Z}$, $\mathcal{B} = \text{Borel sets}$, $\mu = \lambda$ (normalized Lebesgue measure), and $T : \mathbb{T} \to \mathbb{T}$, $T(x) = x + \eta$, $\eta \in \mathbb{Q}^c$. Define

$$A(1,x) = \begin{bmatrix} \cos(\pi x) & -\sin(\pi x) \\ \sin(\pi x) & \cos(\pi x) \end{bmatrix}.$$

Then the cocycle A cannot be upper-triangularized over \mathbb{R} , but may be triangularized over \mathbb{C} .

Remark

A has Lyapunov exponents equal to 0, hence its Oseledets splitting is trivial.

An Almost-Example

Let $X = \mathbb{T} = \mathbb{R}/\mathbb{Z}$, $\mathcal{B} = \text{Borel sets}$, $\mu = \lambda$ (normalized Lebesgue measure), and $T : \mathbb{T} \to \mathbb{T}$, $T(x) = x + \eta$, $\eta \in \mathbb{Q}^c$. Define

$$\mathsf{A}(1,x) = egin{bmatrix} \cos(\pi x) & -\sin(\pi x) \ \sin(\pi x) & \cos(\pi x) \end{bmatrix}.$$

Then the cocycle A cannot be upper-triangularized over \mathbb{R} , but may be triangularized over \mathbb{C} .

Remark

A has Lyapunov exponents equal to 0, hence its Oseledets splitting is trivial.

For the first part, apply a theorem by Thieullen, 1997. Alternatively, we may proceed bare-handed, so to speak.

The 'Invariant Ponytail' argument

A can be thought of as acting on $Gr_1(\mathbb{R}^2)$, the Grassmannian of 1-D subspaces of \mathbb{R}^2 , which is homeomorphic to $[0, \pi)$ (or \mathbb{T}). There, it acts as

$$R(x,y) = (x + \eta, y + x),$$

which Furstenburg (and others) have proved to be ergodic with respect to Lebesgue measure.

For contradiction, assume that A may be triangularized; this means there is an equivariant family of subspaces $x \mapsto V(x)$, which implies, since

$$A(1,x)V(x) = V(T(x)),$$

that the graph of V on \mathbb{T} is invariant under R:

$$R(x, V(x)) = (x + \eta, V(x) + x) = (x + \eta, V(x + \eta)).$$

Finally, computing

$$R(x, V(x) + h) = R(x + \eta, V(x) + h + x) = (x + \eta, V(x + \eta) + h)$$

shows that any vertical translate of the graph is invariant, and hence that there exists an invariant set of positive measure. This is a contradiction, which shows that an equivariant family of real 1-D subspaces cannot exist. However,

$$C(x) \equiv \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$$

diagonalizes every single matrix in the range of A, so there is no extra work to obtain C(x) such that

$$C(T(x))^{-1}A(x)C(x) = \begin{bmatrix} e^{\pi x} & 0\\ 0 & e^{-\pi x} \end{bmatrix}.$$

An Actual Example

Let $\alpha \in [0,1)$ be irrational, and consider the same base dynamics as before. Let

$$A(1,x) = \begin{cases} \begin{bmatrix} \cos(\pi\alpha) & -\sin(\pi\alpha) \\ \sin(\pi\alpha) & \cos(\pi\alpha) \end{bmatrix} & x \in [0, 1-\eta), \\ \\ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} & x \in [1-\eta, 1). \end{cases}$$

This matrix cocycle also has 0 for both Lyapunov exponents, but this time there is no obvious way to triangularize it over \mathbb{C} . In fact, is it even triangularizable over \mathbb{R} ?

An Actual Example

Let $\alpha \in [0,1)$ be irrational, and consider the same base dynamics as before. Let

$$A(1,x) = \begin{cases} \begin{bmatrix} \cos(\pi\alpha) & -\sin(\pi\alpha) \\ \sin(\pi\alpha) & \cos(\pi\alpha) \end{bmatrix} & x \in [0, 1-\eta), \\ \\ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} & x \in [1-\eta, 1). \end{cases}$$

This matrix cocycle also has 0 for both Lyapunov exponents, but this time there is no obvious way to triangularize it over \mathbb{C} . In fact, is it even triangularizable over \mathbb{R} ?

An Actual Example

Let $\alpha \in [0,1)$ be irrational, and consider the same base dynamics as before. Let

$$A(1,x) = \begin{cases} \begin{bmatrix} \cos(\pi\alpha) & -\sin(\pi\alpha) \\ \sin(\pi\alpha) & \cos(\pi\alpha) \end{bmatrix} & x \in [0, 1-\eta), \\ \\ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} & x \in [1-\eta, 1). \end{cases}$$

This matrix cocycle also has 0 for both Lyapunov exponents, but this time there is no obvious way to triangularize it over \mathbb{C} . In fact, is it even triangularizable over \mathbb{R} ?

- Instead of Gr₁(R²), we are dealing with Gr₁(C²), which is homeomorphic to C

 (or the Riemann Sphere S²). Furthermore, A acts as either a rotation (about the polar axis), or as an inversion about the unit circle (that is, a flip over the equator).
- We see that A leaves pairs of circles invariant: those circles equidistant from the equator (including the two poles).
- Assuming there is an equivariant family of subspaces, we see that either these subspaces lie on a pair of circles, or on the equator.

- In the case of two circles, project down to a two-point extension and prove that the resulting map is ergodic, yielding the same contradiction as before.
- In the case of one circle, project down to an interval extension and proceed as earlier. This is also how one shows that the cocycle is not upper-triangularizable over R.

Remark

The resulting dynamics is much more difficult to show to be ergodic. We utilized a result by Schmidt, 1976 (Theorem 12.8), which took much work to prove.

Let X be the full shift on $\{0,1\}$, with cylinder set σ -algebra, product measure μ , and left shift σ . Define a cocycle:

$$A(1,x) = \begin{cases} \begin{bmatrix} \cos(\pi\alpha) & -\sin(\pi\alpha) \\ \sin(\pi\alpha) & \cos(\pi\alpha) \end{bmatrix} & x_0 = 0, \\ \\ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} & x_0 = 1. \end{cases}$$

We may show that the cocycle generated by A *also* may not be triangularized, by the same overall scheme as before, but without needing to utilize a powerful theory.

Conjecture

The set matrix cocycles into O(2) which cannot be triangularized over \mathbb{C} is generic, with respect to a reasonable topology.

Approach: Break the cocycle into its rotation part and its flipping part, and work on the factors.

Thank you!

Bibliography:

- L. Arnold, Nguyen D.C., V.I. Oseledets, Jordan Normal Form for Linear Cocycles. Random Operators and Stochastic Equations. 1997.
- **2** K. Schmidt, Lectures in Ergodic Transformation Groups. 1976.
- Ph. Thieullen, Ergodic Reduction of Random Products of Two-by-Two Matrices. Journal d'Analyse Mathématiques. 1997.
- P. Walters, A Dynamical Proof of the Mulitplicative Ergodic Theorem. Transactions of the American Mathematical Society. 1993.